

David Beazley and Brian K. Jones

THIRD EDITION

Python Cookbook

Python Cookbook, Third Edition
by David Beazley and Brian K. Jones

Copyright © 2013 David Beazley and Brian Jones. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette and Rachel Roumeliotis
Production Editor: Kristen Borg
Copyeditor: Jasmine Kwityn
Proofreader: BIM Proofreading Services

Indexer: WordCo Indexing Services
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

May 2013: Third Edition

Revision History for the Third Edition:

2013-05-08: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449340377 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Python Cookbook, the image of a springhaas, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-34037-7

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449340377

Table of Contents

Preface. xi

1. Data Structures and Algorithms. 1
1.1. Unpacking a Sequence into Separate Variables 1
1.2. Unpacking Elements from Iterables of Arbitrary Length 3
1.3. Keeping the Last N Items 5
1.4. Finding the Largest or Smallest N Items 7
1.5. Implementing a Priority Queue 8
1.6. Mapping Keys to Multiple Values in a Dictionary 11
1.7. Keeping Dictionaries in Order 12
1.8. Calculating with Dictionaries 13
1.9. Finding Commonalities in Two Dictionaries 15
1.10. Removing Duplicates from a Sequence while Maintaining Order 17
1.11. Naming a Slice 18
1.12. Determining the Most Frequently Occurring Items in a Sequence 20
1.13. Sorting a List of Dictionaries by a Common Key 21
1.14. Sorting Objects Without Native Comparison Support 23
1.15. Grouping Records Together Based on a Field 24
1.16. Filtering Sequence Elements 26
1.17. Extracting a Subset of a Dictionary 28
1.18. Mapping Names to Sequence Elements 29
1.19. Transforming and Reducing Data at the Same Time 32
1.20. Combining Multiple Mappings into a Single Mapping 33

2. Strings and Text. 37
2.1. Splitting Strings on Any of Multiple Delimiters 37
2.2. Matching Text at the Start or End of a String 38
2.3. Matching Strings Using Shell Wildcard Patterns 40
2.4. Matching and Searching for Text Patterns 42

iii

2.5. Searching and Replacing Text 45
2.6. Searching and Replacing Case-Insensitive Text 46
2.7. Specifying a Regular Expression for the Shortest Match 47
2.8. Writing a Regular Expression for Multiline Patterns 48
2.9. Normalizing Unicode Text to a Standard Representation 50
2.10. Working with Unicode Characters in Regular Expressions 52
2.11. Stripping Unwanted Characters from Strings 53
2.12. Sanitizing and Cleaning Up Text 54
2.13. Aligning Text Strings 57
2.14. Combining and Concatenating Strings 58
2.15. Interpolating Variables in Strings 61
2.16. Reformatting Text to a Fixed Number of Columns 64
2.17. Handling HTML and XML Entities in Text 65
2.18. Tokenizing Text 66
2.19. Writing a Simple Recursive Descent Parser 69
2.20. Performing Text Operations on Byte Strings 78

3. Numbers, Dates, and Times. 83
3.1. Rounding Numerical Values 83
3.2. Performing Accurate Decimal Calculations 84
3.3. Formatting Numbers for Output 87
3.4. Working with Binary, Octal, and Hexadecimal Integers 89
3.5. Packing and Unpacking Large Integers from Bytes 90
3.6. Performing Complex-Valued Math 92
3.7. Working with Infinity and NaNs 94
3.8. Calculating with Fractions 96
3.9. Calculating with Large Numerical Arrays 97
3.10. Performing Matrix and Linear Algebra Calculations 100
3.11. Picking Things at Random 102
3.12. Converting Days to Seconds, and Other Basic Time Conversions 104
3.13. Determining Last Friday’s Date 106
3.14. Finding the Date Range for the Current Month 107
3.15. Converting Strings into Datetimes 109
3.16. Manipulating Dates Involving Time Zones 110

4. Iterators and Generators. 113
4.1. Manually Consuming an Iterator 113
4.2. Delegating Iteration 114
4.3. Creating New Iteration Patterns with Generators 115
4.4. Implementing the Iterator Protocol 117
4.5. Iterating in Reverse 119
4.6. Defining Generator Functions with Extra State 120

iv | Table of Contents

4.7. Taking a Slice of an Iterator 122
4.8. Skipping the First Part of an Iterable 123
4.9. Iterating Over All Possible Combinations or Permutations 125
4.10. Iterating Over the Index-Value Pairs of a Sequence 127
4.11. Iterating Over Multiple Sequences Simultaneously 129
4.12. Iterating on Items in Separate Containers 131
4.13. Creating Data Processing Pipelines 132
4.14. Flattening a Nested Sequence 135
4.15. Iterating in Sorted Order Over Merged Sorted Iterables 136
4.16. Replacing Infinite while Loops with an Iterator 138

5. Files and I/O. 141
5.1. Reading and Writing Text Data 141
5.2. Printing to a File 144
5.3. Printing with a Different Separator or Line Ending 144
5.4. Reading and Writing Binary Data 145
5.5. Writing to a File That Doesn’t Already Exist 147
5.6. Performing I/O Operations on a String 148
5.7. Reading and Writing Compressed Datafiles 149
5.8. Iterating Over Fixed-Sized Records 151
5.9. Reading Binary Data into a Mutable Buffer 152
5.10. Memory Mapping Binary Files 153
5.11. Manipulating Pathnames 156
5.12. Testing for the Existence of a File 157
5.13. Getting a Directory Listing 158
5.14. Bypassing Filename Encoding 160
5.15. Printing Bad Filenames 161
5.16. Adding or Changing the Encoding of an Already Open File 163
5.17. Writing Bytes to a Text File 165
5.18. Wrapping an Existing File Descriptor As a File Object 166
5.19. Making Temporary Files and Directories 167
5.20. Communicating with Serial Ports 170
5.21. Serializing Python Objects 171

6. Data Encoding and Processing. 175
6.1. Reading and Writing CSV Data 175
6.2. Reading and Writing JSON Data 179
6.3. Parsing Simple XML Data 183
6.4. Parsing Huge XML Files Incrementally 186
6.5. Turning a Dictionary into XML 189
6.6. Parsing, Modifying, and Rewriting XML 191
6.7. Parsing XML Documents with Namespaces 193

Table of Contents | v

6.8. Interacting with a Relational Database 195
6.9. Decoding and Encoding Hexadecimal Digits 197
6.10. Decoding and Encoding Base64 199
6.11. Reading and Writing Binary Arrays of Structures 199
6.12. Reading Nested and Variable-Sized Binary Structures 203
6.13. Summarizing Data and Performing Statistics 214

7. Functions. 217
7.1. Writing Functions That Accept Any Number of Arguments 217
7.2. Writing Functions That Only Accept Keyword Arguments 219
7.3. Attaching Informational Metadata to Function Arguments 220
7.4. Returning Multiple Values from a Function 221
7.5. Defining Functions with Default Arguments 222
7.6. Defining Anonymous or Inline Functions 224
7.7. Capturing Variables in Anonymous Functions 225
7.8. Making an N-Argument Callable Work As a Callable with Fewer
Arguments 227
7.9. Replacing Single Method Classes with Functions 231
7.10. Carrying Extra State with Callback Functions 232
7.11. Inlining Callback Functions 235
7.12. Accessing Variables Defined Inside a Closure 238

8. Classes and Objects. 243
8.1. Changing the String Representation of Instances 243
8.2. Customizing String Formatting 245
8.3. Making Objects Support the Context-Management Protocol 246
8.4. Saving Memory When Creating a Large Number of Instances 248
8.5. Encapsulating Names in a Class 250
8.6. Creating Managed Attributes 251
8.7. Calling a Method on a Parent Class 256
8.8. Extending a Property in a Subclass 260
8.9. Creating a New Kind of Class or Instance Attribute 264
8.10. Using Lazily Computed Properties 267
8.11. Simplifying the Initialization of Data Structures 270
8.12. Defining an Interface or Abstract Base Class 274
8.13. Implementing a Data Model or Type System 277
8.14. Implementing Custom Containers 283
8.15. Delegating Attribute Access 287
8.16. Defining More Than One Constructor in a Class 291
8.17. Creating an Instance Without Invoking init 293
8.18. Extending Classes with Mixins 294
8.19. Implementing Stateful Objects or State Machines 299

vi | Table of Contents

8.20. Calling a Method on an Object Given the Name As a String 305
8.21. Implementing the Visitor Pattern 306
8.22. Implementing the Visitor Pattern Without Recursion 311
8.23. Managing Memory in Cyclic Data Structures 317
8.24. Making Classes Support Comparison Operations 321
8.25. Creating Cached Instances 323

9. Metaprogramming. 329
9.1. Putting a Wrapper Around a Function 329
9.2. Preserving Function Metadata When Writing Decorators 331
9.3. Unwrapping a Decorator 333
9.4. Defining a Decorator That Takes Arguments 334
9.5. Defining a Decorator with User Adjustable Attributes 336
9.6. Defining a Decorator That Takes an Optional Argument 339
9.7. Enforcing Type Checking on a Function Using a Decorator 341
9.8. Defining Decorators As Part of a Class 345
9.9. Defining Decorators As Classes 347
9.10. Applying Decorators to Class and Static Methods 350
9.11. Writing Decorators That Add Arguments to Wrapped Functions 352
9.12. Using Decorators to Patch Class Definitions 355
9.13. Using a Metaclass to Control Instance Creation 356
9.14. Capturing Class Attribute Definition Order 359
9.15. Defining a Metaclass That Takes Optional Arguments 362
9.16. Enforcing an Argument Signature on *args and **kwargs 364
9.17. Enforcing Coding Conventions in Classes 367
9.18. Defining Classes Programmatically 370
9.19. Initializing Class Members at Definition Time 374
9.20. Implementing Multiple Dispatch with Function Annotations 376
9.21. Avoiding Repetitive Property Methods 382
9.22. Defining Context Managers the Easy Way 384
9.23. Executing Code with Local Side Effects 386
9.24. Parsing and Analyzing Python Source 388
9.25. Disassembling Python Byte Code 392

10. Modules and Packages. 397
10.1. Making a Hierarchical Package of Modules 397
10.2. Controlling the Import of Everything 398
10.3. Importing Package Submodules Using Relative Names 399
10.4. Splitting a Module into Multiple Files 401
10.5. Making Separate Directories of Code Import Under a Common
Namespace 404
10.6. Reloading Modules 406

Table of Contents | vii

10.7. Making a Directory or Zip File Runnable As a Main Script 407
10.8. Reading Datafiles Within a Package 408
10.9. Adding Directories to sys.path 409
10.10. Importing Modules Using a Name Given in a String 411
10.11. Loading Modules from a Remote Machine Using Import Hooks 412
10.12. Patching Modules on Import 428
10.13. Installing Packages Just for Yourself 431
10.14. Creating a New Python Environment 432
10.15. Distributing Packages 433

11. Network and Web Programming. 437
11.1. Interacting with HTTP Services As a Client 437
11.2. Creating a TCP Server 441
11.3. Creating a UDP Server 445
11.4. Generating a Range of IP Addresses from a CIDR Address 447
11.5. Creating a Simple REST-Based Interface 449
11.6. Implementing a Simple Remote Procedure Call with XML-RPC 454
11.7. Communicating Simply Between Interpreters 456
11.8. Implementing Remote Procedure Calls 458
11.9. Authenticating Clients Simply 461
11.10. Adding SSL to Network Services 464
11.11. Passing a Socket File Descriptor Between Processes 470
11.12. Understanding Event-Driven I/O 475
11.13. Sending and Receiving Large Arrays 481

12. Concurrency. 485
12.1. Starting and Stopping Threads 485
12.2. Determining If a Thread Has Started 488
12.3. Communicating Between Threads 491
12.4. Locking Critical Sections 497
12.5. Locking with Deadlock Avoidance 500
12.6. Storing Thread-Specific State 504
12.7. Creating a Thread Pool 505
12.8. Performing Simple Parallel Programming 509
12.9. Dealing with the GIL (and How to Stop Worrying About It) 513
12.10. Defining an Actor Task 516
12.11. Implementing Publish/Subscribe Messaging 520
12.12. Using Generators As an Alternative to Threads 524
12.13. Polling Multiple Thread Queues 531
12.14. Launching a Daemon Process on Unix 534

13. Utility Scripting and System Administration. 539

viii | Table of Contents

13.1. Accepting Script Input via Redirection, Pipes, or Input Files 539
13.2. Terminating a Program with an Error Message 540
13.3. Parsing Command-Line Options 541
13.4. Prompting for a Password at Runtime 544
13.5. Getting the Terminal Size 545
13.6. Executing an External Command and Getting Its Output 545
13.7. Copying or Moving Files and Directories 547
13.8. Creating and Unpacking Archives 549
13.9. Finding Files by Name 550
13.10. Reading Configuration Files 552
13.11. Adding Logging to Simple Scripts 555
13.12. Adding Logging to Libraries 558
13.13. Making a Stopwatch Timer 559
13.14. Putting Limits on Memory and CPU Usage 561
13.15. Launching a Web Browser 563

14. Testing, Debugging, and Exceptions. 565
14.1. Testing Output Sent to stdout 565
14.2. Patching Objects in Unit Tests 567
14.3. Testing for Exceptional Conditions in Unit Tests 570
14.4. Logging Test Output to a File 572
14.5. Skipping or Anticipating Test Failures 573
14.6. Handling Multiple Exceptions 574
14.7. Catching All Exceptions 576
14.8. Creating Custom Exceptions 578
14.9. Raising an Exception in Response to Another Exception 580
14.10. Reraising the Last Exception 582
14.11. Issuing Warning Messages 583
14.12. Debugging Basic Program Crashes 585
14.13. Profiling and Timing Your Program 587
14.14. Making Your Programs Run Faster 590

15. C Extensions. 597
15.1. Accessing C Code Using ctypes 599
15.2. Writing a Simple C Extension Module 605
15.3. Writing an Extension Function That Operates on Arrays 609
15.4. Managing Opaque Pointers in C Extension Modules 612
15.5. Defining and Exporting C APIs from Extension Modules 614
15.6. Calling Python from C 619
15.7. Releasing the GIL in C Extensions 625
15.8. Mixing Threads from C and Python 625
15.9. Wrapping C Code with Swig 627

Table of Contents | ix

15.10. Wrapping Existing C Code with Cython 632
15.11. Using Cython to Write High-Performance Array Operations 638
15.12. Turning a Function Pointer into a Callable 643
15.13. Passing NULL-Terminated Strings to C Libraries 644
15.14. Passing Unicode Strings to C Libraries 648
15.15. Converting C Strings to Python 653
15.16. Working with C Strings of Dubious Encoding 654
15.17. Passing Filenames to C Extensions 657
15.18. Passing Open Files to C Extensions 658
15.19. Reading File-Like Objects from C 659
15.20. Consuming an Iterable from C 662
15.21. Diagnosing Segmentation Faults 663

A. Further Reading. 665

Index. 667

x | Table of Contents

Preface

Since 2008, the Python world has been watching the slow evolution of Python 3. It was
always known that the adoption of Python 3 would likely take a long time. In fact, even
at the time of this writing (2013), most working Python programmers continue to use
Python 2 in production. A lot has been made about the fact that Python 3 is not backward
compatible with past versions. To be sure, backward compatibility is an issue for anyone
with an existing code base. However, if you shift your view toward the future, you’ll find
that Python 3 offers much more than meets the eye.

Just as Python 3 is about the future, this edition of the Python Cookbook represents a
major change over past editions. First and foremost, this is meant to be a very forward
looking book. All of the recipes have been written and tested with Python 3.3 without
regard to past Python versions or the “old way” of doing things. In fact, many of the
recipes will only work with Python 3.3 and above. Doing so may be a calculated risk,
but the ultimate goal is to write a book of recipes based on the most modern tools and
idioms possible. It is hoped that the recipes can serve as a guide for people writing new
code in Python 3 or those who hope to modernize existing code.

Needless to say, writing a book of recipes in this style presents a certain editorial chal‐
lenge. An online search for Python recipes returns literally thousands of useful recipes
on sites such as ActiveState’s Python recipes or Stack Overflow. However, most of these
recipes are steeped in history and the past. Besides being written almost exclusively for
Python 2, they often contain workarounds and hacks related to differences between old
versions of Python (e.g., version 2.3 versus 2.4). Moreover, they often use outdated
techniques that have simply become a built-in feature of Python 3.3. Finding recipes
exclusively focused on Python 3 can be a bit more difficult.

Rather than attempting to seek out Python 3-specific recipes, the topics of this book are
merely inspired by existing code and techniques. Using these ideas as a springboard,
the writing is an original work that has been deliberately written with the most modern
Python programming techniques possible. Thus, it can serve as a reference for anyone
who wants to write their code in a modern style.

xi

http://code.activestate.com/recipes/langs/python
http://stackoverflow.com/questions/tagged/python

In choosing which recipes to include, there is a certain realization that it is simply
impossible to write a book that covers every possible thing that someone might do with
Python. Thus, a priority has been given to topics that focus on the core Python language
as well as tasks that are common to a wide variety of application domains. In addition,
many of the recipes aim to illustrate features that are new to Python 3 and more likely
to be unknown to even experienced programmers using older versions. There is also a
certain preference to recipes that illustrate a generally applicable programming tech‐
nique (i.e., programming patterns) as opposed to those that narrowly try to address a
very specific practical problem. Although certain third-party packages get coverage, a
majority of the recipes focus on the core language and standard library.

Who This Book Is For
This book is aimed at more experienced Python programmers who are looking to
deepen their understanding of the language and modern programming idioms. Much
of the material focuses on some of the more advanced techniques used by libraries,
frameworks, and applications. Throughout the book, the recipes generally assume that
the reader already has the necessary background to understand the topic at hand (e.g.,
general knowledge of computer science, data structures, complexity, systems program‐
ming, concurrency, C programming, etc.). Moreover, the recipes are often just skeletons
that aim to provide essential information for getting started, but which require the
reader to do more research to fill in the details. As such, it is assumed that the reader
knows how to use search engines and Python’s excellent online documentation.

Many of the more advanced recipes will reward the reader’s patience with a much greater
insight into how Python actually works under the covers. You will learn new tricks and
techniques that can be applied to your own code.

Who This Book Is Not For
This is not a book designed for beginners trying to learn Python for the first time. In
fact, it already assumes that you know the basics that might be taught in a Python tutorial
or more introductory book. This book is also not designed to serve as a quick reference
manual (e.g., quickly looking up the functions in a specific module). Instead, the book
aims to focus on specific programming topics, show possible solutions, and serve as a
springboard for jumping into more advanced material you might find online or in a
reference.

xii | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Online Code Examples
Almost all of the code examples in this book are available online at http://github.com/
dabeaz/python-cookbook. The authors welcome bug fixes, improvements, and com‐
ments.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount

Preface | xiii

http://github.com/dabeaz/python-cookbook
http://github.com/dabeaz/python-cookbook

of example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: Python Cookbook, 3rd edition, by David
Beazley and Brian K. Jones (O’Reilly). Copyright 2013 David Beazley and Brian Jones,
978-1-449-34037-7.

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/python_cookbook_3e.

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/python_cookbook_3e

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We would like to acknowledge the technical reviewers, Jake Vanderplas, Robert Kern,
and Andrea Crotti, for their very helpful comments, as well as the general Python com‐
munity for their support and encouragement. We would also like to thank the editors
of the prior edition, Alex Martelli, Anna Ravenscroft, and David Ascher. Although this
edition is newly written, the previous edition provided an initial framework for selecting
the topics and recipes of interest. Last, but not least, we would like to thank readers of
the early release editions for their comments and suggestions for improvement.

David Beazley’s Acknowledgments
Writing a book is no small task. As such, I would like to thank my wife Paula and my
two boys for their patience and support during this project. Much of the material in this
book was derived from content I developed teaching Python-related training classes
over the last six years. Thus, I’d like to thank all of the students who have taken my
courses and ultimately made this book possible. I’d also like to thank Ned Batchelder,
Travis Oliphant, Peter Wang, Brian Van de Ven, Hugo Shi, Raymond Hettinger, Michael
Foord, and Daniel Klein for traveling to the four corners of the world to teach these
courses while I stayed home in Chicago to work on this project. Meghan Blanchette and
Rachel Roumeliotis of O’Reilly were also instrumental in seeing this project through to
completion despite the drama of several false starts and unforeseen delays. Last, but not
least, I’d like to thank the Python community for their continued support and putting
up with my flights of diabolical fancy.

David M. Beazley

http://www.dabeaz.com

https://twitter.com/dabeaz

Preface | xv

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.dabeaz.com
https://twitter.com/dabeaz

Brian Jones’ Acknowledgments
I would like to thank both my coauthor, David Beazley, as well as Meghan Blanchette
and Rachel Roumeliotis of O’Reilly, for working with me on this project. I would also
like to thank my amazing wife, Natasha, for her patience and encouragement in this
project, and her support in all of my ambitions. Most of all, I’d like to thank the Python
community at large. Though I have contributed to the support of various open source
projects, languages, clubs, and the like, no work has been so gratifying and rewarding
as that which has been in the service of the Python community.

Brian K. Jones

http://www.protocolostomy.com

https://twitter.com/bkjones

xvi | Preface

http://www.protocolostomy.com
https://twitter.com/bkjones

CHAPTER 1

Data Structures and Algorithms

Python provides a variety of useful built-in data structures, such as lists, sets, and dic‐
tionaries. For the most part, the use of these structures is straightforward. However,
common questions concerning searching, sorting, ordering, and filtering often arise.
Thus, the goal of this chapter is to discuss common data structures and algorithms
involving data. In addition, treatment is given to the various data structures contained
in the collections module.

1.1. Unpacking a Sequence into Separate Variables
Problem
You have an N-element tuple or sequence that you would like to unpack into a collection
of N variables.

Solution
Any sequence (or iterable) can be unpacked into variables using a simple assignment
operation. The only requirement is that the number of variables and structure match
the sequence. For example:

>>> p = (4, 5)
>>> x, y = p
>>> x
4
>>> y
5
>>>

>>> data = ['ACME', 50, 91.1, (2012, 12, 21)]
>>> name, shares, price, date = data
>>> name

1

'ACME'
>>> date
(2012, 12, 21)

>>> name, shares, price, (year, mon, day) = data
>>> name
'ACME'
>>> year
2012
>>> mon
12
>>> day
21
>>>

If there is a mismatch in the number of elements, you’ll get an error. For example:

>>> p = (4, 5)
>>> x, y, z = p
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: need more than 2 values to unpack
>>>

Discussion
Unpacking actually works with any object that happens to be iterable, not just tuples or
lists. This includes strings, files, iterators, and generators. For example:

>>> s = 'Hello'
>>> a, b, c, d, e = s
>>> a
'H'
>>> b
'e'
>>> e
'o'
>>>

When unpacking, you may sometimes want to discard certain values. Python has no
special syntax for this, but you can often just pick a throwaway variable name for it. For
example:

>>> data = ['ACME', 50, 91.1, (2012, 12, 21)]
>>> _, shares, price, _ = data
>>> shares
50
>>> price
91.1
>>>

However, make sure that the variable name you pick isn’t being used for something else
already.

2 | Chapter 1: Data Structures and Algorithms

1.2. Unpacking Elements from Iterables of Arbitrary
Length
Problem
You need to unpack N elements from an iterable, but the iterable may be longer than N
elements, causing a “too many values to unpack” exception.

Solution
Python “star expressions” can be used to address this problem. For example, suppose
you run a course and decide at the end of the semester that you’re going to drop the first
and last homework grades, and only average the rest of them. If there are only four
assignments, maybe you simply unpack all four, but what if there are 24? A star expres‐
sion makes it easy:

def drop_first_last(grades):
 first, *middle, last = grades
 return avg(middle)

As another use case, suppose you have user records that consist of a name and email
address, followed by an arbitrary number of phone numbers. You could unpack the
records like this:

>>> record = ('Dave', 'dave@example.com', '773-555-1212', '847-555-1212')
>>> name, email, *phone_numbers = user_record
>>> name
'Dave'
>>> email
'dave@example.com'
>>> phone_numbers
['773-555-1212', '847-555-1212']
>>>

It’s worth noting that the phone_numbers variable will always be a list, regardless of how
many phone numbers are unpacked (including none). Thus, any code that uses
phone_numbers won’t have to account for the possibility that it might not be a list or
perform any kind of additional type checking.

The starred variable can also be the first one in the list. For example, say you have a
sequence of values representing your company’s sales figures for the last eight quarters.
If you want to see how the most recent quarter stacks up to the average of the first seven,
you could do something like this:

*trailing_qtrs, current_qtr = sales_record
trailing_avg = sum(trailing_qtrs) / len(trailing_qtrs)
return avg_comparison(trailing_avg, current_qtr)

Here’s a view of the operation from the Python interpreter:

1.2. Unpacking Elements from Iterables of Arbitrary Length | 3

>>> *trailing, current = [10, 8, 7, 1, 9, 5, 10, 3]
>>> trailing
[10, 8, 7, 1, 9, 5, 10]
>>> current
3

Discussion
Extended iterable unpacking is tailor-made for unpacking iterables of unknown or ar‐
bitrary length. Oftentimes, these iterables have some known component or pattern in
their construction (e.g. “everything after element 1 is a phone number”), and star un‐
packing lets the developer leverage those patterns easily instead of performing acro‐
batics to get at the relevant elements in the iterable.

It is worth noting that the star syntax can be especially useful when iterating over a
sequence of tuples of varying length. For example, perhaps a sequence of tagged tuples:

records = [
 ('foo', 1, 2),
 ('bar', 'hello'),
 ('foo', 3, 4),
]

def do_foo(x, y):
 print('foo', x, y)

def do_bar(s):
 print('bar', s)

for tag, *args in records:
 if tag == 'foo':
 do_foo(*args)
 elif tag == 'bar':
 do_bar(*args)

Star unpacking can also be useful when combined with certain kinds of string processing
operations, such as splitting. For example:

>>> line = 'nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false'
>>> uname, *fields, homedir, sh = line.split(':')
>>> uname
'nobody'
>>> homedir
'/var/empty'
>>> sh
'/usr/bin/false'
>>>

Sometimes you might want to unpack values and throw them away. You can’t just specify
a bare * when unpacking, but you could use a common throwaway variable name, such
as _ or ign (ignored). For example:

4 | Chapter 1: Data Structures and Algorithms

>>> record = ('ACME', 50, 123.45, (12, 18, 2012))
>>> name, *_, (*_, year) = record
>>> name
'ACME'
>>> year
2012
>>>

There is a certain similarity between star unpacking and list-processing features of var‐
ious functional languages. For example, if you have a list, you can easily split it into head
and tail components like this:

>>> items = [1, 10, 7, 4, 5, 9]
>>> head, *tail = items
>>> head
1
>>> tail
[10, 7, 4, 5, 9]
>>>

One could imagine writing functions that perform such splitting in order to carry out
some kind of clever recursive algorithm. For example:

>>> def sum(items):
... head, *tail = items
... return head + sum(tail) if tail else head
...
>>> sum(items)
36
>>>

However, be aware that recursion really isn’t a strong Python feature due to the inherent
recursion limit. Thus, this last example might be nothing more than an academic cu‐
riosity in practice.

1.3. Keeping the Last N Items
Problem
You want to keep a limited history of the last few items seen during iteration or during
some other kind of processing.

Solution
Keeping a limited history is a perfect use for a collections.deque. For example, the
following code performs a simple text match on a sequence of lines and yields the
matching line along with the previous N lines of context when found:

1.3. Keeping the Last N Items | 5

from collections import deque

def search(lines, pattern, history=5):
 previous_lines = deque(maxlen=history)
 for line in lines:
 if pattern in line:
 yield line, previous_lines
 previous_lines.append(line)

Example use on a file
if __name__ == '__main__':
 with open('somefile.txt') as f:
 for line, prevlines in search(f, 'python', 5):
 for pline in prevlines:
 print(pline, end='')
 print(line, end='')
 print('-'*20)

Discussion
When writing code to search for items, it is common to use a generator function in‐
volving yield, as shown in this recipe’s solution. This decouples the process of searching
from the code that uses the results. If you’re new to generators, see Recipe 4.3.

Using deque(maxlen=N) creates a fixed-sized queue. When new items are added and
the queue is full, the oldest item is automatically removed. For example:

>>> q = deque(maxlen=3)
>>> q.append(1)
>>> q.append(2)
>>> q.append(3)
>>> q
deque([1, 2, 3], maxlen=3)
>>> q.append(4)
>>> q
deque([2, 3, 4], maxlen=3)
>>> q.append(5)
>>> q
deque([3, 4, 5], maxlen=3)

Although you could manually perform such operations on a list (e.g., appending, de‐
leting, etc.), the queue solution is far more elegant and runs a lot faster.

More generally, a deque can be used whenever you need a simple queue structure. If
you don’t give it a maximum size, you get an unbounded queue that lets you append
and pop items on either end. For example:

>>> q = deque()
>>> q.append(1)
>>> q.append(2)
>>> q.append(3)
>>> q

6 | Chapter 1: Data Structures and Algorithms

deque([1, 2, 3])
>>> q.appendleft(4)
>>> q
deque([4, 1, 2, 3])
>>> q.pop()
3
>>> q
deque([4, 1, 2])
>>> q.popleft()
4

Adding or popping items from either end of a queue has O(1) complexity. This is unlike
a list where inserting or removing items from the front of the list is O(N).

1.4. Finding the Largest or Smallest N Items
Problem
You want to make a list of the largest or smallest N items in a collection.

Solution
The heapq module has two functions—nlargest() and nsmallest()—that do exactly
what you want. For example:

import heapq

nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
print(heapq.nlargest(3, nums)) # Prints [42, 37, 23]
print(heapq.nsmallest(3, nums)) # Prints [-4, 1, 2]

Both functions also accept a key parameter that allows them to be used with more
complicated data structures. For example:

portfolio = [
 {'name': 'IBM', 'shares': 100, 'price': 91.1},
 {'name': 'AAPL', 'shares': 50, 'price': 543.22},
 {'name': 'FB', 'shares': 200, 'price': 21.09},
 {'name': 'HPQ', 'shares': 35, 'price': 31.75},
 {'name': 'YHOO', 'shares': 45, 'price': 16.35},
 {'name': 'ACME', 'shares': 75, 'price': 115.65}
]

cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])

Discussion
If you are looking for the N smallest or largest items and N is small compared to the
overall size of the collection, these functions provide superior performance. Underneath

1.4. Finding the Largest or Smallest N Items | 7

the covers, they work by first converting the data into a list where items are ordered as
a heap. For example:

>>> nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
>>> import heapq
>>> heap = list(nums)
>>> heapq.heapify(heap)
>>> heap
[-4, 2, 1, 23, 7, 2, 18, 23, 42, 37, 8]
>>>

The most important feature of a heap is that heap[0] is always the smallest item. More‐
over, subsequent items can be easily found using the heapq.heappop() method, which
pops off the first item and replaces it with the next smallest item (an operation that
requires O(log N) operations where N is the size of the heap). For example, to find the
three smallest items, you would do this:

>>> heapq.heappop(heap)
-4
>>> heapq.heappop(heap)
1
>>> heapq.heappop(heap)
2

The nlargest() and nsmallest() functions are most appropriate if you are trying to
find a relatively small number of items. If you are simply trying to find the single smallest
or largest item (N=1), it is faster to use min() and max(). Similarly, if N is about the
same size as the collection itself, it is usually faster to sort it first and take a slice (i.e.,
use sorted(items)[:N] or sorted(items)[-N:]). It should be noted that the actual
implementation of nlargest() and nsmallest() is adaptive in how it operates and will
carry out some of these optimizations on your behalf (e.g., using sorting if N is close to
the same size as the input).

Although it’s not necessary to use this recipe, the implementation of a heap is an inter‐
esting and worthwhile subject of study. This can usually be found in any decent book
on algorithms and data structures. The documentation for the heapq module also dis‐
cusses the underlying implementation details.

1.5. Implementing a Priority Queue
Problem
You want to implement a queue that sorts items by a given priority and always returns
the item with the highest priority on each pop operation.

8 | Chapter 1: Data Structures and Algorithms

Solution
The following class uses the heapq module to implement a simple priority queue:

import heapq

class PriorityQueue:
 def __init__(self):
 self._queue = []
 self._index = 0

 def push(self, item, priority):
 heapq.heappush(self._queue, (-priority, self._index, item))
 self._index += 1

 def pop(self):
 return heapq.heappop(self._queue)[-1]

Here is an example of how it might be used:

>>> class Item:
... def __init__(self, name):
... self.name = name
... def __repr__(self):
... return 'Item({!r})'.format(self.name)
...
>>> q = PriorityQueue()
>>> q.push(Item('foo'), 1)
>>> q.push(Item('bar'), 5)
>>> q.push(Item('spam'), 4)
>>> q.push(Item('grok'), 1)
>>> q.pop()
Item('bar')
>>> q.pop()
Item('spam')
>>> q.pop()
Item('foo')
>>> q.pop()
Item('grok')
>>>

Observe how the first pop() operation returned the item with the highest priority. Also
observe how the two items with the same priority (foo and grok) were returned in the
same order in which they were inserted into the queue.

Discussion
The core of this recipe concerns the use of the heapq module. The functions heapq.heap
push() and heapq.heappop() insert and remove items from a list _queue in a way such
that the first item in the list has the smallest priority (as discussed in Recipe 1.4). The
heappop() method always returns the “smallest” item, so that is the key to making the

1.5. Implementing a Priority Queue | 9

queue pop the correct items. Moreover, since the push and pop operations have O(log
N) complexity where N is the number of items in the heap, they are fairly efficient even
for fairly large values of N.

In this recipe, the queue consists of tuples of the form (-priority, index, item). The
priority value is negated to get the queue to sort items from highest priority to lowest
priority. This is opposite of the normal heap ordering, which sorts from lowest to highest
value.

The role of the index variable is to properly order items with the same priority level.
By keeping a constantly increasing index, the items will be sorted according to the order
in which they were inserted. However, the index also serves an important role in making
the comparison operations work for items that have the same priority level.

To elaborate on that, instances of Item in the example can’t be ordered. For example:

>>> a = Item('foo')
>>> b = Item('bar')
>>> a < b
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>

If you make (priority, item) tuples, they can be compared as long as the priorities
are different. However, if two tuples with equal priorities are compared, the comparison
fails as before. For example:

>>> a = (1, Item('foo'))
>>> b = (5, Item('bar'))
>>> a < b
True
>>> c = (1, Item('grok'))
>>> a < c
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>

By introducing the extra index and making (priority, index, item) tuples, you avoid
this problem entirely since no two tuples will ever have the same value for index (and
Python never bothers to compare the remaining tuple values once the result of com‐
parison can be determined):

>>> a = (1, 0, Item('foo'))
>>> b = (5, 1, Item('bar'))
>>> c = (1, 2, Item('grok'))
>>> a < b
True
>>> a < c

10 | Chapter 1: Data Structures and Algorithms

True
>>>

If you want to use this queue for communication between threads, you need to add
appropriate locking and signaling. See Recipe 12.3 for an example of how to do this.

The documentation for the heapq module has further examples and discussion con‐
cerning the theory and implementation of heaps.

1.6. Mapping Keys to Multiple Values in a Dictionary
Problem
You want to make a dictionary that maps keys to more than one value (a so-called
“multidict”).

Solution
A dictionary is a mapping where each key is mapped to a single value. If you want to
map keys to multiple values, you need to store the multiple values in another container
such as a list or set. For example, you might make dictionaries like this:

d = {
 'a' : [1, 2, 3],
 'b' : [4, 5]
}

e = {
 'a' : {1, 2, 3},
 'b' : {4, 5}
}

The choice of whether or not to use lists or sets depends on intended use. Use a list if
you want to preserve the insertion order of the items. Use a set if you want to eliminate
duplicates (and don’t care about the order).

To easily construct such dictionaries, you can use defaultdict in the collections
module. A feature of defaultdict is that it automatically initializes the first value so
you can simply focus on adding items. For example:

from collections import defaultdict

d = defaultdict(list)
d['a'].append(1)
d['a'].append(2)
d['b'].append(4)
...

d = defaultdict(set)

1.6. Mapping Keys to Multiple Values in a Dictionary | 11

d['a'].add(1)
d['a'].add(2)
d['b'].add(4)
...

One caution with defaultdict is that it will automatically create dictionary entries for
keys accessed later on (even if they aren’t currently found in the dictionary). If you don’t
want this behavior, you might use setdefault() on an ordinary dictionary instead. For
example:

d = {} # A regular dictionary
d.setdefault('a', []).append(1)
d.setdefault('a', []).append(2)
d.setdefault('b', []).append(4)
...

However, many programmers find setdefault() to be a little unnatural—not to men‐
tion the fact that it always creates a new instance of the initial value on each invocation
(the empty list [] in the example).

Discussion
In principle, constructing a multivalued dictionary is simple. However, initialization of
the first value can be messy if you try to do it yourself. For example, you might have
code that looks like this:

d = {}
for key, value in pairs:
 if key not in d:
 d[key] = []
 d[key].append(value)

Using a defaultdict simply leads to much cleaner code:

d = defaultdict(list)
for key, value in pairs:
 d[key].append(value)

This recipe is strongly related to the problem of grouping records together in data pro‐
cessing problems. See Recipe 1.15 for an example.

1.7. Keeping Dictionaries in Order
Problem
You want to create a dictionary, and you also want to control the order of items when
iterating or serializing.

12 | Chapter 1: Data Structures and Algorithms

Solution
To control the order of items in a dictionary, you can use an OrderedDict from the
collections module. It exactly preserves the original insertion order of data when
iterating. For example:

from collections import OrderedDict

d = OrderedDict()
d['foo'] = 1
d['bar'] = 2
d['spam'] = 3
d['grok'] = 4

Outputs "foo 1", "bar 2", "spam 3", "grok 4"
for key in d:
 print(key, d[key])

An OrderedDict can be particularly useful when you want to build a mapping that you
may want to later serialize or encode into a different format. For example, if you want
to precisely control the order of fields appearing in a JSON encoding, first building the
data in an OrderedDict will do the trick:

>>> import json
>>> json.dumps(d)
'{"foo": 1, "bar": 2, "spam": 3, "grok": 4}'
>>>

Discussion
An OrderedDict internally maintains a doubly linked list that orders the keys according
to insertion order. When a new item is first inserted, it is placed at the end of this list.
Subsequent reassignment of an existing key doesn’t change the order.

Be aware that the size of an OrderedDict is more than twice as large as a normal dic‐
tionary due to the extra linked list that’s created. Thus, if you are going to build a data
structure involving a large number of OrderedDict instances (e.g., reading 100,000 lines
of a CSV file into a list of OrderedDict instances), you would need to study the re‐
quirements of your application to determine if the benefits of using an OrderedDict
outweighed the extra memory overhead.

1.8. Calculating with Dictionaries
Problem
You want to perform various calculations (e.g., minimum value, maximum value, sort‐
ing, etc.) on a dictionary of data.

1.8. Calculating with Dictionaries | 13

Solution
Consider a dictionary that maps stock names to prices:

prices = {
 'ACME': 45.23,
 'AAPL': 612.78,
 'IBM': 205.55,
 'HPQ': 37.20,
 'FB': 10.75
}

In order to perform useful calculations on the dictionary contents, it is often useful to
invert the keys and values of the dictionary using zip(). For example, here is how to
find the minimum and maximum price and stock name:

min_price = min(zip(prices.values(), prices.keys()))
min_price is (10.75, 'FB')

max_price = max(zip(prices.values(), prices.keys()))
max_price is (612.78, 'AAPL')

Similarly, to rank the data, use zip() with sorted(), as in the following:

prices_sorted = sorted(zip(prices.values(), prices.keys()))
prices_sorted is [(10.75, 'FB'), (37.2, 'HPQ'),
(45.23, 'ACME'), (205.55, 'IBM'),
(612.78, 'AAPL')]

When doing these calculations, be aware that zip() creates an iterator that can only be
consumed once. For example, the following code is an error:

prices_and_names = zip(prices.values(), prices.keys())
print(min(prices_and_names)) # OK
print(max(prices_and_names)) # ValueError: max() arg is an empty sequence

Discussion
If you try to perform common data reductions on a dictionary, you’ll find that they only
process the keys, not the values. For example:

min(prices) # Returns 'AAPL'
max(prices) # Returns 'IBM'

This is probably not what you want because you’re actually trying to perform a calcu‐
lation involving the dictionary values. You might try to fix this using the values()
method of a dictionary:

min(prices.values()) # Returns 10.75
max(prices.values()) # Returns 612.78

14 | Chapter 1: Data Structures and Algorithms

Unfortunately, this is often not exactly what you want either. For example, you may want
to know information about the corresponding keys (e.g., which stock has the lowest
price?).

You can get the key corresponding to the min or max value if you supply a key function
to min() and max(). For example:

min(prices, key=lambda k: prices[k]) # Returns 'FB'
max(prices, key=lambda k: prices[k]) # Returns 'AAPL'

However, to get the minimum value, you’ll need to perform an extra lookup step. For
example:

min_value = prices[min(prices, key=lambda k: prices[k])]

The solution involving zip() solves the problem by “inverting” the dictionary into a
sequence of (value, key) pairs. When performing comparisons on such tuples, the
value element is compared first, followed by the key. This gives you exactly the behavior
that you want and allows reductions and sorting to be easily performed on the dictionary
contents using a single statement.

It should be noted that in calculations involving (value, key) pairs, the key will be
used to determine the result in instances where multiple entries happen to have the same
value. For instance, in calculations such as min() and max(), the entry with the smallest
or largest key will be returned if there happen to be duplicate values. For example:

>>> prices = { 'AAA' : 45.23, 'ZZZ': 45.23 }
>>> min(zip(prices.values(), prices.keys()))
(45.23, 'AAA')
>>> max(zip(prices.values(), prices.keys()))
(45.23, 'ZZZ')
>>>

1.9. Finding Commonalities in Two Dictionaries
Problem
You have two dictionaries and want to find out what they might have in common (same
keys, same values, etc.).

Solution
Consider two dictionaries:

a = {
 'x' : 1,
 'y' : 2,
 'z' : 3
}

1.9. Finding Commonalities in Two Dictionaries | 15

b = {
 'w' : 10,
 'x' : 11,
 'y' : 2
}

To find out what the two dictionaries have in common, simply perform common set
operations using the keys() or items() methods. For example:

Find keys in common
a.keys() & b.keys() # { 'x', 'y' }

Find keys in a that are not in b
a.keys() - b.keys() # { 'z' }

Find (key,value) pairs in common
a.items() & b.items() # { ('y', 2) }

These kinds of operations can also be used to alter or filter dictionary contents. For
example, suppose you want to make a new dictionary with selected keys removed. Here
is some sample code using a dictionary comprehension:

Make a new dictionary with certain keys removed
c = {key:a[key] for key in a.keys() - {'z', 'w'}}
c is {'x': 1, 'y': 2}

Discussion
A dictionary is a mapping between a set of keys and values. The keys() method of a
dictionary returns a keys-view object that exposes the keys. A little-known feature of
keys views is that they also support common set operations such as unions, intersections,
and differences. Thus, if you need to perform common set operations with dictionary
keys, you can often just use the keys-view objects directly without first converting them
into a set.

The items() method of a dictionary returns an items-view object consisting of (key,
value) pairs. This object supports similar set operations and can be used to perform
operations such as finding out which key-value pairs two dictionaries have in common.

Although similar, the values() method of a dictionary does not support the set oper‐
ations described in this recipe. In part, this is due to the fact that unlike keys, the items
contained in a values view aren’t guaranteed to be unique. This alone makes certain set
operations of questionable utility. However, if you must perform such calculations, they
can be accomplished by simply converting the values to a set first.

16 | Chapter 1: Data Structures and Algorithms

1.10. Removing Duplicates from a Sequence while
Maintaining Order
Problem
You want to eliminate the duplicate values in a sequence, but preserve the order of the
remaining items.

Solution
If the values in the sequence are hashable, the problem can be easily solved using a set
and a generator. For example:

def dedupe(items):
 seen = set()
 for item in items:
 if item not in seen:
 yield item
 seen.add(item)

Here is an example of how to use your function:

>>> a = [1, 5, 2, 1, 9, 1, 5, 10]
>>> list(dedupe(a))
[1, 5, 2, 9, 10]
>>>

This only works if the items in the sequence are hashable. If you are trying to eliminate
duplicates in a sequence of unhashable types (such as dicts), you can make a slight
change to this recipe, as follows:

def dedupe(items, key=None):
 seen = set()
 for item in items:
 val = item if key is None else key(item)
 if val not in seen:
 yield item
 seen.add(val)

Here, the purpose of the key argument is to specify a function that converts sequence
items into a hashable type for the purposes of duplicate detection. Here’s how it works:

>>> a = [{'x':1, 'y':2}, {'x':1, 'y':3}, {'x':1, 'y':2}, {'x':2, 'y':4}]
>>> list(dedupe(a, key=lambda d: (d['x'],d['y'])))
[{'x': 1, 'y': 2}, {'x': 1, 'y': 3}, {'x': 2, 'y': 4}]
>>> list(dedupe(a, key=lambda d: d['x']))
[{'x': 1, 'y': 2}, {'x': 2, 'y': 4}]
>>>

This latter solution also works nicely if you want to eliminate duplicates based on the
value of a single field or attribute or a larger data structure.

1.10. Removing Duplicates from a Sequence while Maintaining Order | 17

Discussion
If all you want to do is eliminate duplicates, it is often easy enough to make a set. For
example:

>>> a
[1, 5, 2, 1, 9, 1, 5, 10]
>>> set(a)
{1, 2, 10, 5, 9}
>>>

However, this approach doesn’t preserve any kind of ordering. So, the resulting data will
be scrambled afterward. The solution shown avoids this.

The use of a generator function in this recipe reflects the fact that you might want the
function to be extremely general purpose—not necessarily tied directly to list process‐
ing. For example, if you want to read a file, eliminating duplicate lines, you could simply
do this:

with open(somefile,'r') as f:
 for line in dedupe(f):
 ...

The specification of a key function mimics similar functionality in built-in functions
such as sorted(), min(), and max(). For instance, see Recipes 1.8 and 1.13.

1.11. Naming a Slice
Problem
Your program has become an unreadable mess of hardcoded slice indices and you want
to clean it up.

Solution
Suppose you have some code that is pulling specific data fields out of a record string
with fixed fields (e.g., from a flat file or similar format):

0123456789012345678901234567890123456789012345678901234567890'
record = '....................100 513.25 '
cost = int(record[20:32]) * float(record[40:48])

Instead of doing that, why not name the slices like this?

SHARES = slice(20,32)
PRICE = slice(40,48)

cost = int(record[SHARES]) * float(record[PRICE])

18 | Chapter 1: Data Structures and Algorithms

In the latter version, you avoid having a lot of mysterious hardcoded indices, and what
you’re doing becomes much clearer.

Discussion
As a general rule, writing code with a lot of hardcoded index values leads to a readability
and maintenance mess. For example, if you come back to the code a year later, you’ll
look at it and wonder what you were thinking when you wrote it. The solution shown
is simply a way of more clearly stating what your code is actually doing.

In general, the built-in slice() creates a slice object that can be used anywhere a slice
is allowed. For example:

>>> items = [0, 1, 2, 3, 4, 5, 6]
>>> a = slice(2, 4)
>>> items[2:4]
[2, 3]
>>> items[a]
[2, 3]
>>> items[a] = [10,11]
>>> items
[0, 1, 10, 11, 4, 5, 6]
>>> del items[a]
>>> items
[0, 1, 4, 5, 6]

If you have a slice instance s, you can get more information about it by looking at its
s.start, s.stop, and s.step attributes, respectively. For example:

>>> a = slice(10, 50, 2)
>>> a.start
10
>>> a.stop
50
>>> a.step
2
>>>

In addition, you can map a slice onto a sequence of a specific size by using its indi
ces(size) method. This returns a tuple (start, stop, step) where all values have
been suitably limited to fit within bounds (as to avoid IndexError exceptions when
indexing). For example:

>>> s = 'HelloWorld'
>>> a.indices(len(s))
(5, 10, 2)
>>> for i in range(*a.indices(len(s))):
... print(s[i])
...
W
r

1.11. Naming a Slice | 19

d
>>>

1.12. Determining the Most Frequently Occurring Items in
a Sequence
Problem
You have a sequence of items, and you’d like to determine the most frequently occurring
items in the sequence.

Solution
The collections.Counter class is designed for just such a problem. It even comes with
a handy most_common() method that will give you the answer.

To illustrate, let’s say you have a list of words and you want to find out which words
occur most often. Here’s how you would do it:

words = [
 'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
 'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the',
 'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into',
 'my', 'eyes', "you're", 'under'
]

from collections import Counter
word_counts = Counter(words)
top_three = word_counts.most_common(3)
print(top_three)
Outputs [('eyes', 8), ('the', 5), ('look', 4)]

Discussion
As input, Counter objects can be fed any sequence of hashable input items. Under the
covers, a Counter is a dictionary that maps the items to the number of occurrences. For
example:

>>> word_counts['not']
1
>>> word_counts['eyes']
8
>>>

If you want to increment the count manually, simply use addition:

>>> morewords = ['why','are','you','not','looking','in','my','eyes']
>>> for word in morewords:
... word_counts[word] += 1

20 | Chapter 1: Data Structures and Algorithms

...
>>> word_counts['eyes']
9
>>>

Or, alternatively, you could use the update() method:

>>> word_counts.update(morewords)
>>>

A little-known feature of Counter instances is that they can be easily combined using
various mathematical operations. For example:

>>> a = Counter(words)
>>> b = Counter(morewords)
>>> a
Counter({'eyes': 8, 'the': 5, 'look': 4, 'into': 3, 'my': 3, 'around': 2,
 "you're": 1, "don't": 1, 'under': 1, 'not': 1})
>>> b
Counter({'eyes': 1, 'looking': 1, 'are': 1, 'in': 1, 'not': 1, 'you': 1,
 'my': 1, 'why': 1})

>>> # Combine counts
>>> c = a + b
>>> c
Counter({'eyes': 9, 'the': 5, 'look': 4, 'my': 4, 'into': 3, 'not': 2,
 'around': 2, "you're": 1, "don't": 1, 'in': 1, 'why': 1,
 'looking': 1, 'are': 1, 'under': 1, 'you': 1})

>>> # Subtract counts
>>> d = a - b
>>> d
Counter({'eyes': 7, 'the': 5, 'look': 4, 'into': 3, 'my': 2, 'around': 2,
 "you're": 1, "don't": 1, 'under': 1})
>>>

Needless to say, Counter objects are a tremendously useful tool for almost any kind of
problem where you need to tabulate and count data. You should prefer this over man‐
ually written solutions involving dictionaries.

1.13. Sorting a List of Dictionaries by a Common Key
Problem
You have a list of dictionaries and you would like to sort the entries according to one
or more of the dictionary values.

1.13. Sorting a List of Dictionaries by a Common Key | 21

Solution
Sorting this type of structure is easy using the operator module’s itemgetter function.
Let’s say you’ve queried a database table to get a listing of the members on your website,
and you receive the following data structure in return:

rows = [
 {'fname': 'Brian', 'lname': 'Jones', 'uid': 1003},
 {'fname': 'David', 'lname': 'Beazley', 'uid': 1002},
 {'fname': 'John', 'lname': 'Cleese', 'uid': 1001},
 {'fname': 'Big', 'lname': 'Jones', 'uid': 1004}
]

It’s fairly easy to output these rows ordered by any of the fields common to all of the
dictionaries. For example:

from operator import itemgetter

rows_by_fname = sorted(rows, key=itemgetter('fname'))
rows_by_uid = sorted(rows, key=itemgetter('uid'))

print(rows_by_fname)
print(rows_by_uid)

The preceding code would output the following:

[{'fname': 'Big', 'uid': 1004, 'lname': 'Jones'},
 {'fname': 'Brian', 'uid': 1003, 'lname': 'Jones'},
 {'fname': 'David', 'uid': 1002, 'lname': 'Beazley'},
 {'fname': 'John', 'uid': 1001, 'lname': 'Cleese'}]

[{'fname': 'John', 'uid': 1001, 'lname': 'Cleese'},
 {'fname': 'David', 'uid': 1002, 'lname': 'Beazley'},
 {'fname': 'Brian', 'uid': 1003, 'lname': 'Jones'},
 {'fname': 'Big', 'uid': 1004, 'lname': 'Jones'}]

The itemgetter() function can also accept multiple keys. For example, this code

rows_by_lfname = sorted(rows, key=itemgetter('lname','fname'))
print(rows_by_lfname)

Produces output like this:

[{'fname': 'David', 'uid': 1002, 'lname': 'Beazley'},
 {'fname': 'John', 'uid': 1001, 'lname': 'Cleese'},
 {'fname': 'Big', 'uid': 1004, 'lname': 'Jones'},
 {'fname': 'Brian', 'uid': 1003, 'lname': 'Jones'}]

Discussion
In this example, rows is passed to the built-in sorted() function, which accepts a key‐
word argument key. This argument is expected to be a callable that accepts a single item

22 | Chapter 1: Data Structures and Algorithms

from rows as input and returns a value that will be used as the basis for sorting. The
itemgetter() function creates just such a callable.

The operator.itemgetter() function takes as arguments the lookup indices used to
extract the desired values from the records in rows. It can be a dictionary key name, a
numeric list element, or any value that can be fed to an object’s __getitem__() method.
If you give multiple indices to itemgetter(), the callable it produces will return a tuple
with all of the elements in it, and sorted() will order the output according to the sorted
order of the tuples. This can be useful if you want to simultaneously sort on multiple
fields (such as last and first name, as shown in the example).

The functionality of itemgetter() is sometimes replaced by lambda expressions. For
example:

rows_by_fname = sorted(rows, key=lambda r: r['fname'])
rows_by_lfname = sorted(rows, key=lambda r: (r['lname'],r['fname']))

This solution often works just fine. However, the solution involving itemgetter()
typically runs a bit faster. Thus, you might prefer it if performance is a concern.

Last, but not least, don’t forget that the technique shown in this recipe can be applied
to functions such as min() and max(). For example:

>>> min(rows, key=itemgetter('uid'))
{'fname': 'John', 'lname': 'Cleese', 'uid': 1001}
>>> max(rows, key=itemgetter('uid'))
{'fname': 'Big', 'lname': 'Jones', 'uid': 1004}
>>>

1.14. Sorting Objects Without Native Comparison Support
Problem
You want to sort objects of the same class, but they don’t natively support comparison
operations.

Solution
The built-in sorted() function takes a key argument that can be passed a callable that
will return some value in the object that sorted will use to compare the objects. For
example, if you have a sequence of User instances in your application, and you want to
sort them by their user_id attribute, you would supply a callable that takes a User
instance as input and returns the user_id. For example:

>>> class User:
... def __init__(self, user_id):
... self.user_id = user_id

1.14. Sorting Objects Without Native Comparison Support | 23

... def __repr__(self):

... return 'User({})'.format(self.user_id)

...
>>> users = [User(23), User(3), User(99)]
>>> users
[User(23), User(3), User(99)]
>>> sorted(users, key=lambda u: u.user_id)
[User(3), User(23), User(99)]
>>>

Instead of using lambda, an alternative approach is to use operator.attrgetter():

>>> from operator import attrgetter
>>> sorted(users, key=attrgetter('user_id'))
[User(3), User(23), User(99)]
>>>

Discussion
The choice of whether or not to use lambda or attrgetter() may be one of personal
preference. However, attrgetter() is often a tad bit faster and also has the added
feature of allowing multiple fields to be extracted simultaneously. This is analogous to
the use of operator.itemgetter() for dictionaries (see Recipe 1.13). For example, if
User instances also had a first_name and last_name attribute, you could perform a
sort like this:

by_name = sorted(users, key=attrgetter('last_name', 'first_name'))

It is also worth noting that the technique used in this recipe can be applied to functions
such as min() and max(). For example:

>>> min(users, key=attrgetter('user_id')
User(3)
>>> max(users, key=attrgetter('user_id')
User(99)
>>>

1.15. Grouping Records Together Based on a Field
Problem
You have a sequence of dictionaries or instances and you want to iterate over the data
in groups based on the value of a particular field, such as date.

Solution
The itertools.groupby() function is particularly useful for grouping data together
like this. To illustrate, suppose you have the following list of dictionaries:

24 | Chapter 1: Data Structures and Algorithms

rows = [
 {'address': '5412 N CLARK', 'date': '07/01/2012'},
 {'address': '5148 N CLARK', 'date': '07/04/2012'},
 {'address': '5800 E 58TH', 'date': '07/02/2012'},
 {'address': '2122 N CLARK', 'date': '07/03/2012'},
 {'address': '5645 N RAVENSWOOD', 'date': '07/02/2012'},
 {'address': '1060 W ADDISON', 'date': '07/02/2012'},
 {'address': '4801 N BROADWAY', 'date': '07/01/2012'},
 {'address': '1039 W GRANVILLE', 'date': '07/04/2012'},
]

Now suppose you want to iterate over the data in chunks grouped by date. To do it, first
sort by the desired field (in this case, date) and then use itertools.groupby():

from operator import itemgetter
from itertools import groupby

Sort by the desired field first
rows.sort(key=itemgetter('date'))

Iterate in groups
for date, items in groupby(rows, key=itemgetter('date')):
 print(date)
 for i in items:
 print(' ', i)

This produces the following output:

 07/01/2012
 {'date': '07/01/2012', 'address': '5412 N CLARK'}
 {'date': '07/01/2012', 'address': '4801 N BROADWAY'}
 07/02/2012
 {'date': '07/02/2012', 'address': '5800 E 58TH'}
 {'date': '07/02/2012', 'address': '5645 N RAVENSWOOD'}
 {'date': '07/02/2012', 'address': '1060 W ADDISON'}
 07/03/2012
 {'date': '07/03/2012', 'address': '2122 N CLARK'}
 07/04/2012
 {'date': '07/04/2012', 'address': '5148 N CLARK'}
 {'date': '07/04/2012', 'address': '1039 W GRANVILLE'}

Discussion
The groupby() function works by scanning a sequence and finding sequential “runs”
of identical values (or values returned by the given key function). On each iteration, it
returns the value along with an iterator that produces all of the items in a group with
the same value.

An important preliminary step is sorting the data according to the field of interest. Since
groupby() only examines consecutive items, failing to sort first won’t group the records
as you want.

1.15. Grouping Records Together Based on a Field | 25

If your goal is to simply group the data together by dates into a large data structure that
allows random access, you may have better luck using defaultdict() to build a
multidict, as described in Recipe 1.6. For example:

from collections import defaultdict
rows_by_date = defaultdict(list)
for row in rows:
 rows_by_date[row['date']].append(row)

This allows the records for each date to be accessed easily like this:

>>> for r in rows_by_date['07/01/2012']:
... print(r)
...
{'date': '07/01/2012', 'address': '5412 N CLARK'}
{'date': '07/01/2012', 'address': '4801 N BROADWAY'}
>>>

For this latter example, it’s not necessary to sort the records first. Thus, if memory is no
concern, it may be faster to do this than to first sort the records and iterate using
groupby().

1.16. Filtering Sequence Elements
Problem
You have data inside of a sequence, and need to extract values or reduce the sequence
using some criteria.

Solution
The easiest way to filter sequence data is often to use a list comprehension. For example:

>>> mylist = [1, 4, -5, 10, -7, 2, 3, -1]
>>> [n for n in mylist if n > 0]
[1, 4, 10, 2, 3]
>>> [n for n in mylist if n < 0]
[-5, -7, -1]
>>>

One potential downside of using a list comprehension is that it might produce a large
result if the original input is large. If this is a concern, you can use generator expressions
to produce the filtered values iteratively. For example:

>>> pos = (n for n in mylist if n > 0)
>>> pos
<generator object <genexpr> at 0x1006a0eb0>
>>> for x in pos:
... print(x)
...

26 | Chapter 1: Data Structures and Algorithms

1
4
10
2
3
>>>

Sometimes, the filtering criteria cannot be easily expressed in a list comprehension or
generator expression. For example, suppose that the filtering process involves exception
handling or some other complicated detail. For this, put the filtering code into its own
function and use the built-in filter() function. For example:

values = ['1', '2', '-3', '-', '4', 'N/A', '5']

def is_int(val):
 try:
 x = int(val)
 return True
 except ValueError:
 return False

ivals = list(filter(is_int, values))
print(ivals)
Outputs ['1', '2', '-3', '4', '5']

filter() creates an iterator, so if you want to create a list of results, make sure you also
use list() as shown.

Discussion
List comprehensions and generator expressions are often the easiest and most straight‐
forward ways to filter simple data. They also have the added power to transform the
data at the same time. For example:

>>> mylist = [1, 4, -5, 10, -7, 2, 3, -1]
>>> import math
>>> [math.sqrt(n) for n in mylist if n > 0]
[1.0, 2.0, 3.1622776601683795, 1.4142135623730951, 1.7320508075688772]
>>>

One variation on filtering involves replacing the values that don’t meet the criteria with
a new value instead of discarding them. For example, perhaps instead of just finding
positive values, you want to also clip bad values to fit within a specified range. This is
often easily accomplished by moving the filter criterion into a conditional expression
like this:

>>> clip_neg = [n if n > 0 else 0 for n in mylist]
>>> clip_neg
[1, 4, 0, 10, 0, 2, 3, 0]
>>> clip_pos = [n if n < 0 else 0 for n in mylist]
>>> clip_pos

1.16. Filtering Sequence Elements | 27

[0, 0, -5, 0, -7, 0, 0, -1]
>>>

Another notable filtering tool is itertools.compress(), which takes an iterable and
an accompanying Boolean selector sequence as input. As output, it gives you all of the
items in the iterable where the corresponding element in the selector is True. This can
be useful if you’re trying to apply the results of filtering one sequence to another related
sequence. For example, suppose you have the following two columns of data:

addresses = [
 '5412 N CLARK',
 '5148 N CLARK',
 '5800 E 58TH',
 '2122 N CLARK'
 '5645 N RAVENSWOOD',
 '1060 W ADDISON',
 '4801 N BROADWAY',
 '1039 W GRANVILLE',
]

counts = [0, 3, 10, 4, 1, 7, 6, 1]

Now suppose you want to make a list of all addresses where the corresponding count
value was greater than 5. Here’s how you could do it:

>>> from itertools import compress
>>> more5 = [n > 5 for n in counts]
>>> more5
[False, False, True, False, False, True, True, False]
>>> list(compress(addresses, more5))
['5800 E 58TH', '4801 N BROADWAY', '1039 W GRANVILLE']
>>>

The key here is to first create a sequence of Booleans that indicates which elements
satisfy the desired condition. The compress() function then picks out the items corre‐
sponding to True values.

Like filter(), compress() normally returns an iterator. Thus, you need to use list()
to turn the results into a list if desired.

1.17. Extracting a Subset of a Dictionary
Problem
You want to make a dictionary that is a subset of another dictionary.

28 | Chapter 1: Data Structures and Algorithms

Solution
This is easily accomplished using a dictionary comprehension. For example:

prices = {
 'ACME': 45.23,
 'AAPL': 612.78,
 'IBM': 205.55,
 'HPQ': 37.20,
 'FB': 10.75
}

Make a dictionary of all prices over 200
p1 = { key:value for key, value in prices.items() if value > 200 }

Make a dictionary of tech stocks
tech_names = { 'AAPL', 'IBM', 'HPQ', 'MSFT' }
p2 = { key:value for key,value in prices.items() if key in tech_names }

Discussion
Much of what can be accomplished with a dictionary comprehension might also be done
by creating a sequence of tuples and passing them to the dict() function. For example:

p1 = dict((key, value) for key, value in prices.items() if value > 200)

However, the dictionary comprehension solution is a bit clearer and actually runs quite
a bit faster (over twice as fast when tested on the prices dictionary used in the example).

Sometimes there are multiple ways of accomplishing the same thing. For instance, the
second example could be rewritten as:

Make a dictionary of tech stocks
tech_names = { 'AAPL', 'IBM', 'HPQ', 'MSFT' }
p2 = { key:prices[key] for key in prices.keys() & tech_names }

However, a timing study reveals that this solution is almost 1.6 times slower than the
first solution. If performance matters, it usually pays to spend a bit of time studying it.
See Recipe 14.13 for specific information about timing and profiling.

1.18. Mapping Names to Sequence Elements
Problem
You have code that accesses list or tuple elements by position, but this makes the code
somewhat difficult to read at times. You’d also like to be less dependent on position in
the structure, by accessing the elements by name.

1.18. Mapping Names to Sequence Elements | 29

Solution
collections.namedtuple() provides these benefits, while adding minimal overhead
over using a normal tuple object. collections.namedtuple() is actually a factory
method that returns a subclass of the standard Python tuple type. You feed it a type
name, and the fields it should have, and it returns a class that you can instantiate, passing
in values for the fields you’ve defined, and so on. For example:

>>> from collections import namedtuple
>>> Subscriber = namedtuple('Subscriber', ['addr', 'joined'])
>>> sub = Subscriber('jonesy@example.com', '2012-10-19')
>>> sub
Subscriber(addr='jonesy@example.com', joined='2012-10-19')
>>> sub.addr
'jonesy@example.com'
>>> sub.joined
'2012-10-19'
>>>

Although an instance of a namedtuple looks like a normal class instance, it is inter‐
changeable with a tuple and supports all of the usual tuple operations such as indexing
and unpacking. For example:

>>> len(sub)
2
>>> addr, joined = sub
>>> addr
'jonesy@example.com'
>>> joined
'2012-10-19'
>>>

A major use case for named tuples is decoupling your code from the position of the
elements it manipulates. So, if you get back a large list of tuples from a database call,
then manipulate them by accessing the positional elements, your code could break if,
say, you added a new column to your table. Not so if you first cast the returned tuples
to namedtuples.

To illustrate, here is some code using ordinary tuples:

def compute_cost(records):
 total = 0.0
 for rec in records:
 total += rec[1] * rec[2]
 return total

References to positional elements often make the code a bit less expressive and more
dependent on the structure of the records. Here is a version that uses a namedtuple:

from collections import namedtuple

Stock = namedtuple('Stock', ['name', 'shares', 'price'])

30 | Chapter 1: Data Structures and Algorithms

def compute_cost(records):
 total = 0.0
 for rec in records:
 s = Stock(*rec)
 total += s.shares * s.price
 return total

Naturally, you can avoid the explicit conversion to the Stock namedtuple if the records
sequence in the example already contained such instances.

Discussion
One possible use of a namedtuple is as a replacement for a dictionary, which requires
more space to store. Thus, if you are building large data structures involving dictionaries,
use of a namedtuple will be more efficient. However, be aware that unlike a dictionary,
a namedtuple is immutable. For example:

>>> s = Stock('ACME', 100, 123.45)
>>> s
Stock(name='ACME', shares=100, price=123.45)
>>> s.shares = 75
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>>

If you need to change any of the attributes, it can be done using the _replace() method
of a namedtuple instance, which makes an entirely new namedtuple with specified val‐
ues replaced. For example:

>>> s = s._replace(shares=75)
>>> s
Stock(name='ACME', shares=75, price=123.45)
>>>

A subtle use of the _replace() method is that it can be a convenient way to populate
named tuples that have optional or missing fields. To do this, you make a prototype
tuple containing the default values and then use _replace() to create new instances
with values replaced. For example:

from collections import namedtuple

Stock = namedtuple('Stock', ['name', 'shares', 'price', 'date', 'time'])

Create a prototype instance
stock_prototype = Stock('', 0, 0.0, None, None)

Function to convert a dictionary to a Stock
def dict_to_stock(s):
 return stock_prototype._replace(**s)

1.18. Mapping Names to Sequence Elements | 31

Here is an example of how this code would work:

>>> a = {'name': 'ACME', 'shares': 100, 'price': 123.45}
>>> dict_to_stock(a)
Stock(name='ACME', shares=100, price=123.45, date=None, time=None)
>>> b = {'name': 'ACME', 'shares': 100, 'price': 123.45, 'date': '12/17/2012'}
>>> dict_to_stock(b)
Stock(name='ACME', shares=100, price=123.45, date='12/17/2012', time=None)
>>>

Last, but not least, it should be noted that if your goal is to define an efficient data
structure where you will be changing various instance attributes, using namedtuple is
not your best choice. Instead, consider defining a class using __slots__ instead (see
Recipe 8.4).

1.19. Transforming and Reducing Data at the Same Time
Problem
You need to execute a reduction function (e.g., sum(), min(), max()), but first need to
transform or filter the data.

Solution
A very elegant way to combine a data reduction and a transformation is to use a
generator-expression argument. For example, if you want to calculate the sum of
squares, do the following:

nums = [1, 2, 3, 4, 5]
s = sum(x * x for x in nums)

Here are a few other examples:

Determine if any .py files exist in a directory
import os
files = os.listdir('dirname')
if any(name.endswith('.py') for name in files):
 print('There be python!')
else:
 print('Sorry, no python.')

Output a tuple as CSV
s = ('ACME', 50, 123.45)
print(','.join(str(x) for x in s))

Data reduction across fields of a data structure
portfolio = [
 {'name':'GOOG', 'shares': 50},
 {'name':'YHOO', 'shares': 75},
 {'name':'AOL', 'shares': 20},

32 | Chapter 1: Data Structures and Algorithms

 {'name':'SCOX', 'shares': 65}
]
min_shares = min(s['shares'] for s in portfolio)

Discussion
The solution shows a subtle syntactic aspect of generator expressions when supplied as
the single argument to a function (i.e., you don’t need repeated parentheses). For ex‐
ample, these statements are the same:

s = sum((x * x for x in nums)) # Pass generator-expr as argument
s = sum(x * x for x in nums) # More elegant syntax

Using a generator argument is often a more efficient and elegant approach than first
creating a temporary list. For example, if you didn’t use a generator expression, you
might consider this alternative implementation:

nums = [1, 2, 3, 4, 5]
s = sum([x * x for x in nums])

This works, but it introduces an extra step and creates an extra list. For such a small list,
it might not matter, but if nums was huge, you would end up creating a large temporary
data structure to only be used once and discarded. The generator solution transforms
the data iteratively and is therefore much more memory-efficient.

Certain reduction functions such as min() and max() accept a key argument that might
be useful in situations where you might be inclined to use a generator. For example, in
the portfolio example, you might consider this alternative:

Original: Returns 20
min_shares = min(s['shares'] for s in portfolio)

Alternative: Returns {'name': 'AOL', 'shares': 20}
min_shares = min(portfolio, key=lambda s: s['shares'])

1.20. Combining Multiple Mappings into a Single
Mapping
Problem
You have multiple dictionaries or mappings that you want to logically combine into a
single mapping to perform certain operations, such as looking up values or checking
for the existence of keys.

Solution
Suppose you have two dictionaries:

1.20. Combining Multiple Mappings into a Single Mapping | 33

a = {'x': 1, 'z': 3 }
b = {'y': 2, 'z': 4 }

Now suppose you want to perform lookups where you have to check both dictionaries
(e.g., first checking in a and then in b if not found). An easy way to do this is to use the
ChainMap class from the collections module. For example:

from collections import ChainMap
c = ChainMap(a,b)
print(c['x']) # Outputs 1 (from a)
print(c['y']) # Outputs 2 (from b)
print(c['z']) # Outputs 3 (from a)

Discussion
A ChainMap takes multiple mappings and makes them logically appear as one. However,
the mappings are not literally merged together. Instead, a ChainMap simply keeps a list
of the underlying mappings and redefines common dictionary operations to scan the
list. Most operations will work. For example:

>>> len(c)
3
>>> list(c.keys())
['x', 'y', 'z']
>>> list(c.values())
[1, 2, 3]
>>>

If there are duplicate keys, the values from the first mapping get used. Thus, the entry
c['z'] in the example would always refer to the value in dictionary a, not the value in
dictionary b.

Operations that mutate the mapping always affect the first mapping listed. For example:

>>> c['z'] = 10
>>> c['w'] = 40
>>> del c['x']
>>> a
{'w': 40, 'z': 10}
>>> del c['y']
Traceback (most recent call last):
...
KeyError: "Key not found in the first mapping: 'y'"
>>>

A ChainMap is particularly useful when working with scoped values such as variables in
a programming language (i.e., globals, locals, etc.). In fact, there are methods that make
this easy:

34 | Chapter 1: Data Structures and Algorithms

>>> values = ChainMap()
>>> values['x'] = 1
>>> # Add a new mapping
>>> values = values.new_child()
>>> values['x'] = 2
>>> # Add a new mapping
>>> values = values.new_child()
>>> values['x'] = 3
>>> values
ChainMap({'x': 3}, {'x': 2}, {'x': 1})
>>> values['x']
3
>>> # Discard last mapping
>>> values = values.parents
>>> values['x']
2
>>> # Discard last mapping
>>> values = values.parents
>>> values['x']
1
>>> values
ChainMap({'x': 1})
>>>

As an alternative to ChainMap, you might consider merging dictionaries together using
the update() method. For example:

>>> a = {'x': 1, 'z': 3 }
>>> b = {'y': 2, 'z': 4 }
>>> merged = dict(b)
>>> merged.update(a)
>>> merged['x']
1
>>> merged['y']
2
>>> merged['z']
3
>>>

This works, but it requires you to make a completely separate dictionary object (or
destructively alter one of the existing dictionaries). Also, if any of the original diction‐
aries mutate, the changes don’t get reflected in the merged dictionary. For example:

>>> a['x'] = 13
>>> merged['x']
1

A ChainMap uses the original dictionaries, so it doesn’t have this behavior. For example:

1.20. Combining Multiple Mappings into a Single Mapping | 35

>>> a = {'x': 1, 'z': 3 }
>>> b = {'y': 2, 'z': 4 }
>>> merged = ChainMap(a, b)
>>> merged['x']
1
>>> a['x'] = 42
>>> merged['x'] # Notice change to merged dicts
42
>>>

36 | Chapter 1: Data Structures and Algorithms

CHAPTER 2

Strings and Text

Almost every useful program involves some kind of text processing, whether it is parsing
data or generating output. This chapter focuses on common problems involving text
manipulation, such as pulling apart strings, searching, substitution, lexing, and parsing.
Many of these tasks can be easily solved using built-in methods of strings. However,
more complicated operations might require the use of regular expressions or the cre‐
ation of a full-fledged parser. All of these topics are covered. In addition, a few tricky
aspects of working with Unicode are addressed.

2.1. Splitting Strings on Any of Multiple Delimiters
Problem
You need to split a string into fields, but the delimiters (and spacing around them) aren’t
consistent throughout the string.

Solution
The split() method of string objects is really meant for very simple cases, and does
not allow for multiple delimiters or account for possible whitespace around the delim‐
iters. In cases when you need a bit more flexibility, use the re.split() method:

>>> line = 'asdf fjdk; afed, fjek,asdf, foo'
>>> import re
>>> re.split(r'[;,\s]\s*', line)
['asdf', 'fjdk', 'afed', 'fjek', 'asdf', 'foo']

Discussion
The re.split() function is useful because you can specify multiple patterns for the
separator. For example, as shown in the solution, the separator is either a comma (,),

37

semicolon (;), or whitespace followed by any amount of extra whitespace. Whenever
that pattern is found, the entire match becomes the delimiter between whatever fields
lie on either side of the match. The result is a list of fields, just as with str.split().

When using re.split(), you need to be a bit careful should the regular expression
pattern involve a capture group enclosed in parentheses. If capture groups are used,
then the matched text is also included in the result. For example, watch what happens
here:

>>> fields = re.split(r'(;|,|\s)\s*', line)
>>> fields
['asdf', ' ', 'fjdk', ';', 'afed', ',', 'fjek', ',', 'asdf', ',', 'foo']
>>>

Getting the split characters might be useful in certain contexts. For example, maybe you
need the split characters later on to reform an output string:

>>> values = fields[::2]
>>> delimiters = fields[1::2] + ['']
>>> values
['asdf', 'fjdk', 'afed', 'fjek', 'asdf', 'foo']
>>> delimiters
[' ', ';', ',', ',', ',', '']

>>> # Reform the line using the same delimiters
>>> ''.join(v+d for v,d in zip(values, delimiters))
'asdf fjdk;afed,fjek,asdf,foo'
>>>

If you don’t want the separator characters in the result, but still need to use parentheses
to group parts of the regular expression pattern, make sure you use a noncapture group,
specified as (?:...). For example:

>>> re.split(r'(?:,|;|\s)\s*', line)
['asdf', 'fjdk', 'afed', 'fjek', 'asdf', 'foo']
>>>

2.2. Matching Text at the Start or End of a String
Problem
You need to check the start or end of a string for specific text patterns, such as filename
extensions, URL schemes, and so on.

Solution
A simple way to check the beginning or end of a string is to use the str.starts
with() or str.endswith() methods. For example:

38 | Chapter 2: Strings and Text

>>> filename = 'spam.txt'
>>> filename.endswith('.txt')
True
>>> filename.startswith('file:')
False
>>> url = 'http://www.python.org'
>>> url.startswith('http:')
True
>>>

If you need to check against multiple choices, simply provide a tuple of possibilities to
startswith() or endswith():

>>> import os
>>> filenames = os.listdir('.')
>>> filenames
['Makefile', 'foo.c', 'bar.py', 'spam.c', 'spam.h']
>>> [name for name in filenames if name.endswith(('.c', '.h'))]
['foo.c', 'spam.c', 'spam.h'
>>> any(name.endswith('.py') for name in filenames)
True
>>>

Here is another example:

from urllib.request import urlopen

def read_data(name):
 if name.startswith(('http:', 'https:', 'ftp:')):
 return urlopen(name).read()
 else:
 with open(name) as f:
 return f.read()

Oddly, this is one part of Python where a tuple is actually required as input. If you happen
to have the choices specified in a list or set, just make sure you convert them using
tuple() first. For example:

>>> choices = ['http:', 'ftp:']
>>> url = 'http://www.python.org'
>>> url.startswith(choices)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: startswith first arg must be str or a tuple of str, not list
>>> url.startswith(tuple(choices))
True
>>>

2 2. Matching Text at the Start or End of a String | 39

Discussion
The startswith() and endswith() methods provide a very convenient way to perform
basic prefix and suffix checking. Similar operations can be performed with slices, but
are far less elegant. For example:

>>> filename = 'spam.txt'
>>> filename[-4:] == '.txt'
True
>>> url = 'http://www.python.org'
>>> url[:5] == 'http:' or url[:6] == 'https:' or url[:4] == 'ftp:'
True
>>>

You might also be inclined to use regular expressions as an alternative. For example:

>>> import re
>>> url = 'http://www.python.org'
>>> re.match('http:|https:|ftp:', url)
<_sre.SRE_Match object at 0x101253098>
>>>

This works, but is often overkill for simple matching. Using this recipe is simpler and
runs faster.

Last, but not least, the startswith() and endswith() methods look nice when com‐
bined with other operations, such as common data reductions. For example, this state‐
ment that checks a directory for the presence of certain kinds of files:

if any(name.endswith(('.c', '.h')) for name in listdir(dirname)):
 ...

2.3. Matching Strings Using Shell Wildcard Patterns
Problem
You want to match text using the same wildcard patterns as are commonly used when
working in Unix shells (e.g., *.py, Dat[0-9]*.csv, etc.).

Solution
The fnmatch module provides two functions—fnmatch() and fnmatchcase()—that
can be used to perform such matching. The usage is simple:

>>> from fnmatch import fnmatch, fnmatchcase
>>> fnmatch('foo.txt', '*.txt')
True
>>> fnmatch('foo.txt', '?oo.txt')
True
>>> fnmatch('Dat45.csv', 'Dat[0-9]*')

40 | Chapter 2: Strings and Text

True
>>> names = ['Dat1.csv', 'Dat2.csv', 'config.ini', 'foo.py']
>>> [name for name in names if fnmatch(name, 'Dat*.csv')]
['Dat1.csv', 'Dat2.csv']
>>>

Normally, fnmatch() matches patterns using the same case-sensitivity rules as the sys‐
tem’s underlying filesystem (which varies based on operating system). For example:

>>> # On OS X (Mac)
>>> fnmatch('foo.txt', '*.TXT')
False

>>> # On Windows
>>> fnmatch('foo.txt', '*.TXT')
True
>>>

If this distinction matters, use fnmatchcase() instead. It matches exactly based on the
lower- and uppercase conventions that you supply:

>>> fnmatchcase('foo.txt', '*.TXT')
False
>>>

An often overlooked feature of these functions is their potential use with data processing
of nonfilename strings. For example, suppose you have a list of street addresses like this:

addresses = [
 '5412 N CLARK ST',
 '1060 W ADDISON ST',
 '1039 W GRANVILLE AVE',
 '2122 N CLARK ST',
 '4802 N BROADWAY',
]

You could write list comprehensions like this:

>>> from fnmatch import fnmatchcase
>>> [addr for addr in addresses if fnmatchcase(addr, '* ST')]
['5412 N CLARK ST', '1060 W ADDISON ST', '2122 N CLARK ST']
>>> [addr for addr in addresses if fnmatchcase(addr, '54[0-9][0-9] *CLARK*')]
['5412 N CLARK ST']
>>>

Discussion
The matching performed by fnmatch sits somewhere between the functionality of sim‐
ple string methods and the full power of regular expressions. If you’re just trying to
provide a simple mechanism for allowing wildcards in data processing operations, it’s
often a reasonable solution.

2.3. Matching Strings Using Shell Wildcard Patterns | 41

If you’re actually trying to write code that matches filenames, use the glob module
instead. See Recipe 5.13.

2.4. Matching and Searching for Text Patterns
Problem
You want to match or search text for a specific pattern.

Solution
If the text you’re trying to match is a simple literal, you can often just use the basic string
methods, such as str.find(), str.endswith(), str.startswith(), or similar. For
example:

>>> text = 'yeah, but no, but yeah, but no, but yeah'

>>> # Exact match
>>> text == 'yeah'
False

>>> # Match at start or end
>>> text.startswith('yeah')
True
>>> text.endswith('no')
False

>>> # Search for the location of the first occurrence
>>> text.find('no')
10
>>>

For more complicated matching, use regular expressions and the re module. To illus‐
trate the basic mechanics of using regular expressions, suppose you want to match dates
specified as digits, such as “11/27/2012.” Here is a sample of how you would do it:

>>> text1 = '11/27/2012'
>>> text2 = 'Nov 27, 2012'
>>>
>>> import re
>>> # Simple matching: \d+ means match one or more digits
>>> if re.match(r'\d+/\d+/\d+', text1):
... print('yes')
... else:
... print('no')
...
yes
>>> if re.match(r'\d+/\d+/\d+', text2):
... print('yes')
... else:

42 | Chapter 2: Strings and Text

... print('no')

...
no
>>>

If you’re going to perform a lot of matches using the same pattern, it usually pays to
precompile the regular expression pattern into a pattern object first. For example:

>>> datepat = re.compile(r'\d+/\d+/\d+')
>>> if datepat.match(text1):
... print('yes')
... else:
... print('no')
...
yes
>>> if datepat.match(text2):
... print('yes')
... else:
... print('no')
...
no
>>>

match() always tries to find the match at the start of a string. If you want to search text
for all occurrences of a pattern, use the findall() method instead. For example:

>>> text = 'Today is 11/27/2012. PyCon starts 3/13/2013.'
>>> datepat.findall(text)
['11/27/2012', '3/13/2013']
>>>

When defining regular expressions, it is common to introduce capture groups by en‐
closing parts of the pattern in parentheses. For example:

>>> datepat = re.compile(r'(\d+)/(\d+)/(\d+)')
>>>

Capture groups often simplify subsequent processing of the matched text because the
contents of each group can be extracted individually. For example:

>>> m = datepat.match('11/27/2012')
>>> m
<_sre.SRE_Match object at 0x1005d2750>

>>> # Extract the contents of each group
>>> m.group(0)
'11/27/2012'
>>> m.group(1)
'11'
>>> m.group(2)
'27'
>>> m.group(3)
'2012'
>>> m.groups()

2.4. Matching and Searching for Text Patterns | 43

('11', '27', '2012')
>>> month, day, year = m.groups()
>>>

>>> # Find all matches (notice splitting into tuples)
>>> text
'Today is 11/27/2012. PyCon starts 3/13/2013.'
>>> datepat.findall(text)
[('11', '27', '2012'), ('3', '13', '2013')]
>>> for month, day, year in datepat.findall(text):
... print('{}-{}-{}'.format(year, month, day))
...
2012-11-27
2013-3-13
>>>

The findall() method searches the text and finds all matches, returning them as a list.
If you want to find matches iteratively, use the finditer() method instead. For example:

>>> for m in datepat.finditer(text):
... print(m.groups())
...
('11', '27', '2012')
('3', '13', '2013')
>>>

Discussion
A basic tutorial on the theory of regular expressions is beyond the scope of this book.
However, this recipe illustrates the absolute basics of using the re module to match and
search for text. The essential functionality is first compiling a pattern using
re.compile() and then using methods such as match(), findall(), or finditer().

When specifying patterns, it is relatively common to use raw strings such as
r'(\d+)/(\d+)/(\d+)'. Such strings leave the backslash character uninterpreted,
which can be useful in the context of regular expressions. Otherwise, you need to use
double backslashes such as '(\\d+)/(\\d+)/(\\d+)'.

Be aware that the match() method only checks the beginning of a string. It’s possible
that it will match things you aren’t expecting. For example:

>>> m = datepat.match('11/27/2012abcdef')
>>> m
<_sre.SRE_Match object at 0x1005d27e8>
>>> m.group()
'11/27/2012'
>>>

If you want an exact match, make sure the pattern includes the end-marker ($), as in
the following:

44 | Chapter 2: Strings and Text

>>> datepat = re.compile(r'(\d+)/(\d+)/(\d+)$')
>>> datepat.match('11/27/2012abcdef')
>>> datepat.match('11/27/2012')
<_sre.SRE_Match object at 0x1005d2750>
>>>

Last, if you’re just doing a simple text matching/searching operation, you can often skip
the compilation step and use module-level functions in the re module instead. For
example:

>>> re.findall(r'(\d+)/(\d+)/(\d+)', text)
[('11', '27', '2012'), ('3', '13', '2013')]
>>>

Be aware, though, that if you’re going to perform a lot of matching or searching, it usually
pays to compile the pattern first and use it over and over again. The module-level func‐
tions keep a cache of recently compiled patterns, so there isn’t a huge performance hit,
but you’ll save a few lookups and extra processing by using your own compiled pattern.

2.5. Searching and Replacing Text
Problem
You want to search for and replace a text pattern in a string.

Solution
For simple literal patterns, use the str.replace() method. For example:

>>> text = 'yeah, but no, but yeah, but no, but yeah'

>>> text.replace('yeah', 'yep')
'yep, but no, but yep, but no, but yep'
>>>

For more complicated patterns, use the sub() functions/methods in the re module. To
illustrate, suppose you want to rewrite dates of the form “11/27/2012” as “2012-11-27.”
Here is a sample of how to do it:

>>> text = 'Today is 11/27/2012. PyCon starts 3/13/2013.'
>>> import re
>>> re.sub(r'(\d+)/(\d+)/(\d+)', r'\3-\1-\2', text)
'Today is 2012-11-27. PyCon starts 2013-3-13.'
>>>

The first argument to sub() is the pattern to match and the second argument is the
replacement pattern. Backslashed digits such as \3 refer to capture group numbers in
the pattern.

2.5. Searching and Replacing Text | 45

If you’re going to perform repeated substitutions of the same pattern, consider compil‐
ing it first for better performance. For example:

>>> import re
>>> datepat = re.compile(r'(\d+)/(\d+)/(\d+)')
>>> datepat.sub(r'\3-\1-\2', text)
'Today is 2012-11-27. PyCon starts 2013-3-13.'
>>>

For more complicated substitutions, it’s possible to specify a substitution callback func‐
tion instead. For example:

>>> from calendar import month_abbr
>>> def change_date(m):
... mon_name = month_abbr[int(m.group(1))]
... return '{} {} {}'.format(m.group(2), mon_name, m.group(3))
...
>>> datepat.sub(change_date, text)
'Today is 27 Nov 2012. PyCon starts 13 Mar 2013.'
>>>

As input, the argument to the substitution callback is a match object, as returned by
match() or find(). Use the .group() method to extract specific parts of the match. The
function should return the replacement text.

If you want to know how many substitutions were made in addition to getting the
replacement text, use re.subn() instead. For example:

>>> newtext, n = datepat.subn(r'\3-\1-\2', text)
>>> newtext
'Today is 2012-11-27. PyCon starts 2013-3-13.'
>>> n
2
>>>

Discussion
There isn’t much more to regular expression search and replace than the sub() method
shown. The trickiest part is specifying the regular expression pattern—something that’s
best left as an exercise to the reader.

2.6. Searching and Replacing Case-Insensitive Text
Problem
You need to search for and possibly replace text in a case-insensitive manner.

46 | Chapter 2: Strings and Text

Solution
To perform case-insensitive text operations, you need to use the re module and supply
the re.IGNORECASE flag to various operations. For example:

>>> text = 'UPPER PYTHON, lower python, Mixed Python'
>>> re.findall('python', text, flags=re.IGNORECASE)
['PYTHON', 'python', 'Python']
>>> re.sub('python', 'snake', text, flags=re.IGNORECASE)
'UPPER snake, lower snake, Mixed snake'
>>>

The last example reveals a limitation that replacing text won’t match the case of the
matched text. If you need to fix this, you might have to use a support function, as in the
following:

def matchcase(word):
 def replace(m):
 text = m.group()
 if text.isupper():
 return word.upper()
 elif text.islower():
 return word.lower()
 elif text[0].isupper():
 return word.capitalize()
 else:
 return word
 return replace

Here is an example of using this last function:

>>> re.sub('python', matchcase('snake'), text, flags=re.IGNORECASE)
'UPPER SNAKE, lower snake, Mixed Snake'
>>>

Discussion
For simple cases, simply providing the re.IGNORECASE is enough to perform case-
insensitive matching. However, be aware that this may not be enough for certain kinds
of Unicode matching involving case folding. See Recipe 2.10 for more details.

2.7. Specifying a Regular Expression for the Shortest
Match
Problem
You’re trying to match a text pattern using regular expressions, but it is identifying the
longest possible matches of a pattern. Instead, you would like to change it to find the
shortest possible match.

2.7. Specifying a Regular Expression for the Shortest Match | 47

Solution
This problem often arises in patterns that try to match text enclosed inside a pair of
starting and ending delimiters (e.g., a quoted string). To illustrate, consider this example:

>>> str_pat = re.compile(r'\"(.*)\"')
>>> text1 = 'Computer says "no."'
>>> str_pat.findall(text1)
['no.']
>>> text2 = 'Computer says "no." Phone says "yes."'
>>> str_pat.findall(text2)
['no." Phone says "yes.']
>>>

In this example, the pattern r'\"(.*)\"' is attempting to match text enclosed inside
quotes. However, the * operator in a regular expression is greedy, so matching is based
on finding the longest possible match. Thus, in the second example involving text2, it
incorrectly matches the two quoted strings.

To fix this, add the ? modifier after the * operator in the pattern, like this:

>>> str_pat = re.compile(r'\"(.*?)\"')
>>> str_pat.findall(text2)
['no.', 'yes.']
>>>

This makes the matching nongreedy, and produces the shortest match instead.

Discussion
This recipe addresses one of the more common problems encountered when writing
regular expressions involving the dot (.) character. In a pattern, the dot matches any
character except a newline. However, if you bracket the dot with starting and ending
text (such as a quote), matching will try to find the longest possible match to the pattern.
This causes multiple occurrences of the starting or ending text to be skipped altogether
and included in the results of the longer match. Adding the ? right after operators such
as * or + forces the matching algorithm to look for the shortest possible match instead.

2.8. Writing a Regular Expression for Multiline Patterns
Problem
You’re trying to match a block of text using a regular expression, but you need the match
to span multiple lines.

48 | Chapter 2: Strings and Text

Solution
This problem typically arises in patterns that use the dot (.) to match any character but
forget to account for the fact that it doesn’t match newlines. For example, suppose you
are trying to match C-style comments:

>>> comment = re.compile(r'/*(.*?)*/')
>>> text1 = '/* this is a comment */'
>>> text2 = '''/* this is a
... multiline comment */
... '''
>>>
>>> comment.findall(text1)
[' this is a comment ']
>>> comment.findall(text2)
[]
>>>

To fix the problem, you can add support for newlines. For example:

>>> comment = re.compile(r'/*((?:.|\n)*?)*/')
>>> comment.findall(text2)
[' this is a\n multiline comment ']
>>>

In this pattern, (?:.|\n) specifies a noncapture group (i.e., it defines a group for the
purposes of matching, but that group is not captured separately or numbered).

Discussion
The re.compile() function accepts a flag, re.DOTALL, which is useful here. It makes
the . in a regular expression match all characters, including newlines. For example:

>>> comment = re.compile(r'/*(.*?)*/', re.DOTALL)
>>> comment.findall(text2)
[' this is a\n multiline comment ']

Using the re.DOTALL flag works fine for simple cases, but might be problematic if you’re
working with extremely complicated patterns or a mix of separate regular expressions
that have been combined together for the purpose of tokenizing, as described in
Recipe 2.18. If given a choice, it’s usually better to define your regular expression pattern
so that it works correctly without the need for extra flags.

2.8. Writing a Regular Expression for Multiline Patterns | 49

2.9. Normalizing Unicode Text to a Standard
Representation
Problem
You’re working with Unicode strings, but need to make sure that all of the strings have
the same underlying representation.

Solution
In Unicode, certain characters can be represented by more than one valid sequence of
code points. To illustrate, consider the following example:

>>> s1 = 'Spicy Jalape\u00f1o'
>>> s2 = 'Spicy Jalapen\u0303o'
>>> s1
'Spicy Jalapeño'
>>> s2
'Spicy Jalapeño'
>>> s1 == s2
False
>>> len(s1)
14
>>> len(s2)
15
>>>

Here the text “Spicy Jalapeño” has been presented in two forms. The first uses the fully
composed “ñ” character (U+00F1). The second uses the Latin letter “n” followed by a
“~” combining character (U+0303).

Having multiple representations is a problem for programs that compare strings. In
order to fix this, you should first normalize the text into a standard representation using
the unicodedata module:

>>> import unicodedata
>>> t1 = unicodedata.normalize('NFC', s1)
>>> t2 = unicodedata.normalize('NFC', s2)
>>> t1 == t2
True
>>> print(ascii(t1))
'Spicy Jalape\xf1o'

>>> t3 = unicodedata.normalize('NFD', s1)
>>> t4 = unicodedata.normalize('NFD', s2)
>>> t3 == t4
True
>>> print(ascii(t3))
'Spicy Jalapen\u0303o'
>>>

50 | Chapter 2: Strings and Text

The first argument to normalize() specifies how you want the string normalized. NFC
means that characters should be fully composed (i.e., use a single code point if possible).
NFD means that characters should be fully decomposed with the use of combining char‐
acters.

Python also supports the normalization forms NFKC and NFKD, which add extra com‐
patibility features for dealing with certain kinds of characters. For example:

>>> s = '\ufb01' # A single character
>>> s
'fi'
>>> unicodedata.normalize('NFD', s)
'fi'

Notice how the combined letters are broken apart here
>>> unicodedata.normalize('NFKD', s)
'fi'
>>> unicodedata.normalize('NFKC', s)
'fi'
>>>

Discussion
Normalization is an important part of any code that needs to ensure that it processes
Unicode text in a sane and consistent way. This is especially true when processing strings
received as part of user input where you have little control of the encoding.

Normalization can also be an important part of sanitizing and filtering text. For example,
suppose you want to remove all diacritical marks from some text (possibly for the pur‐
poses of searching or matching):

>>> t1 = unicodedata.normalize('NFD', s1)
>>> ''.join(c for c in t1 if not unicodedata.combining(c))
'Spicy Jalapeno'
>>>

This last example shows another important aspect of the unicodedata module—namely,
utility functions for testing characters against character classes. The combining() func‐
tion tests a character to see if it is a combining character. There are other functions in
the module for finding character categories, testing digits, and so forth.

Unicode is obviously a large topic. For more detailed reference information about nor‐
malization, visit Unicode’s page on the subject. Ned Batchelder has also given an excel‐
lent presentation on Python Unicode handling issues at his website.

2.9. Normalizing Unicode Text to a Standard Representation | 51

http://www.unicode.org/faq/normalization.html
http://nedbatchelder.com/text/unipain.html

2.10. Working with Unicode Characters in Regular
Expressions
Problem
You are using regular expressions to process text, but are concerned about the handling
of Unicode characters.

Solution
By default, the re module is already programmed with rudimentary knowledge of cer‐
tain Unicode character classes. For example, \d already matches any unicode digit
character:

>>> import re
>>> num = re.compile('\d+')
>>> # ASCII digits
>>> num.match('123')
<_sre.SRE_Match object at 0x1007d9ed0>

>>> # Arabic digits
>>> num.match('\u0661\u0662\u0663')
<_sre.SRE_Match object at 0x101234030>
>>>

If you need to include specific Unicode characters in patterns, you can use the usual
escape sequence for Unicode characters (e.g., \uFFFF or \UFFFFFFF). For example, here
is a regex that matches all characters in a few different Arabic code pages:

>>> arabic = re.compile('[\u0600-\u06ff\u0750-\u077f\u08a0-\u08ff]+')
>>>

When performing matching and searching operations, it’s a good idea to normalize and
possibly sanitize all text to a standard form first (see Recipe 2.9). However, it’s also
important to be aware of special cases. For example, consider the behavior of case-
insensitive matching combined with case folding:

>>> pat = re.compile('stra\u00dfe', re.IGNORECASE)
>>> s = 'straße'
>>> pat.match(s) # Matches
<_sre.SRE_Match object at 0x10069d370>
>>> pat.match(s.upper()) # Doesn't match
>>> s.upper() # Case folds
'STRASSE'
>>>

52 | Chapter 2: Strings and Text

Discussion
Mixing Unicode and regular expressions is often a good way to make your head explode.
If you’re going to do it seriously, you should consider installing the third-party regex
library, which provides full support for Unicode case folding, as well as a variety of other
interesting features, including approximate matching.

2.11. Stripping Unwanted Characters from Strings
Problem
You want to strip unwanted characters, such as whitespace, from the beginning, end, or
middle of a text string.

Solution
The strip() method can be used to strip characters from the beginning or end of a
string. lstrip() and rstrip() perform stripping from the left or right side, respectively.
By default, these methods strip whitespace, but other characters can be given. For
example:

>>> # Whitespace stripping
>>> s = ' hello world \n'
>>> s.strip()
'hello world'
>>> s.lstrip()
'hello world \n'
>>> s.rstrip()
' hello world'
>>>

>>> # Character stripping
>>> t = '-----hello====='
>>> t.lstrip('-')
'hello====='
>>> t.strip('-=')
'hello'
>>>

Discussion
The various strip() methods are commonly used when reading and cleaning up data
for later processing. For example, you can use them to get rid of whitespace, remove
quotations, and other tasks.

Be aware that stripping does not apply to any text in the middle of a string. For example:

2.11. Stripping Unwanted Characters from Strings | 53

http://pypi.python.org/pypi/regex
http://pypi.python.org/pypi/regex

>>> s = ' hello world \n'
>>> s = s.strip()
>>> s
'hello world'
>>>

If you needed to do something to the inner space, you would need to use another tech‐
nique, such as using the replace() method or a regular expression substitution. For
example:

>>> s.replace(' ', '')
'helloworld'
>>> import re
>>> re.sub('\s+', ' ', s)
'hello world'
>>>

It is often the case that you want to combine string stripping operations with some other
kind of iterative processing, such as reading lines of data from a file. If so, this is one
area where a generator expression can be useful. For example:

with open(filename) as f:
 lines = (line.strip() for line in f)
 for line in lines:
 ...

Here, the expression lines = (line.strip() for line in f) acts as a kind of data
transform. It’s efficient because it doesn’t actually read the data into any kind of tem‐
porary list first. It just creates an iterator where all of the lines produced have the strip‐
ping operation applied to them.

For even more advanced stripping, you might turn to the translate() method. See the
next recipe on sanitizing strings for further details.

2.12. Sanitizing and Cleaning Up Text
Problem
Some bored script kiddie has entered the text “pýtĥöñ” into a form on your web page
and you’d like to clean it up somehow.

Solution
The problem of sanitizing and cleaning up text applies to a wide variety of problems
involving text parsing and data handling. At a very simple level, you might use basic
string functions (e.g., str.upper() and str.lower()) to convert text to a standard case.
Simple replacements using str.replace() or re.sub() can focus on removing or

54 | Chapter 2: Strings and Text

changing very specific character sequences. You can also normalize text using unicode
data.normalize(), as shown in Recipe 2.9.

However, you might want to take the sanitation process a step further. Perhaps, for
example, you want to eliminate whole ranges of characters or strip diacritical marks. To
do so, you can turn to the often overlooked str.translate() method. To illustrate,
suppose you’ve got a messy string such as the following:

>>> s = 'pýtĥöñ\fis\tawesome\r\n'
>>> s
'pýtĥöñ\x0cis\tawesome\r\n'
>>>

The first step is to clean up the whitespace. To do this, make a small translation table
and use translate():

>>> remap = {
... ord('\t') : ' ',
... ord('\f') : ' ',
... ord('\r') : None # Deleted
... }
>>> a = s.translate(remap)
>>> a
'pýtĥöñ is awesome\n'
>>>

As you can see here, whitespace characters such as \t and \f have been remapped to a
single space. The carriage return \r has been deleted entirely.

You can take this remapping idea a step further and build much bigger tables. For ex‐
ample, let’s remove all combining characters:

>>> import unicodedata
>>> import sys
>>> cmb_chrs = dict.fromkeys(c for c in range(sys.maxunicode)
... if unicodedata.combining(chr(c)))
...
>>> b = unicodedata.normalize('NFD', a)
>>> b
'pýtĥöñ is awesome\n'
>>> b.translate(cmb_chrs)
'python is awesome\n'
>>>

In this last example, a dictionary mapping every Unicode combining character to None
is created using the dict.fromkeys().

The original input is then normalized into a decomposed form using unicodedata.nor
malize(). From there, the translate function is used to delete all of the accents. Similar
techniques can be used to remove other kinds of characters (e.g., control characters,
etc.).

2.12. Sanitizing and Cleaning Up Text | 55

As another example, here is a translation table that maps all Unicode decimal digit
characters to their equivalent in ASCII:

>>> digitmap = { c: ord('0') + unicodedata.digit(chr(c))
... for c in range(sys.maxunicode)
... if unicodedata.category(chr(c)) == 'Nd' }
...
>>> len(digitmap)
460
>>> # Arabic digits
>>> x = '\u0661\u0662\u0663'
>>> x.translate(digitmap)
'123'
>>>

Yet another technique for cleaning up text involves I/O decoding and encoding func‐
tions. The idea here is to first do some preliminary cleanup of the text, and then run it
through a combination of encode() or decode() operations to strip or alter it. For
example:

>>> a
'pýtĥöñ is awesome\n'
>>> b = unicodedata.normalize('NFD', a)
>>> b.encode('ascii', 'ignore').decode('ascii')
'python is awesome\n'
>>>

Here the normalization process decomposed the original text into characters along with
separate combining characters. The subsequent ASCII encoding/decoding simply dis‐
carded all of those characters in one fell swoop. Naturally, this would only work if getting
an ASCII representation was the final goal.

Discussion
A major issue with sanitizing text can be runtime performance. As a general rule, the
simpler it is, the faster it will run. For simple replacements, the str.replace() method
is often the fastest approach—even if you have to call it multiple times. For instance, to
clean up whitespace, you could use code like this:

def clean_spaces(s):
 s = s.replace('\r', '')
 s = s.replace('\t', ' ')
 s = s.replace('\f', ' ')
 return s

If you try it, you’ll find that it’s quite a bit faster than using translate() or an approach
using a regular expression.

On the other hand, the translate() method is very fast if you need to perform any
kind of nontrivial character-to-character remapping or deletion.

56 | Chapter 2: Strings and Text

In the big picture, performance is something you will have to study further in your
particular application. Unfortunately, it’s impossible to suggest one specific technique
that works best for all cases, so try different approaches and measure it.

Although the focus of this recipe has been text, similar techniques can be applied to
bytes, including simple replacements, translation, and regular expressions.

2.13. Aligning Text Strings
Problem
You need to format text with some sort of alignment applied.

Solution
For basic alignment of strings, the ljust(), rjust(), and center() methods of strings
can be used. For example:

>>> text = 'Hello World'
>>> text.ljust(20)
'Hello World '
>>> text.rjust(20)
' Hello World'
>>> text.center(20)
' Hello World '
>>>

All of these methods accept an optional &&65.180&&fill character as well. For example:

>>> text.rjust(20,'=')
'=========Hello World'
>>> text.center(20,'*')
'****Hello World*****'
>>>

The format() function can also be used to easily align things. All you need to do is use
the <, >, or ^ characters along with a desired width. For example:

>>> format(text, '>20')
' Hello World'
>>> format(text, '<20')
'Hello World '
>>> format(text, '^20')
' Hello World '
>>>

If you want to include a fill character other than a space, specify it before the alignment
character:

>>> format(text, '=>20s')
'=========Hello World'

2.13. Aligning Text Strings | 57

>>> format(text, '*^20s')
'****Hello World*****'
>>>

These format codes can also be used in the format() method when formatting multiple
values. For example:

>>> '{:>10s} {:>10s}'.format('Hello', 'World')
' Hello World'
>>>

One benefit of format() is that it is not specific to strings. It works with any value,
making it more general purpose. For instance, you can use it with numbers:

>>> x = 1.2345
>>> format(x, '>10')
' 1.2345'
>>> format(x, '^10.2f')
' 1.23 '
>>>

Discussion
In older code, you will also see the % operator used to format text. For example:

>>> '%-20s' % text
'Hello World '
>>> '%20s' % text
' Hello World'
>>>

However, in new code, you should probably prefer the use of the format() function or
method. format() is a lot more powerful than what is provided with the % operator.
Moreover, format() is more general purpose than using the jlust(), rjust(), or
center() method of strings in that it works with any kind of object.

For a complete list of features available with the format() function, consult the online
Python documentation.

2.14. Combining and Concatenating Strings
Problem
You want to combine many small strings together into a larger string.

Solution
If the strings you wish to combine are found in a sequence or iterable, the fastest way
to combine them is to use the join() method. For example:

58 | Chapter 2: Strings and Text

http://docs.python.org/3/library/string.html#formatspec
http://docs.python.org/3/library/string.html#formatspec

>>> parts = ['Is', 'Chicago', 'Not', 'Chicago?']
>>> ' '.join(parts)
'Is Chicago Not Chicago?'
>>> ','.join(parts)
'Is,Chicago,Not,Chicago?'
>>> ''.join(parts)
'IsChicagoNotChicago?'
>>>

At first glance, this syntax might look really odd, but the join() operation is specified
as a method on strings. Partly this is because the objects you want to join could come
from any number of different data sequences (e.g., lists, tuples, dicts, files, sets, or gen‐
erators), and it would be redundant to have join() implemented as a method on all of
those objects separately. So you just specify the separator string that you want and use
the join() method on it to glue text fragments together.

If you’re only combining a few strings, using + usually works well enough:

>>> a = 'Is Chicago'
>>> b = 'Not Chicago?'
>>> a + ' ' + b
'Is Chicago Not Chicago?'
>>>

The + operator also works fine as a substitute for more complicated string formatting
operations. For example:

>>> print('{} {}'.format(a,b))
Is Chicago Not Chicago?
>>> print(a + ' ' + b)
Is Chicago Not Chicago?
>>>

If you’re trying to combine string literals together in source code, you can simply place
them adjacent to each other with no + operator. For example:

>>> a = 'Hello' 'World'
>>> a
'HelloWorld'
>>>

Discussion
Joining strings together might not seem advanced enough to warrant an entire recipe,
but it’s often an area where programmers make programming choices that severely
impact the performance of their code.

The most important thing to know is that using the + operator to join a lot of strings
together is grossly inefficient due to the memory copies and garbage collection that
occurs. In particular, you never want to write code that joins strings together like this:

2.14. Combining and Concatenating Strings | 59

s = ''
for p in parts:
 s += p

This runs quite a bit slower than using the join() method, mainly because each +=
operation creates a new string object. You’re better off just collecting all of the parts first
and then joining them together at the end.

One related (and pretty neat) trick is the conversion of data to strings and concatenation
at the same time using a generator expression, as described in Recipe 1.19. For example:

>>> data = ['ACME', 50, 91.1]
>>> ','.join(str(d) for d in data)
'ACME,50,91.1'
>>>

Also be on the lookout for unnecessary string concatenations. Sometimes programmers
get carried away with concatenation when it’s really not technically necessary. For ex‐
ample, when printing:

print(a + ':' + b + ':' + c) # Ugly
print(':'.join([a, b, c])) # Still ugly

print(a, b, c, sep=':') # Better

Mixing I/O operations and string concatenation is something that might require study
in your application. For example, consider the following two code fragments:

Version 1 (string concatenation)
f.write(chunk1 + chunk2)

Version 2 (separate I/O operations)
f.write(chunk1)
f.write(chunk2)

If the two strings are small, the first version might offer much better performance due
to the inherent expense of carrying out an I/O system call. On the other hand, if the two
strings are large, the second version may be more efficient, since it avoids making a large
temporary result and copying large blocks of memory around. Again, it must be stressed
that this is something you would have to study in relation to your own data in order to
determine which performs best.

Last, but not least, if you’re writing code that is building output from lots of small strings,
you might consider writing that code as a generator function, using yield to emit frag‐
ments. For example:

def sample():
 yield 'Is'
 yield 'Chicago'
 yield 'Not'
 yield 'Chicago?'

60 | Chapter 2: Strings and Text

The interesting thing about this approach is that it makes no assumption about how the
fragments are to be assembled together. For example, you could simply join the frag‐
ments using join():

text = ''.join(sample())

Or you could redirect the fragments to I/O:

for part in sample():
 f.write(part)

Or you could come up with some kind of hybrid scheme that’s smart about combining
I/O operations:

def combine(source, maxsize):
 parts = []
 size = 0
 for part in source:
 parts.append(part)
 size += len(part)
 if size > maxsize:
 yield ''.join(parts)
 parts = []
 size = 0
 yield ''.join(parts)

for part in combine(sample(), 32768):
 f.write(part)

The key point is that the original generator function doesn’t have to know the precise
details. It just yields the parts.

2.15. Interpolating Variables in Strings
Problem
You want to create a string in which embedded variable names are substituted with a
string representation of a variable’s value.

Solution
Python has no direct support for simply substituting variable values in strings. However,
this feature can be approximated using the format() method of strings. For example:

>>> s = '{name} has {n} messages.'
>>> s.format(name='Guido', n=37)
'Guido has 37 messages.'
>>>

2.15. Interpolating Variables in Strings | 61

Alternatively, if the values to be substituted are truly found in variables, you can use the
combination of format_map() and vars(), as in the following:

>>> name = 'Guido'
>>> n = 37
>>> s.format_map(vars())
'Guido has 37 messages.'
>>>

One subtle feature of vars() is that it also works with instances. For example:

>>> class Info:
... def __init__(self, name, n):
... self.name = name
... self.n = n
...
>>> a = Info('Guido',37)
>>> s.format_map(vars(a))
'Guido has 37 messages.'
>>>

One downside of format() and format_map() is that they do not deal gracefully with
missing values. For example:

>>> s.format(name='Guido')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'n'
>>>

One way to avoid this is to define an alternative dictionary class with a __miss
ing__() method, as in the following:

class safesub(dict):
 def __missing__(self, key):
 return '{' + key + '}'

Now use this class to wrap the inputs to format_map():

>>> del n # Make sure n is undefined
>>> s.format_map(safesub(vars()))
'Guido has {n} messages.'
>>>

If you find yourself frequently performing these steps in your code, you could hide the
variable substitution process behind a small utility function that employs a so-called
“frame hack.” For example:

import sys

def sub(text):
 return text.format_map(safesub(sys._getframe(1).f_locals))

Now you can type things like this:

62 | Chapter 2: Strings and Text

>>> name = 'Guido'
>>> n = 37
>>> print(sub('Hello {name}'))
Hello Guido
>>> print(sub('You have {n} messages.'))
You have 37 messages.
>>> print(sub('Your favorite color is {color}'))
Your favorite color is {color}
>>>

Discussion
The lack of true variable interpolation in Python has led to a variety of solutions over
the years. As an alternative to the solution presented in this recipe, you will sometimes
see string formatting like this:

>>> name = 'Guido'
>>> n = 37
>>> '%(name) has %(n) messages.' % vars()
'Guido has 37 messages.'
>>>

You may also see the use of template strings:

>>> import string
>>> s = string.Template('$name has $n messages.')
>>> s.substitute(vars())
'Guido has 37 messages.'
>>>

However, the format() and format_map() methods are more modern than either of
these alternatives, and should be preferred. One benefit of using format() is that you
also get all of the features related to string formatting (alignment, padding, numerical
formatting, etc.), which is simply not possible with alternatives such as Template string
objects.

Parts of this recipe also illustrate a few interesting advanced features. The little-known
__missing__() method of mapping/dict classes is a method that you can define to
handle missing values. In the safesub class, this method has been defined to return
missing values back as a placeholder. Instead of getting a KeyError exception, you
would see the missing values appearing in the resulting string (potentially useful for
debugging).

The sub() function uses sys._getframe(1) to return the stack frame of the caller. From
that, the f_locals attribute is accessed to get the local variables. It goes without saying
that messing around with stack frames should probably be avoided in most code. How‐
ever, for utility functions such as a string substitution feature, it can be useful. As an
aside, it’s probably worth noting that f_locals is a dictionary that is a copy of the local
variables in the calling function. Although you can modify the contents of f_locals,

2.15. Interpolating Variables in Strings | 63

the modifications don’t actually have any lasting effect. Thus, even though accessing a
different stack frame might look evil, it’s not possible to accidentally overwrite variables
or change the local environment of the caller.

2.16. Reformatting Text to a Fixed Number of Columns
Problem
You have long strings that you want to reformat so that they fill a user-specified number
of columns.

Solution
Use the textwrap module to reformat text for output. For example, suppose you have
the following long string:

s = "Look into my eyes, look into my eyes, the eyes, the eyes, \
the eyes, not around the eyes, don't look around the eyes, \
look into my eyes, you're under."

Here’s how you can use the textwrap module to reformat it in various ways:

>>> import textwrap
>>> print(textwrap.fill(s, 70))
Look into my eyes, look into my eyes, the eyes, the eyes, the eyes,
not around the eyes, don't look around the eyes, look into my eyes,
you're under.

>>> print(textwrap.fill(s, 40))
Look into my eyes, look into my eyes,
the eyes, the eyes, the eyes, not around
the eyes, don't look around the eyes,
look into my eyes, you're under.

>>> print(textwrap.fill(s, 40, initial_indent=' '))
 Look into my eyes, look into my
eyes, the eyes, the eyes, the eyes, not
around the eyes, don't look around the
eyes, look into my eyes, you're under.

>>> print(textwrap.fill(s, 40, subsequent_indent=' '))
Look into my eyes, look into my eyes,
 the eyes, the eyes, the eyes, not
 around the eyes, don't look around
 the eyes, look into my eyes, you're
 under.

64 | Chapter 2: Strings and Text

Discussion
The textwrap module is a straightforward way to clean up text for printing—especially
if you want the output to fit nicely on the terminal. On the subject of the terminal size,
you can obtain it using os.get_terminal_size(). For example:

>>> import os
>>> os.get_terminal_size().columns
80
>>>

The fill() method has a few additional options that control how it handles tabs, sen‐
tence endings, and so on. Look at the documentation for the textwrap.TextWrapper
class for further details.

2.17. Handling HTML and XML Entities in Text
Problem
You want to replace HTML or XML entities such as &entity; or &#code; with their
corresponding text. Alternatively, you need to produce text, but escape certain charac‐
ters (e.g., <, >, or &).

Solution
If you are producing text, replacing special characters such as < or > is relatively easy if
you use the html.escape() function. For example:

>>> s = 'Elements are written as "<tag>text</tag>".'
>>> import html
>>> print(s)
Elements are written as "<tag>text</tag>".
>>> print(html.escape(s))
Elements are written as "<tag>text</tag>".

>>> # Disable escaping of quotes
>>> print(html.escape(s, quote=False))
Elements are written as "<tag>text</tag>".
>>>

If you’re trying to emit text as ASCII and want to embed character code entities for non-
ASCII characters, you can use the errors='xmlcharrefreplace' argument to various
I/O-related functions to do it. For example:

>>> s = 'Spicy Jalapeño'
>>> s.encode('ascii', errors='xmlcharrefreplace')
b'Spicy Jalapeño'
>>>

2.17. Handling HTML and XML Entities in Text | 65

http://docs.python.org/3.3/library/textwrap.html#textwrap.TextWrapper
http://docs.python.org/3.3/library/textwrap.html#textwrap.TextWrapper

To replace entities in text, a different approach is needed. If you’re actually processing
HTML or XML, try using a proper HTML or XML parser first. Normally, these tools
will automatically take care of replacing the values for you during parsing and you don’t
need to worry about it.

If, for some reason, you’ve received bare text with some entities in it and you want them
replaced manually, you can usually do it using various utility functions/methods asso‐
ciated with HTML or XML parsers. For example:

>>> s = 'Spicy "Jalapeño".'
>>> from html.parser import HTMLParser
>>> p = HTMLParser()
>>> p.unescape(s)
'Spicy "Jalapeño".'
>>>

>>> t = 'The prompt is >>>'
>>> from xml.sax.saxutils import unescape
>>> unescape(t)
'The prompt is >>>'
>>>

Discussion
Proper escaping of special characters is an easily overlooked detail of generating HTML
or XML. This is especially true if you’re generating such output yourself using print()
or other basic string formatting features. Using a utility function such as html.es
cape() is an easy solution.

If you need to process text in the other direction, various utility functions, such as
xml.sax.saxutils.unescape(), can help. However, you really need to investigate the
use of a proper parser. For example, if processing HTML or XML, using a parsing mod‐
ule such as html.parser or xml.etree.ElementTree should already take care of details
related to replacing entities in the input text for you.

2.18. Tokenizing Text
Problem
You have a string that you want to parse left to right into a stream of tokens.

Solution
Suppose you have a string of text such as this:

text = 'foo = 23 + 42 * 10'

66 | Chapter 2: Strings and Text

To tokenize the string, you need to do more than merely match patterns. You need to
have some way to identify the kind of pattern as well. For instance, you might want to
turn the string into a sequence of pairs like this:

tokens = [('NAME', 'foo'), ('EQ','='), ('NUM', '23'), ('PLUS','+'),
 ('NUM', '42'), ('TIMES', '*'), ('NUM', 10')]

To do this kind of splitting, the first step is to define all of the possible tokens, including
whitespace, by regular expression patterns using named capture groups such as this:

import re
NAME = r'(?P<NAME>[a-zA-Z_][a-zA-Z_0-9]*)'
NUM = r'(?P<NUM>\d+)'
PLUS = r'(?P<PLUS>\+)'
TIMES = r'(?P<TIMES>*)'
EQ = r'(?P<EQ>=)'
WS = r'(?P<WS>\s+)'

master_pat = re.compile('|'.join([NAME, NUM, PLUS, TIMES, EQ, WS]))

In these re patterns, the ?P<TOKENNAME> convention is used to assign a name to the
pattern. This will be used later.

Next, to tokenize, use the little-known scanner() method of pattern objects. This
method creates a scanner object in which repeated calls to match() step through the
supplied text one match at a time. Here is an interactive example of how a scanner object
works:

>>> scanner = master_pat.scanner('foo = 42')
>>> scanner.match()
<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup, _.group()
('NAME', 'foo')
>>> scanner.match()
<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup, _.group()
('WS', ' ')
>>> scanner.match()
<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup, _.group()
('EQ', '=')
>>> scanner.match()
<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup, _.group()
('WS', ' ')
>>> scanner.match()
<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup, _.group()
('NUM', '42')
>>> scanner.match()
>>>

2.18. Tokenizing Text | 67

To take this technique and put it into code, it can be cleaned up and easily packaged
into a generator like this:

from collections import namedtuple

Token = namedtuple('Token', ['type','value'])

def generate_tokens(pat, text):
 scanner = pat.scanner(text)
 for m in iter(scanner.match, None):
 yield Token(m.lastgroup, m.group())

Example use
for tok in generate_tokens(master_pat, 'foo = 42'):
 print(tok)

Produces output
Token(type='NAME', value='foo')
Token(type='WS', value=' ')
Token(type='EQ', value='=')
Token(type='WS', value=' ')
Token(type='NUM', value='42')

If you want to filter the token stream in some way, you can either define more generator
functions or use a generator expression. For example, here is how you might filter out
all whitespace tokens.

tokens = (tok for tok in generate_tokens(master_pat, text)
 if tok.type != 'WS')
for tok in tokens:
 print(tok)

Discussion
Tokenizing is often the first step for more advanced kinds of text parsing and handling.
To use the scanning technique shown, there are a few important details to keep in mind.
First, you must make sure that you identify every possible text sequence that might
appear in the input with a correponding re pattern. If any nonmatching text is found,
scanning simply stops. This is why it was necessary to specify the whitespace (WS) token
in the example.

The order of tokens in the master regular expression also matters. When matching, re
tries to match pattens in the order specified. Thus, if a pattern happens to be a substring
of a longer pattern, you need to make sure the longer pattern goes first. For example:

LT = r'(?P<LT><)'
LE = r'(?P<LE><=)'
EQ = r'(?P<EQ>=)'

master_pat = re.compile('|'.join([LE, LT, EQ])) # Correct
master_pat = re.compile('|'.join([LT, LE, EQ])) # Incorrect

68 | Chapter 2: Strings and Text

The second pattern is wrong because it would match the text <= as the token LT followed
by the token EQ, not the single token LE, as was probably desired.

Last, but not least, you need to watch out for patterns that form substrings. For example,
suppose you have two pattens like this:

PRINT = r'(P<PRINT>print)'
NAME = r'(P<NAME>[a-zA-Z_][a-zA-Z_0-9]*)'

master_pat = re.compile('|'.join([PRINT, NAME]))

for tok in generate_tokens(master_pat, 'printer'):
 print(tok)

Outputs :
Token(type='PRINT', value='print')
Token(type='NAME', value='er')

For more advanced kinds of tokenizing, you may want to check out packages such as
PyParsing or PLY. An example involving PLY appears in the next recipe.

2.19. Writing a Simple Recursive Descent Parser
Problem
You need to parse text according to a set of grammar rules and perform actions or build
an abstract syntax tree representing the input. The grammar is small, so you’d prefer to
just write the parser yourself as opposed to using some kind of framework.

Solution
In this problem, we’re focused on the problem of parsing text according to a particular
grammar. In order to do this, you should probably start by having a formal specification
of the grammar in the form of a BNF or EBNF. For example, a grammar for simple
arithmetic expressions might look like this:

 expr ::= expr + term
 | expr - term
 | term

 term ::= term * factor
 | term / factor
 | factor

 factor ::= (expr)
 | NUM

Or, alternatively, in EBNF form:

2.19. Writing a Simple Recursive Descent Parser | 69

http://pyparsing.wikispaces.com
http://www.dabeaz.com/ply/index.html

 expr ::= term { (+|-) term }*

 term ::= factor { (*|/) factor }*

 factor ::= (expr)
 | NUM

In an EBNF, parts of a rule enclosed in { ... }* are optional. The * means zero or more
repetitions (the same meaning as in a regular expression).

Now, if you’re not familiar with the mechanics of working with a BNF, think of it as a
specification of substitution or replacement rules where symbols on the left side can be
replaced by the symbols on the right (or vice versa). Generally, what happens during
parsing is that you try to match the input text to the grammar by making various sub‐
stitutions and expansions using the BNF. To illustrate, suppose you are parsing an ex‐
pression such as 3 + 4 * 5. This expression would first need to be broken down into
a token stream, using the techniques described in Recipe 2.18. The result might be a
sequence of tokens like this:

 NUM + NUM * NUM

From there, parsing involves trying to match the grammar to input tokens by making
substitutions:

 expr
 expr ::= term { (+|-) term }*
 expr ::= factor { (*|/) factor }* { (+|-) term }*
 expr ::= NUM { (*|/) factor }* { (+|-) term }*
 expr ::= NUM { (+|-) term }*
 expr ::= NUM + term { (+|-) term }*
 expr ::= NUM + factor { (*|/) factor }* { (+|-) term }*
 expr ::= NUM + NUM { (*|/) factor}* { (+|-) term }*
 expr ::= NUM + NUM * factor { (*|/) factor }* { (+|-) term }*
 expr ::= NUM + NUM * NUM { (*|/) factor }* { (+|-) term }*
 expr ::= NUM + NUM * NUM { (+|-) term }*
 expr ::= NUM + NUM * NUM

Following all of the substitution steps takes a bit of coffee, but they’re driven by looking
at the input and trying to match it to grammar rules. The first input token is a NUM, so
substitutions first focus on matching that part. Once matched, attention moves to the
next token of + and so on. Certain parts of the righthand side (e.g., { (*/) fac
tor }*) disappear when it’s determined that they can’t match the next token. In a suc‐
cessful parse, the entire righthand side is expanded completely to match the input token
stream.

With all of the preceding background in place, here is a simple recipe that shows how
to build a recursive descent expression evaluator:

import re
import collections

70 | Chapter 2: Strings and Text

Token specification
NUM = r'(?P<NUM>\d+)'
PLUS = r'(?P<PLUS>\+)'
MINUS = r'(?P<MINUS>-)'
TIMES = r'(?P<TIMES>*)'
DIVIDE = r'(?P<DIVIDE>/)'
LPAREN = r'(?P<LPAREN>\()'
RPAREN = r'(?P<RPAREN>\))'
WS = r'(?P<WS>\s+)'

master_pat = re.compile('|'.join([NUM, PLUS, MINUS, TIMES,
 DIVIDE, LPAREN, RPAREN, WS]))

Tokenizer
Token = collections.namedtuple('Token', ['type','value'])

def generate_tokens(text):
 scanner = master_pat.scanner(text)
 for m in iter(scanner.match, None):
 tok = Token(m.lastgroup, m.group())
 if tok.type != 'WS':
 yield tok

Parser
class ExpressionEvaluator:
 '''
 Implementation of a recursive descent parser. Each method
 implements a single grammar rule. Use the ._accept() method
 to test and accept the current lookahead token. Use the ._expect()
 method to exactly match and discard the next token on on the input
 (or raise a SyntaxError if it doesn't match).
 '''

 def parse(self,text):
 self.tokens = generate_tokens(text)
 self.tok = None # Last symbol consumed
 self.nexttok = None # Next symbol tokenized
 self._advance() # Load first lookahead token
 return self.expr()

 def _advance(self):
 'Advance one token ahead'
 self.tok, self.nexttok = self.nexttok, next(self.tokens, None)

 def _accept(self,toktype):
 'Test and consume the next token if it matches toktype'
 if self.nexttok and self.nexttok.type == toktype:
 self._advance()
 return True
 else:
 return False

2.19. Writing a Simple Recursive Descent Parser | 71

 def _expect(self,toktype):
 'Consume next token if it matches toktype or raise SyntaxError'
 if not self._accept(toktype):
 raise SyntaxError('Expected ' + toktype)

 # Grammar rules follow

 def expr(self):
 "expression ::= term { ('+'|'-') term }*"

 exprval = self.term()
 while self._accept('PLUS') or self._accept('MINUS'):
 op = self.tok.type
 right = self.term()
 if op == 'PLUS':
 exprval += right
 elif op == 'MINUS':
 exprval -= right
 return exprval

 def term(self):
 "term ::= factor { ('*'|'/') factor }*"

 termval = self.factor()
 while self._accept('TIMES') or self._accept('DIVIDE'):
 op = self.tok.type
 right = self.factor()
 if op == 'TIMES':
 termval *= right
 elif op == 'DIVIDE':
 termval /= right
 return termval

 def factor(self):
 "factor ::= NUM | (expr)"

 if self._accept('NUM'):
 return int(self.tok.value)
 elif self._accept('LPAREN'):
 exprval = self.expr()
 self._expect('RPAREN')
 return exprval
 else:
 raise SyntaxError('Expected NUMBER or LPAREN')

Here is an example of using the ExpressionEvaluator class interactively:

>>> e = ExpressionEvaluator()
>>> e.parse('2')
2
>>> e.parse('2 + 3')
5

72 | Chapter 2: Strings and Text

>>> e.parse('2 + 3 * 4')
14
>>> e.parse('2 + (3 + 4) * 5')
37
>>> e.parse('2 + (3 + * 4)')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "exprparse.py", line 40, in parse
 return self.expr()
 File "exprparse.py", line 67, in expr
 right = self.term()
 File "exprparse.py", line 77, in term
 termval = self.factor()
 File "exprparse.py", line 93, in factor
 exprval = self.expr()
 File "exprparse.py", line 67, in expr
 right = self.term()
 File "exprparse.py", line 77, in term
 termval = self.factor()
 File "exprparse.py", line 97, in factor
 raise SyntaxError("Expected NUMBER or LPAREN")
SyntaxError: Expected NUMBER or LPAREN
>>>

If you want to do something other than pure evaluation, you need to change the
ExpressionEvaluator class to do something else. For example, here is an alternative
implementation that constructs a simple parse tree:

class ExpressionTreeBuilder(ExpressionEvaluator):
 def expr(self):
 "expression ::= term { ('+'|'-') term }"

 exprval = self.term()
 while self._accept('PLUS') or self._accept('MINUS'):
 op = self.tok.type
 right = self.term()
 if op == 'PLUS':
 exprval = ('+', exprval, right)
 elif op == 'MINUS':
 exprval = ('-', exprval, right)
 return exprval

 def term(self):
 "term ::= factor { ('*'|'/') factor }"

 termval = self.factor()
 while self._accept('TIMES') or self._accept('DIVIDE'):
 op = self.tok.type
 right = self.factor()
 if op == 'TIMES':
 termval = ('*', termval, right)
 elif op == 'DIVIDE':

2.19. Writing a Simple Recursive Descent Parser | 73

 termval = ('/', termval, right)
 return termval

 def factor(self):
 'factor ::= NUM | (expr)'

 if self._accept('NUM'):
 return int(self.tok.value)
 elif self._accept('LPAREN'):
 exprval = self.expr()
 self._expect('RPAREN')
 return exprval
 else:
 raise SyntaxError('Expected NUMBER or LPAREN')

The following example shows how it works:

>>> e = ExpressionTreeBuilder()
>>> e.parse('2 + 3')
('+', 2, 3)
>>> e.parse('2 + 3 * 4')
('+', 2, ('*', 3, 4))
>>> e.parse('2 + (3 + 4) * 5')
('+', 2, ('*', ('+', 3, 4), 5))
>>> e.parse('2 + 3 + 4')
('+', ('+', 2, 3), 4)
>>>

Discussion
Parsing is a huge topic that generally occupies students for the first three weeks of a
compilers course. If you are seeking background knowledge about grammars, parsing
algorithms, and other information, a compilers book is where you should turn. Needless
to say, all of that can’t be repeated here.

Nevertheless, the overall idea of writing a recursive descent parser is generally simple.
To start, you take every grammar rule and you turn it into a function or method. Thus,
if your grammar looks like this:

 expr ::= term { ('+'|'-') term }*

 term ::= factor { ('*'|'/') factor }*

 factor ::= '(' expr ')'
 | NUM

You start by turning it into a set of methods like this:

class ExpressionEvaluator:
 ...
 def expr(self):
 ...

74 | Chapter 2: Strings and Text

 def term(self):
 ...

 def factor(self):
 ...

The task of each method is simple—it must walk from left to right over each part of the
grammar rule, consuming tokens in the process. In a sense, the goal of the method is
to either consume the rule or generate a syntax error if it gets stuck. To do this, the
following implementation techniques are applied:

• If the next symbol in the rule is the name of another grammar rule (e.g., term or
factor), you simply call the method with the same name. This is the “descent” part
of the algorithm—control descends into another grammar rule. Sometimes rules
will involve calls to methods that are already executing (e.g., the call to expr in the
factor ::= '(' expr ')' rule). This is the “recursive” part of the algorithm.

• If the next symbol in the rule has to be a specific symbol (e.g., (), you look at the
next token and check for an exact match. If it doesn’t match, it’s a syntax error. The
_expect() method in this recipe is used to perform these steps.

• If the next symbol in the rule could be a few possible choices (e.g., + or -), you have
to check the next token for each possibility and advance only if a match is made.
This is the purpose of the _accept() method in this recipe. It’s kind of like a weaker
version of the _expect() method in that it will advance if a match is made, but if
not, it simply backs off without raising an error (thus allowing further checks to be
made).

• For grammar rules where there are repeated parts (e.g., such as in the rule expr ::=
term { ('+'|'-') term }*), the repetition gets implemented by a while loop.
The body of the loop will generally collect or process all of the repeated items until
no more are found.

• Once an entire grammar rule has been consumed, each method returns some kind
of result back to the caller. This is how values propagate during parsing. For ex‐
ample, in the expression evaluator, return values will represent partial results of the
expression being parsed. Eventually they all get combined together in the topmost
grammar rule method that executes.

Although a simple example has been shown, recursive descent parsers can be used to
implement rather complicated parsers. For example, Python code itself is interpreted
by a recursive descent parser. If you’re so inclined, you can look at the underlying gram‐
mar by inspecting the file Grammar/Grammar in the Python source. That said, there
are still numerous pitfalls and limitations with making a parser by hand.

2.19. Writing a Simple Recursive Descent Parser | 75

One such limitation of recursive descent parsers is that they can’t be written for grammar
rules involving any kind of left recursion. For example, suppose you need to translate a
rule like this:

 items ::= items ',' item
 | item

To do it, you might try to use the items() method like this:

def items(self):
 itemsval = self.items()
 if itemsval and self._accept(','):
 itemsval.append(self.item())
 else:
 itemsval = [self.item()]

The only problem is that it doesn’t work. In fact, it blows up with an infinite recursion
error.

You can also run into tricky issues concerning the grammar rules themselves. For ex‐
ample, you might have wondered whether or not expressions could have been described
by this more simple grammar:

 expr ::= factor { ('+'|'-'|'*'|'/') factor }*

 factor ::= '(' expression ')'
 | NUM

This grammar technically “works,” but it doesn’t observe the standard arithmetic rules
concerning order of evaluation. For example, the expression “3 + 4 * 5” would get eval‐
uated as “35” instead of the expected result of “23.” The use of separate “expr” and “term”
rules is there to make evaluation work correctly.

For really complicated grammars, you are often better off using parsing tools such as
PyParsing or PLY. This is what the expression evaluator code looks like using PLY:

from ply.lex import lex
from ply.yacc import yacc

Token list
tokens = ['NUM', 'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'LPAREN', 'RPAREN']

Ignored characters

t_ignore = ' \t\n'

Token specifications (as regexs)
t_PLUS = r'\+'
t_MINUS = r'-'
t_TIMES = r'*'
t_DIVIDE = r'/'
t_LPAREN = r'\('

76 | Chapter 2: Strings and Text

http://pyparsing.wikispaces.com
http://www.dabeaz.com/ply/index.html

t_RPAREN = r'\)'

Token processing functions
def t_NUM(t):
 r'\d+'
 t.value = int(t.value)
 return t

Error handler
def t_error(t):
 print('Bad character: {!r}'.format(t.value[0]))
 t.skip(1)

Build the lexer
lexer = lex()

Grammar rules and handler functions
def p_expr(p):
 '''
 expr : expr PLUS term
 | expr MINUS term
 '''
 if p[2] == '+':
 p[0] = p[1] + p[3]
 elif p[2] == '-':
 p[0] = p[1] - p[3]

def p_expr_term(p):
 '''
 expr : term
 '''
 p[0] = p[1]

def p_term(p):
 '''
 term : term TIMES factor
 | term DIVIDE factor
 '''
 if p[2] == '*':
 p[0] = p[1] * p[3]
 elif p[2] == '/':
 p[0] = p[1] / p[3]

def p_term_factor(p):
 '''
 term : factor
 '''
 p[0] = p[1]

def p_factor(p):
 '''
 factor : NUM

2.19. Writing a Simple Recursive Descent Parser | 77

 '''
 p[0] = p[1]

def p_factor_group(p):
 '''
 factor : LPAREN expr RPAREN
 '''
 p[0] = p[2]

def p_error(p):
 print('Syntax error')

parser = yacc()

In this code, you’ll find that everything is specified at a much higher level. You simply
write regular expressions for the tokens and high-level handling functions that execute
when various grammar rules are matched. The actual mechanics of running the parser,
accepting tokens, and so forth is implemented entirely by the library.

Here is an example of how the resulting parser object gets used:

>>> parser.parse('2')
2
>>> parser.parse('2+3')
5
>>> parser.parse('2+(3+4)*5')
37
>>>

If you need a bit more excitement in your programming, writing parsers and compilers
can be a fun project. Again, a compilers textbook will have a lot of low-level details
underlying theory. However, many fine resources can also be found online. Python’s
own ast module is also worth a look.

2.20. Performing Text Operations on Byte Strings
Problem
You want to perform common text operations (e.g., stripping, searching, and replace‐
ment) on byte strings.

Solution
Byte strings already support most of the same built-in operations as text strings. For
example:

78 | Chapter 2: Strings and Text

>>> data = b'Hello World'
>>> data[0:5]
b'Hello'
>>> data.startswith(b'Hello')
True
>>> data.split()
[b'Hello', b'World']
>>> data.replace(b'Hello', b'Hello Cruel')
b'Hello Cruel World'
>>>

Such operations also work with byte arrays. For example:

>>> data = bytearray(b'Hello World')
>>> data[0:5]
bytearray(b'Hello')
>>> data.startswith(b'Hello')
True
>>> data.split()
[bytearray(b'Hello'), bytearray(b'World')]
>>> data.replace(b'Hello', b'Hello Cruel')
bytearray(b'Hello Cruel World')
>>>

You can apply regular expression pattern matching to byte strings, but the patterns
themselves need to be specified as bytes. For example:

>>>
>>> data = b'FOO:BAR,SPAM'
>>> import re
>>> re.split('[:,]',data)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python3.3/re.py", line 191, in split
 return _compile(pattern, flags).split(string, maxsplit)
TypeError: can't use a string pattern on a bytes-like object

>>> re.split(b'[:,]',data) # Notice: pattern as bytes
[b'FOO', b'BAR', b'SPAM']
>>>

Discussion
For the most part, almost all of the operations available on text strings will work on byte
strings. However, there are a few notable differences to be aware of. First, indexing of
byte strings produces integers, not individual characters. For example:

>>> a = 'Hello World' # Text string
>>> a[0]
'H'
>>> a[1]
'e'
>>> b = b'Hello World' # Byte string

2.20. Performing Text Operations on Byte Strings | 79

>>> b[0]
72
>>> b[1]
101
>>>

This difference in semantics can affect programs that try to process byte-oriented data
on a character-by-character basis.

Second, byte strings don’t provide a nice string representation and don’t print cleanly
unless first decoded into a text string. For example:

>>> s = b'Hello World'
>>> print(s)
b'Hello World' # Observe b'...'
>>> print(s.decode('ascii'))
Hello World
>>>

Similarly, there are no string formatting operations available to byte strings.

>>> b'%10s %10d %10.2f' % (b'ACME', 100, 490.1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for %: 'bytes' and 'tuple'

>>> b'{} {} {}'.format(b'ACME', 100, 490.1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'bytes' object has no attribute 'format'
>>>

If you want to do any kind of formatting applied to byte strings, it should be done using
normal text strings and encoding. For example:

>>> '{:10s} {:10d} {:10.2f}'.format('ACME', 100, 490.1).encode('ascii')
b'ACME 100 490.10'
>>>

Finally, you need to be aware that using a byte string can change the semantics of certain
operations—especially those related to the filesystem. For example, if you supply a file‐
name encoded as bytes instead of a text string, it usually disables filename encoding/
decoding. For example:

>>> # Write a UTF-8 filename
>>> with open('jalape\xf1o.txt', 'w') as f:
... f.write('spicy')
...

>>> # Get a directory listing
>>> import os
>>> os.listdir('.') # Text string (names are decoded)
['jalapeño.txt']

80 | Chapter 2: Strings and Text

>>> os.listdir(b'.') # Byte string (names left as bytes)
[b'jalapen\xcc\x83o.txt']
>>>

Notice in the last part of this example how giving a byte string as the directory name
caused the resulting filenames to be returned as undecoded bytes. The filename shown
in the directory listing contains raw UTF-8 encoding. See Recipe 5.15 for some related
issues concerning filenames.

As a final comment, some programmers might be inclined to use byte strings as an
alternative to text strings due to a possible performance improvement. Although it’s
true that manipulating bytes tends to be slightly more efficient than text (due to the
inherent overhead related to Unicode), doing so usually leads to very messy and noni‐
diomatic code. You’ll often find that byte strings don’t play well with a lot of other parts
of Python, and that you end up having to perform all sorts of manual encoding/decoding
operations yourself to get things to work right. Frankly, if you’re working with text, use
normal text strings in your program, not byte strings.

2.20. Performing Text Operations on Byte Strings | 81

CHAPTER 3

Numbers, Dates, and Times

Performing mathematical calculations with integers and floating-point numbers is easy
in Python. However, if you need to perform calculations with fractions, arrays, or dates
and times, a bit more work is required. The focus of this chapter is on such topics.

3.1. Rounding Numerical Values
Problem
You want to round a floating-point number to a fixed number of decimal places.

Solution
For simple rounding, use the built-in round(value, ndigits) function. For example:

>>> round(1.23, 1)
1.2
>>> round(1.27, 1)
1.3
>>> round(-1.27, 1)
-1.3
>>> round(1.25361,3)
1.254
>>>

When a value is exactly halfway between two choices, the behavior of round is to round
to the nearest even digit. That is, values such as 1.5 or 2.5 both get rounded to 2.

The number of digits given to round() can be negative, in which case rounding takes
place for tens, hundreds, thousands, and so on. For example:

>>> a = 1627731
>>> round(a, -1)
1627730

83

>>> round(a, -2)
1627700
>>> round(a, -3)
1628000
>>>

Discussion
Don’t confuse rounding with formatting a value for output. If your goal is simply to
output a numerical value with a certain number of decimal places, you don’t typically
need to use round(). Instead, just specify the desired precision when formatting. For
example:

>>> x = 1.23456
>>> format(x, '0.2f')
'1.23'
>>> format(x, '0.3f')
'1.235'
>>> 'value is {:0.3f}'.format(x)
'value is 1.235'
>>>

Also, resist the urge to round floating-point numbers to “fix” perceived accuracy prob‐
lems. For example, you might be inclined to do this:

>>> a = 2.1
>>> b = 4.2
>>> c = a + b
>>> c
6.300000000000001
>>> c = round(c, 2) # "Fix" result (???)
>>> c
6.3
>>>

For most applications involving floating point, it’s simply not necessary (or recom‐
mended) to do this. Although there are small errors introduced into calculations, the
behavior of those errors are understood and tolerated. If avoiding such errors is im‐
portant (e.g., in financial applications, perhaps), consider the use of the decimal module,
which is discussed in the next recipe.

3.2. Performing Accurate Decimal Calculations
Problem
You need to perform accurate calculations with decimal numbers, and don’t want the
small errors that naturally occur with floats.

84 | Chapter 3: Numbers, Dates, and Times

Solution
A well-known issue with floating-point numbers is that they can’t accurately represent
all base-10 decimals. Moreover, even simple mathematical calculations introduce small
errors. For example:

>>> a = 4.2
>>> b = 2.1
>>> a + b
6.300000000000001
>>> (a + b) == 6.3
False
>>>

These errors are a “feature” of the underlying CPU and the IEEE 754 arithmetic per‐
formed by its floating-point unit. Since Python’s float data type stores data using the
native representation, there’s nothing you can do to avoid such errors if you write your
code using float instances.

If you want more accuracy (and are willing to give up some performance), you can use
the decimal module:

>>> from decimal import Decimal
>>> a = Decimal('4.2')
>>> b = Decimal('2.1')
>>> a + b
Decimal('6.3')
>>> print(a + b)
6.3
>>> (a + b) == Decimal('6.3')
True
>>>

At first glance, it might look a little weird (i.e., specifying numbers as strings). However,
Decimal objects work in every way that you would expect them to (supporting all of the
usual math operations, etc.). If you print them or use them in string formatting func‐
tions, they look like normal numbers.

A major feature of decimal is that it allows you to control different aspects of calcula‐
tions, including number of digits and rounding. To do this, you create a local context
and change its settings. For example:

>>> from decimal import localcontext
>>> a = Decimal('1.3')
>>> b = Decimal('1.7')
>>> print(a / b)
0.7647058823529411764705882353
>>> with localcontext() as ctx:
... ctx.prec = 3
... print(a / b)
...

3.2. Performing Accurate Decimal Calculations | 85

0.765
>>> with localcontext() as ctx:
... ctx.prec = 50
... print(a / b)
...
0.76470588235294117647058823529411764705882352941176
>>>

Discussion
The decimal module implements IBM’s “General Decimal Arithmetic Specification.”
Needless to say, there are a huge number of configuration options that are beyond the
scope of this book.

Newcomers to Python might be inclined to use the decimal module to work around
perceived accuracy problems with the float data type. However, it’s really important
to understand your application domain. If you’re working with science or engineering
problems, computer graphics, or most things of a scientific nature, it’s simply more
common to use the normal floating-point type. For one, very few things in the real world
are measured to the 17 digits of accuracy that floats provide. Thus, tiny errors introduced
in calculations just don’t matter. Second, the performance of native floats is significantly
faster—something that’s important if you’re performing a large number of calculations.

That said, you can’t ignore the errors completely. Mathematicians have spent a lot of
time studying various algorithms, and some handle errors better than others. You also
have to be a little careful with effects due to things such as subtractive cancellation and
adding large and small numbers together. For example:

>>> nums = [1.23e+18, 1, -1.23e+18]
>>> sum(nums) # Notice how 1 disappears
0.0
>>>

This latter example can be addressed by using a more accurate implementation in
math.fsum():

>>> import math
>>> math.fsum(nums)
1.0
>>>

However, for other algorithms, you really need to study the algorithm and understand
its error propagation properties.

All of this said, the main use of the decimal module is in programs involving things
such as finance. In such programs, it is extremely annoying to have small errors creep
into the calculation. Thus, decimal provides a way to avoid that. It is also common to
encounter Decimal objects when Python interfaces with databases—again, especially
when accessing financial data.

86 | Chapter 3: Numbers, Dates, and Times

3.3. Formatting Numbers for Output
Problem
You need to format a number for output, controlling the number of digits, alignment,
inclusion of a thousands separator, and other details.

Solution
To format a single number for output, use the built-in format() function. For example:

>>> x = 1234.56789

>>> # Two decimal places of accuracy
>>> format(x, '0.2f')
'1234.57'

>>> # Right justified in 10 chars, one-digit accuracy
>>> format(x, '>10.1f')
' 1234.6'

>>> # Left justified
>>> format(x, '<10.1f')
'1234.6 '

>>> # Centered
>>> format(x, '^10.1f')
' 1234.6 '

>>> # Inclusion of thousands separator
>>> format(x, ',')
'1,234.56789'
>>> format(x, '0,.1f')
'1,234.6'
>>>

If you want to use exponential notation, change the f to an e or E, depending on the
case you want used for the exponential specifier. For example:

>>> format(x, 'e')
'1.234568e+03'
>>> format(x, '0.2E')
'1.23E+03'
>>>

The general form of the width and precision in both cases is '[<>^]?width[,]?(.dig
its)?' where width and digits are integers and ? signifies optional parts. The same
format codes are also used in the .format() method of strings. For example:

3.3. Formatting Numbers for Output | 87

>>> 'The value is {:0,.2f}'.format(x)
'The value is 1,234.57'
>>>

Discussion
Formatting numbers for output is usually straightforward. The technique shown works
for both floating-point numbers and Decimal numbers in the decimal module.

When the number of digits is restricted, values are rounded away according to the same
rules of the round() function. For example:

>>> x
1234.56789
>>> format(x, '0.1f')
'1234.6'
>>> format(-x, '0.1f')
'-1234.6'
>>>

Formatting of values with a thousands separator is not locale aware. If you need to take
that into account, you might investigate functions in the locale module. You can also
swap separator characters using the translate() method of strings. For example:

>>> swap_separators = { ord('.'):',', ord(','):'.' }
>>> format(x, ',').translate(swap_separators)
'1.234,56789'
>>>

In a lot of Python code, numbers are formatted using the % operator. For example:

>>> '%0.2f' % x
'1234.57'
>>> '%10.1f' % x
' 1234.6'
>>> '%-10.1f' % x
'1234.6 '
>>>

This formatting is still acceptable, but less powerful than the more modern format()
method. For example, some features (e.g., adding thousands separators) aren’t sup‐
ported when using the % operator to format numbers.

88 | Chapter 3: Numbers, Dates, and Times

3.4. Working with Binary, Octal, and Hexadecimal
Integers
Problem
You need to convert or output integers represented by binary, octal, or hexadecimal
digits.

Solution
To convert an integer into a binary, octal, or hexadecimal text string, use the bin(),
oct(), or hex() functions, respectively:

>>> x = 1234
>>> bin(x)
'0b10011010010'
>>> oct(x)
'0o2322'
>>> hex(x)
'0x4d2'
>>>

Alternatively, you can use the format() function if you don’t want the 0b, 0o, or 0x
prefixes to appear. For example:

>>> format(x, 'b')
'10011010010'
>>> format(x, 'o')
'2322'
>>> format(x, 'x')
'4d2'
>>>

Integers are signed, so if you are working with negative numbers, the output will also
include a sign. For example:

>>> x = -1234
>>> format(x, 'b')
'-10011010010'
>>> format(x, 'x')
'-4d2'
>>>

If you need to produce an unsigned value instead, you’ll need to add in the maximum
value to set the bit length. For example, to show a 32-bit value, use the following:

>>> x = -1234
>>> format(2**32 + x, 'b')
'11111111111111111111101100101110'
>>> format(2**32 + x, 'x')

3.4. Working with Binary, Octal, and Hexadecimal Integers | 89

'fffffb2e'
>>>

To convert integer strings in different bases, simply use the int() function with an
appropriate base. For example:

>>> int('4d2', 16)
1234
>>> int('10011010010', 2)
1234
>>>

Discussion
For the most part, working with binary, octal, and hexadecimal integers is straightfor‐
ward. Just remember that these conversions only pertain to the conversion of integers
to and from a textual representation. Under the covers, there’s just one integer type.

Finally, there is one caution for programmers who use octal. The Python syntax for
specifying octal values is slightly different than many other languages. For example, if
you try something like this, you’ll get a syntax error:

>>> import os
>>> os.chmod('script.py', 0755)
 File "<stdin>", line 1
 os.chmod('script.py', 0755)
 ^
SyntaxError: invalid token
>>>

Make sure you prefix the octal value with 0o, as shown here:

>>> os.chmod('script.py', 0o755)
>>>

3.5. Packing and Unpacking Large Integers from Bytes
Problem
You have a byte string and you need to unpack it into an integer value. Alternatively,
you need to convert a large integer back into a byte string.

Solution
Suppose your program needs to work with a 16-element byte string that holds a 128-
bit integer value. For example:

data = b'\x00\x124V\x00x\x90\xab\x00\xcd\xef\x01\x00#\x004'

90 | Chapter 3: Numbers, Dates, and Times

To interpret the bytes as an integer, use int.from_bytes(), and specify the byte ordering
like this:

>>> len(data)
16
>>> int.from_bytes(data, 'little')
69120565665751139577663547927094891008
>>> int.from_bytes(data, 'big')
94522842520747284487117727783387188
>>>

To convert a large integer value back into a byte string, use the int.to_bytes() method,
specifying the number of bytes and the byte order. For example:

>>> x = 94522842520747284487117727783387188
>>> x.to_bytes(16, 'big')
b'\x00\x124V\x00x\x90\xab\x00\xcd\xef\x01\x00#\x004'
>>> x.to_bytes(16, 'little')
b'4\x00#\x00\x01\xef\xcd\x00\xab\x90x\x00V4\x12\x00'
>>>

Discussion
Converting large integer values to and from byte strings is not a common operation.
However, it sometimes arises in certain application domains, such as cryptography or
networking. For instance, IPv6 network addresses are represented as 128-bit integers.
If you are writing code that needs to pull such values out of a data record, you might
face this problem.

As an alternative to this recipe, you might be inclined to unpack values using the struct
module, as described in Recipe 6.11. This works, but the size of integers that can be
unpacked with struct is limited. Thus, you would need to unpack multiple values and
combine them to create the final value. For example:

>>> data
b'\x00\x124V\x00x\x90\xab\x00\xcd\xef\x01\x00#\x004'
>>> import struct
>>> hi, lo = struct.unpack('>QQ', data)
>>> (hi << 64) + lo
94522842520747284487117727783387188
>>>

The specification of the byte order (little or big) just indicates whether the bytes that
make up the integer value are listed from the least to most significant or the other way
around. This is easy to view using a carefully crafted hexadecimal value:

>>> x = 0x01020304
>>> x.to_bytes(4, 'big')
b'\x01\x02\x03\x04'
>>> x.to_bytes(4, 'little')

3.5. Packing and Unpacking Large Integers from Bytes | 91

b'\x04\x03\x02\x01'
>>>

If you try to pack an integer into a byte string, but it won’t fit, you’ll get an error. You
can use the int.bit_length() method to determine how many bits are required to
store a value if needed:

>>> x = 523 ** 23
>>> x
335381300113661875107536852714019056160355655333978849017944067
>>> x.to_bytes(16, 'little')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
OverflowError: int too big to convert
>>> x.bit_length()
208
>>> nbytes, rem = divmod(x.bit_length(), 8)
>>> if rem:
... nbytes += 1
...
>>>
>>> x.to_bytes(nbytes, 'little')
b'\x03X\xf1\x82iT\x96\xac\xc7c\x16\xf3\xb9\xcf...\xd0'
>>>

3.6. Performing Complex-Valued Math
Problem
Your code for interacting with the latest web authentication scheme has encountered a
singularity and your only solution is to go around it in the complex plane. Or maybe
you just need to perform some calculations using complex numbers.

Solution
Complex numbers can be specified using the complex(real, imag) function or by
floating-point numbers with a j suffix. For example:

>>> a = complex(2, 4)
>>> b = 3 - 5j
>>> a
(2+4j)
>>> b
(3-5j)
>>>

The real, imaginary, and conjugate values are easy to obtain, as shown here:

>>> a.real
2.0

92 | Chapter 3: Numbers, Dates, and Times

>>> a.imag
4.0
>>> a.conjugate()
(2-4j)
>>>

In addition, all of the usual mathematical operators work:

>>> a + b
(5-1j)
>>> a * b
(26+2j)
>>> a / b
(-0.4117647058823529+0.6470588235294118j)
>>> abs(a)
4.47213595499958
>>>

To perform additional complex-valued functions such as sines, cosines, or square roots,
use the cmath module:

>>> import cmath
>>> cmath.sin(a)
(24.83130584894638-11.356612711218174j)
>>> cmath.cos(a)
(-11.36423470640106-24.814651485634187j)
>>> cmath.exp(a)
(-4.829809383269385-5.5920560936409816j)
>>>

Discussion
Most of Python’s math-related modules are aware of complex values. For example, if
you use numpy, it is straightforward to make arrays of complex values and perform
operations on them:

>>> import numpy as np
>>> a = np.array([2+3j, 4+5j, 6-7j, 8+9j])
>>> a
array([2.+3.j, 4.+5.j, 6.-7.j, 8.+9.j])
>>> a + 2
array([4.+3.j, 6.+5.j, 8.-7.j, 10.+9.j])
>>> np.sin(a)
array([9.15449915 -4.16890696j, -56.16227422 -48.50245524j,
 -153.20827755-526.47684926j, 4008.42651446-589.49948373j])
>>>

Python’s standard mathematical functions do not produce complex values by default,
so it is unlikely that such a value would accidentally show up in your code. For example:

>>> import math
>>> math.sqrt(-1)
Traceback (most recent call last):

3.6. Performing Complex-Valued Math | 93

 File "<stdin>", line 1, in <module>
ValueError: math domain error
>>>

If you want complex numbers to be produced as a result, you have to explicitly use cmath
or declare the use of a complex type in libraries that know about them. For example:

>>> import cmath
>>> cmath.sqrt(-1)
1j
>>>

3.7. Working with Infinity and NaNs
Problem
You need to create or test for the floating-point values of infinity, negative infinity, or
NaN (not a number).

Solution
Python has no special syntax to represent these special floating-point values, but they
can be created using float(). For example:

>>> a = float('inf')
>>> b = float('-inf')
>>> c = float('nan')
>>> a
inf
>>> b
-inf
>>> c
nan
>>>

To test for the presence of these values, use the math.isinf() and math.isnan() func‐
tions. For example:

>>> math.isinf(a)
True
>>> math.isnan(c)
True
>>>

Discussion
For more detailed information about these special floating-point values, you should
refer to the IEEE 754 specification. However, there are a few tricky details to be aware
of, especially related to comparisons and operators.

94 | Chapter 3: Numbers, Dates, and Times

Infinite values will propagate in calculations in a mathematical manner. For example:

>>> a = float('inf')
>>> a + 45
inf
>>> a * 10
inf
>>> 10 / a
0.0
>>>

However, certain operations are undefined and will result in a NaN result. For example:

>>> a = float('inf')
>>> a/a
nan
>>> b = float('-inf')
>>> a + b
nan
>>>

NaN values propagate through all operations without raising an exception. For example:

>>> c = float('nan')
>>> c + 23
nan
>>> c / 2
nan
>>> c * 2
nan
>>> math.sqrt(c)
nan
>>>

A subtle feature of NaN values is that they never compare as equal. For example:

>>> c = float('nan')
>>> d = float('nan')
>>> c == d
False
>>> c is d
False
>>>

Because of this, the only safe way to test for a NaN value is to use math.isnan(), as
shown in this recipe.

Sometimes programmers want to change Python’s behavior to raise exceptions when
operations result in an infinite or NaN result. The fpectl module can be used to adjust
this behavior, but it is not enabled in a standard Python build, it’s platform-dependent,
and really only intended for expert-level programmers. See the online Python docu‐
mentation for further details.

3.7. Working with Infinity and NaNs | 95

http://docs.python.org/3/library/fpectl.html
http://docs.python.org/3/library/fpectl.html

3.8. Calculating with Fractions
Problem
You have entered a time machine and suddenly find yourself working on elementary-
level homework problems involving fractions. Or perhaps you’re writing code to make
calculations involving measurements made in your wood shop.

Solution
The fractions module can be used to perform mathematical calculations involving
fractions. For example:

>>> from fractions import Fraction
>>> a = Fraction(5, 4)
>>> b = Fraction(7, 16)
>>> print(a + b)
27/16
>>> print(a * b)
35/64

>>> # Getting numerator/denominator
>>> c = a * b
>>> c.numerator
35
>>> c.denominator
64

>>> # Converting to a float
>>> float(c)
0.546875

>>> # Limiting the denominator of a value
>>> print(c.limit_denominator(8))
4/7

>>> # Converting a float to a fraction
>>> x = 3.75
>>> y = Fraction(*x.as_integer_ratio())
>>> y
Fraction(15, 4)
>>>

Discussion
Calculating with fractions doesn’t arise often in most programs, but there are situations
where it might make sense to use them. For example, allowing a program to accept units
of measurement in fractions and performing calculations with them in that form might
alleviate the need for a user to manually make conversions to decimals or floats.

96 | Chapter 3: Numbers, Dates, and Times

3.9. Calculating with Large Numerical Arrays
Problem
You need to perform calculations on large numerical datasets, such as arrays or grids.

Solution
For any heavy computation involving arrays, use the NumPy library. The major feature
of NumPy is that it gives Python an array object that is much more efficient and better
suited for mathematical calculation than a standard Python list. Here is a short example
illustrating important behavioral differences between lists and NumPy arrays:

>>> # Python lists
>>> x = [1, 2, 3, 4]
>>> y = [5, 6, 7, 8]
>>> x * 2
[1, 2, 3, 4, 1, 2, 3, 4]
>>> x + 10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "int") to list
>>> x + y
[1, 2, 3, 4, 5, 6, 7, 8]

>>> # Numpy arrays
>>> import numpy as np
>>> ax = np.array([1, 2, 3, 4])
>>> ay = np.array([5, 6, 7, 8])
>>> ax * 2
array([2, 4, 6, 8])
>>> ax + 10
array([11, 12, 13, 14])
>>> ax + ay
array([6, 8, 10, 12])
>>> ax * ay
array([5, 12, 21, 32])
>>>

As you can see, basic mathematical operations involving arrays behave differently.
Specifically, scalar operations (e.g., ax * 2 or ax + 10) apply the operation on an
element-by-element basis. In addition, performing math operations when both
operands are arrays applies the operation to all elements and produces a new array.

The fact that math operations apply to all of the elements simultaneously makes it very
easy and fast to compute functions across an entire array. For example, if you want to
compute the value of a polynomial:

>>> def f(x):
... return 3*x**2 - 2*x + 7

3.9. Calculating with Large Numerical Arrays | 97

http://www.numpy.org

...
>>> f(ax)
array([8, 15, 28, 47])
>>>

NumPy provides a collection of “universal functions” that also allow for array opera‐
tions. These are replacements for similar functions normally found in the math module.
For example:

>>> np.sqrt(ax)
array([1. , 1.41421356, 1.73205081, 2.])
>>> np.cos(ax)
array([0.54030231, -0.41614684, -0.9899925 , -0.65364362])
>>>

Using universal functions can be hundreds of times faster than looping over the array
elements one at a time and performing calculations using functions in the math module.
Thus, you should prefer their use whenever possible.

Under the covers, NumPy arrays are allocated in the same manner as in C or Fortran.
Namely, they are large, contiguous memory regions consisting of a homogenous data
type. Because of this, it’s possible to make arrays much larger than anything you would
normally put into a Python list. For example, if you want to make a two-dimensional
grid of 10,000 by 10,000 floats, it’s not an issue:

>>> grid = np.zeros(shape=(10000,10000), dtype=float)
>>> grid
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.],
 ...,
 [0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>>

All of the usual operations still apply to all of the elements simultaneously:

>>> grid += 10
>>> grid
array([[10., 10., 10., ..., 10., 10., 10.],
 [10., 10., 10., ..., 10., 10., 10.],
 [10., 10., 10., ..., 10., 10., 10.],
 ...,
 [10., 10., 10., ..., 10., 10., 10.],
 [10., 10., 10., ..., 10., 10., 10.],
 [10., 10., 10., ..., 10., 10., 10.]])
>>> np.sin(grid)
array([[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
 -0.54402111, -0.54402111],
 [-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
 -0.54402111, -0.54402111],

98 | Chapter 3: Numbers, Dates, and Times

 [-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
 -0.54402111, -0.54402111],
 ...,
 [-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
 -0.54402111, -0.54402111],
 [-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
 -0.54402111, -0.54402111],
 [-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
 -0.54402111, -0.54402111]])
>>>

One extremely notable aspect of NumPy is the manner in which it extends Python’s list
indexing functionality—especially with multidimensional arrays. To illustrate, make a
simple two-dimensional array and try some experiments:

>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> a
array([[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]])

>>> # Select row 1
>>> a[1]
array([5, 6, 7, 8])

>>> # Select column 1
>>> a[:,1]
array([2, 6, 10])

>>> # Select a subregion and change it
>>> a[1:3, 1:3]
array([[6, 7],
 [10, 11]])
>>> a[1:3, 1:3] += 10
>>> a
array([[1, 2, 3, 4],
 [5, 16, 17, 8],
 [9, 20, 21, 12]])

>>> # Broadcast a row vector across an operation on all rows
>>> a + [100, 101, 102, 103]
array([[101, 103, 105, 107],
 [105, 117, 119, 111],
 [109, 121, 123, 115]])
>>> a
array([[1, 2, 3, 4],
 [5, 16, 17, 8],
 [9, 20, 21, 12]])

>>> # Conditional assignment on an array
>>> np.where(a < 10, a, 10)
array([[1, 2, 3, 4],

3.9. Calculating with Large Numerical Arrays | 99

 [5, 10, 10, 8],
 [9, 10, 10, 10]])
>>>

Discussion
NumPy is the foundation for a huge number of science and engineering libraries in
Python. It is also one of the largest and most complicated modules in widespread use.
That said, it’s still possible to accomplish useful things with NumPy by starting with
simple examples and playing around.

One note about usage is that it is relatively common to use the statement import numpy
as np, as shown in the solution. This simply shortens the name to something that’s more
convenient to type over and over again in your program.

For more information, you definitely need to visit http://www.numpy.org.

3.10. Performing Matrix and Linear Algebra Calculations
Problem
You need to perform matrix and linear algebra operations, such as matrix multiplication,
finding determinants, solving linear equations, and so on.

Solution
The NumPy library has a matrix object that can be used for this purpose. Matrices are
somewhat similar to the array objects described in Recipe 3.9, but follow linear algebra
rules for computation. Here is an example that illustrates a few essential features:

>>> import numpy as np
>>> m = np.matrix([[1,-2,3],[0,4,5],[7,8,-9]])
>>> m
matrix([[1, -2, 3],
 [0, 4, 5],
 [7, 8, -9]])

>>> # Return transpose
>>> m.T
matrix([[1, 0, 7],
 [-2, 4, 8],
 [3, 5, -9]])

>>> # Return inverse
>>> m.I
matrix([[0.33043478, -0.02608696, 0.09565217],
 [-0.15217391, 0.13043478, 0.02173913],
 [0.12173913, 0.09565217, -0.0173913]])

100 | Chapter 3: Numbers, Dates, and Times

http://www.numpy.org
http://www.numpy.org

>>> # Create a vector and multiply
>>> v = np.matrix([[2],[3],[4]])
>>> v
matrix([[2],
 [3],
 [4]])
>>> m * v
matrix([[8],
 [32],
 [2]])
>>>

More operations can be found in the numpy.linalg subpackage. For example:

>>> import numpy.linalg

>>> # Determinant
>>> numpy.linalg.det(m)
-229.99999999999983

>>> # Eigenvalues
>>> numpy.linalg.eigvals(m)
array([-13.11474312, 2.75956154, 6.35518158])

>>> # Solve for x in mx = v
>>> x = numpy.linalg.solve(m, v)
>>> x
matrix([[0.96521739],
 [0.17391304],
 [0.46086957]])
>>> m * x
matrix([[2.],
 [3.],
 [4.]])
>>> v
matrix([[2],
 [3],
 [4]])
>>>

Discussion
Linear algebra is obviously a huge topic that’s far beyond the scope of this cookbook.
However, if you need to manipulate matrices and vectors, NumPy is a good starting
point. Visit http://www.numpy.org for more detailed information.

3.10. Performing Matrix and Linear Algebra Calculations | 101

http://www.numpy.org

3.11. Picking Things at Random
Problem
You want to pick random items out of a sequence or generate random numbers.

Solution
The random module has various functions for random numbers and picking random
items. For example, to pick a random item out of a sequence, use random.choice():

>>> import random
>>> values = [1, 2, 3, 4, 5, 6]
>>> random.choice(values)
2
>>> random.choice(values)
3
>>> random.choice(values)
1
>>> random.choice(values)
4
>>> random.choice(values)
6
>>>

To take a sampling of N items where selected items are removed from further consid‐
eration, use random.sample() instead:

>>> random.sample(values, 2)
[6, 2]
>>> random.sample(values, 2)
[4, 3]
>>> random.sample(values, 3)
[4, 3, 1]
>>> random.sample(values, 3)
[5, 4, 1]
>>>

If you simply want to shuffle items in a sequence in place, use random.shuffle():

>>> random.shuffle(values)
>>> values
[2, 4, 6, 5, 3, 1]
>>> random.shuffle(values)
>>> values
[3, 5, 2, 1, 6, 4]
>>>

To produce random integers, use random.randint():

>>> random.randint(0,10)
2

102 | Chapter 3: Numbers, Dates, and Times

>>> random.randint(0,10)
5
>>> random.randint(0,10)
0
>>> random.randint(0,10)
7
>>> random.randint(0,10)
10
>>> random.randint(0,10)
3
>>>

To produce uniform floating-point values in the range 0 to 1, use random.random():

>>> random.random()
0.9406677561675867
>>> random.random()
0.133129581343897
>>> random.random()
0.4144991136919316
>>>

To get N random-bits expressed as an integer, use random.getrandbits():

>>> random.getrandbits(200)
335837000776573622800628485064121869519521710558559406913275
>>>

Discussion
The random module computes random numbers using the Mersenne Twister algorithm.
This is a deterministic algorithm, but you can alter the initial seed by using the
random.seed() function. For example:

random.seed() # Seed based on system time or os.urandom()
random.seed(12345) # Seed based on integer given
random.seed(b'bytedata') # Seed based on byte data

In addition to the functionality shown, random() includes functions for uniform, Gaus‐
sian, and other probabality distributions. For example, random.uniform() computes
uniformly distributed numbers, and random.gauss() computes normally distributed
numbers. Consult the documentation for information on other supported distributions.

Functions in random() should not be used in programs related to cryptography. If you
need such functionality, consider using functions in the ssl module instead. For ex‐
ample, ssl.RAND_bytes() can be used to generate a cryptographically secure sequence
of random bytes.

3.11. Picking Things at Random | 103

3.12. Converting Days to Seconds, and Other Basic Time
Conversions
Problem
You have code that needs to perform simple time conversions, like days to seconds,
hours to minutes, and so on.

Solution
To perform conversions and arithmetic involving different units of time, use the date
time module. For example, to represent an interval of time, create a timedelta instance,
like this:

>>> from datetime import timedelta
>>> a = timedelta(days=2, hours=6)
>>> b = timedelta(hours=4.5)
>>> c = a + b
>>> c.days
2
>>> c.seconds
37800
>>> c.seconds / 3600
10.5
>>> c.total_seconds() / 3600
58.5
>>>

If you need to represent specific dates and times, create datetime instances and use the
standard mathematical operations to manipulate them. For example:

>>> from datetime import datetime
>>> a = datetime(2012, 9, 23)
>>> print(a + timedelta(days=10))
2012-10-03 00:00:00
>>>
>>> b = datetime(2012, 12, 21)
>>> d = b - a
>>> d.days
89
>>> now = datetime.today()
>>> print(now)
2012-12-21 14:54:43.094063
>>> print(now + timedelta(minutes=10))
2012-12-21 15:04:43.094063
>>>

When making calculations, it should be noted that datetime is aware of leap years. For
example:

104 | Chapter 3: Numbers, Dates, and Times

>>> a = datetime(2012, 3, 1)
>>> b = datetime(2012, 2, 28)
>>> a - b
datetime.timedelta(2)
>>> (a - b).days
2
>>> c = datetime(2013, 3, 1)
>>> d = datetime(2013, 2, 28)
>>> (c - d).days
1
>>>

Discussion
For most basic date and time manipulation problems, the datetime module will suffice.
If you need to perform more complex date manipulations, such as dealing with time
zones, fuzzy time ranges, calculating the dates of holidays, and so forth, look at the
dateutil module.

To illustrate, many similar time calculations can be performed with the dateutil.rel
ativedelta() function. However, one notable feature is that it fills in some gaps per‐
taining to the handling of months (and their differing number of days). For instance:

>>> a = datetime(2012, 9, 23)
>>> a + timedelta(months=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'months' is an invalid keyword argument for this function
>>>

>>> from dateutil.relativedelta import relativedelta
>>> a + relativedelta(months=+1)
datetime.datetime(2012, 10, 23, 0, 0)
>>> a + relativedelta(months=+4)
datetime.datetime(2013, 1, 23, 0, 0)
>>>

>>> # Time between two dates
>>> b = datetime(2012, 12, 21)
>>> d = b - a
>>> d
datetime.timedelta(89)
>>> d = relativedelta(b, a)
>>> d
relativedelta(months=+2, days=+28)
>>> d.months
2
>>> d.days
28
>>>

3.12. Converting Days to Seconds, and Other Basic Time Conversions | 105

http://pypi.python.org/pypi/python-dateutil

3.13. Determining Last Friday’s Date
Problem
You want a general solution for finding a date for the last occurrence of a day of the
week. Last Friday, for example.

Solution
Python’s datetime module has utility functions and classes to help perform calculations
like this. A decent, generic solution to this problem looks like this:

from datetime import datetime, timedelta

weekdays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
 'Friday', 'Saturday', 'Sunday']

def get_previous_byday(dayname, start_date=None):
 if start_date is None:
 start_date = datetime.today()
 day_num = start_date.weekday()
 day_num_target = weekdays.index(dayname)
 days_ago = (7 + day_num - day_num_target) % 7
 if days_ago == 0:
 days_ago = 7
 target_date = start_date - timedelta(days=days_ago)
 return target_date

Using this in an interpreter session would look like this:

>>> datetime.today() # For reference
datetime.datetime(2012, 8, 28, 22, 4, 30, 263076)
>>> get_previous_byday('Monday')
datetime.datetime(2012, 8, 27, 22, 3, 57, 29045)
>>> get_previous_byday('Tuesday') # Previous week, not today
datetime.datetime(2012, 8, 21, 22, 4, 12, 629771)
>>> get_previous_byday('Friday')
datetime.datetime(2012, 8, 24, 22, 5, 9, 911393)
>>>

The optional start_date can be supplied using another datetime instance. For
example:

>>> get_previous_byday('Sunday', datetime(2012, 12, 21))
datetime.datetime(2012, 12, 16, 0, 0)
>>>

106 | Chapter 3: Numbers, Dates, and Times

Discussion
This recipe works by mapping the start date and the target date to their numeric position
in the week (with Monday as day 0). Modular arithmetic is then used to figure out how
many days ago the target date last occurred. From there, the desired date is calculated
from the start date by subtracting an appropriate timedelta instance.

If you’re performing a lot of date calculations like this, you may be better off installing
the python-dateutil package instead. For example, here is an example of performing
the same calculation using the relativedelta() function from dateutil:

>>> from datetime import datetime
>>> from dateutil.relativedelta import relativedelta
>>> from dateutil.rrule import *
>>> d = datetime.now()
>>> print(d)
2012-12-23 16:31:52.718111

>>> # Next Friday
>>> print(d + relativedelta(weekday=FR))
2012-12-28 16:31:52.718111
>>>

>>> # Last Friday
>>> print(d + relativedelta(weekday=FR(-1)))
2012-12-21 16:31:52.718111
>>>

3.14. Finding the Date Range for the Current Month
Problem
You have some code that needs to loop over each date in the current month, and want
an efficient way to calculate that date range.

Solution
Looping over the dates doesn’t require building a list of all the dates ahead of time. You
can just calculate the starting and stopping date in the range, then use datetime.time
delta objects to increment the date as you go.

Here’s a function that takes any datetime object, and returns a tuple containing the first
date of the month and the starting date of the next month:

from datetime import datetime, date, timedelta
import calendar

def get_month_range(start_date=None):
 if start_date is None:

3.14. Finding the Date Range for the Current Month | 107

http://pypi.python.org/pypi/python-dateutil

 start_date = date.today().replace(day=1)
 _, days_in_month = calendar.monthrange(start_date.year, start_date.month)
 end_date = start_date + timedelta(days=days_in_month)
 return (start_date, end_date)

With this in place, it’s pretty simple to loop over the date range:

>>> a_day = timedelta(days=1)
>>> first_day, last_day = get_month_range()
>>> while first_day < last_day:
... print(first_day)
... first_day += a_day
...
2012-08-01
2012-08-02
2012-08-03
2012-08-04
2012-08-05
2012-08-06
2012-08-07
2012-08-08
2012-08-09
#... and so on...

Discussion
This recipe works by first calculating a date correponding to the first day of the month.
A quick way to do this is to use the replace() method of a date or datetime object to
simply set the days attribute to 1. One nice thing about the replace() method is that
it creates the same kind of object that you started with. Thus, if the input was a date
instance, the result is a date. Likewise, if the input was a datetime instance, you get a
datetime instance.

After that, the calendar.monthrange() function is used to find out how many days are
in the month in question. Any time you need to get basic information about calendars,
the calendar module can be useful. monthrange() is only one such function that returns
a tuple containing the day of the week along with the number of days in the month.

Once the number of days in the month is known, the ending date is calculated by adding
an appropriate timedelta to the starting date. It’s subtle, but an important aspect of this
recipe is that the ending date is not to be included in the range (it is actually the first
day of the next month). This mirrors the behavior of Python’s slices and range opera‐
tions, which also never include the end point.

To loop over the date range, standard math and comparison operators are used. For
example, timedelta instances can be used to increment the date. The < operator is used
to check whether a date comes before the ending date.

108 | Chapter 3: Numbers, Dates, and Times

Ideally, it would be nice to create a function that works like the built-in range() function,
but for dates. Fortunately, this is extremely easy to implement using a generator:

def date_range(start, stop, step):
 while start < stop:
 yield start
 start += step

Here is an example of it in use:

>>> for d in date_range(datetime(2012, 9, 1), datetime(2012,10,1),
 timedelta(hours=6)):
... print(d)
...
2012-09-01 00:00:00
2012-09-01 06:00:00
2012-09-01 12:00:00
2012-09-01 18:00:00
2012-09-02 00:00:00
2012-09-02 06:00:00
...
>>>

Again, a major part of the ease of implementation is that dates and times can be ma‐
nipulated using standard math and comparison operators.

3.15. Converting Strings into Datetimes
Problem
Your application receives temporal data in string format, but you want to convert those
strings into datetime objects in order to perform nonstring operations on them.

Solution
Python’s standard datetime module is typically the easy solution for this. For example:

>>> from datetime import datetime
>>> text = '2012-09-20'
>>> y = datetime.strptime(text, '%Y-%m-%d')
>>> z = datetime.now()
>>> diff = z - y
>>> diff
datetime.timedelta(3, 77824, 177393)
>>>

Discussion
The datetime.strptime() method supports a host of formatting codes, like %Y for the
four-digit year and %m for the two-digit month. It’s also worth noting that these format‐

3.15. Converting Strings into Datetimes | 109

ting placeholders also work in reverse, in case you need to represent a datetime object
in string output and make it look nice.

For example, let’s say you have some code that generates a datetime object, but you need
to format a nice, human-readable date to put in the header of an auto-generated letter
or report:

>>> z
datetime.datetime(2012, 9, 23, 21, 37, 4, 177393)
>>> nice_z = datetime.strftime(z, '%A %B %d, %Y')
>>> nice_z
'Sunday September 23, 2012'
>>>

It’s worth noting that the performance of strptime() is often much worse than you
might expect, due to the fact that it’s written in pure Python and it has to deal with all
sorts of system locale settings. If you are parsing a lot of dates in your code and you
know the precise format, you will probably get much better performance by cooking
up a custom solution instead. For example, if you knew that the dates were of the form
“YYYY-MM-DD,” you could write a function like this:

from datetime import datetime
def parse_ymd(s):
 year_s, mon_s, day_s = s.split('-')
 return datetime(int(year_s), int(mon_s), int(day_s))

When tested, this function runs over seven times faster than datetime.strptime().
This is probably something to consider if you’re processing large amounts of data in‐
volving dates.

3.16. Manipulating Dates Involving Time Zones
Problem
You had a conference call scheduled for December 21, 2012, at 9:30 a.m. in Chicago. At
what local time did your friend in Bangalore, India, have to show up to attend?

Solution
For almost any problem involving time zones, you should use the pytz module. This
package provides the Olson time zone database, which is the de facto standard for time
zone information found in many languages and operating systems.

A major use of pytz is in localizing simple dates created with the datetime library. For
example, here is how you would represent a date in Chicago time:

>>> from datetime import datetime
>>> from pytz import timezone

110 | Chapter 3: Numbers, Dates, and Times

http://pypi.python.org/pypi/pytz

>>> d = datetime(2012, 12, 21, 9, 30, 0)
>>> print(d)
2012-12-21 09:30:00
>>>

>>> # Localize the date for Chicago
>>> central = timezone('US/Central')
>>> loc_d = central.localize(d)
>>> print(loc_d)
2012-12-21 09:30:00-06:00
>>>

Once the date has been localized, it can be converted to other time zones. To find the
same time in Bangalore, you would do this:

>>> # Convert to Bangalore time
>>> bang_d = loc_d.astimezone(timezone('Asia/Kolkata'))
>>> print(bang_d)
2012-12-21 21:00:00+05:30
>>>

If you are going to perform arithmetic with localized dates, you need to be particularly
aware of daylight saving transitions and other details. For example, in 2013, U.S. stan‐
dard daylight saving time started on March 13, 2:00 a.m. local time (at which point, time
skipped ahead one hour). If you’re performing naive arithmetic, you’ll get it wrong. For
example:

>>> d = datetime(2013, 3, 10, 1, 45)
>>> loc_d = central.localize(d)
>>> print(loc_d)
2013-03-10 01:45:00-06:00
>>> later = loc_d + timedelta(minutes=30)
>>> print(later)
2013-03-10 02:15:00-06:00 # WRONG! WRONG!
>>>

The answer is wrong because it doesn’t account for the one-hour skip in the local time.
To fix this, use the normalize() method of the time zone. For example:

>>> from datetime import timedelta
>>> later = central.normalize(loc_d + timedelta(minutes=30))
>>> print(later)
2013-03-10 03:15:00-05:00
>>>

Discussion
To keep your head from completely exploding, a common strategy for localized date
handling is to convert all dates to UTC time and to use that for all internal storage and
manipulation. For example:

3.16. Manipulating Dates Involving Time Zones | 111

>>> print(loc_d)
2013-03-10 01:45:00-06:00
>>> utc_d = loc_d.astimezone(pytz.utc)
>>> print(utc_d)
2013-03-10 07:45:00+00:00
>>>

Once in UTC, you don’t have to worry about issues related to daylight saving time and
other matters. Thus, you can simply perform normal date arithmetic as before. Should
you want to output the date in localized time, just convert it to the appropriate time
zone afterward. For example:

>>> later_utc = utc_d + timedelta(minutes=30)
>>> print(later_utc.astimezone(central))
2013-03-10 03:15:00-05:00
>>>

One issue in working with time zones is simply figuring out what time zone names to
use. For example, in this recipe, how was it known that “Asia/Kolkata” was the correct
time zone name for India? To find out, you can consult the pytz.country_timezones
dictionary using the ISO 3166 country code as a key. For example:

>>> pytz.country_timezones['IN']
['Asia/Kolkata']
>>>

By the time you read this, it’s possible that the pytz module will be
deprecated in favor of improved time zone support, as described in PEP
431. Many of the same issues will still apply, however (e.g., advice using
UTC dates, etc.).

112 | Chapter 3: Numbers, Dates, and Times

http://www.python.org/dev/peps/pep-0431
http://www.python.org/dev/peps/pep-0431

CHAPTER 4

Iterators and Generators

Iteration is one of Python’s strongest features. At a high level, you might simply view
iteration as a way to process items in a sequence. However, there is so much more that
is possible, such as creating your own iterator objects, applying useful iteration patterns
in the itertools module, making generator functions, and so forth. This chapter aims
to address common problems involving iteration.

4.1. Manually Consuming an Iterator
Problem
You need to process items in an iterable, but for whatever reason, you can’t or don’t want
to use a for loop.

Solution
To manually consume an iterable, use the next() function and write your code to catch
the StopIteration exception. For example, this example manually reads lines from a
file:

with open('/etc/passwd') as f:
 try:
 while True:
 line = next(f)
 print(line, end='')
 except StopIteration:
 pass

Normally, StopIteration is used to signal the end of iteration. However, if you’re using
next() manually (as shown), you can also instruct it to return a terminating value, such
as None, instead. For example:

113

with open('/etc/passwd') as f:
 while True:
 line = next(f, None)
 if line is None:
 break
 print(line, end='')

Discussion
In most cases, the for statement is used to consume an iterable. However, every now
and then, a problem calls for more precise control over the underlying iteration mech‐
anism. Thus, it is useful to know what actually happens.

The following interactive example illustrates the basic mechanics of what happens dur‐
ing iteration:

>>> items = [1, 2, 3]
>>> # Get the iterator
>>> it = iter(items) # Invokes items.__iter__()
>>> # Run the iterator
>>> next(it) # Invokes it.__next__()
1
>>> next(it)
2
>>> next(it)
3
>>> next(it)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>

Subsequent recipes in this chapter expand on iteration techniques, and knowledge of
the basic iterator protocol is assumed. Be sure to tuck this first recipe away in your
memory.

4.2. Delegating Iteration
Problem
You have built a custom container object that internally holds a list, tuple, or some other
iterable. You would like to make iteration work with your new container.

Solution
Typically, all you need to do is define an __iter__() method that delegates iteration to
the internally held container. For example:

114 | Chapter 4: Iterators and Generators

class Node:
 def __init__(self, value):
 self._value = value
 self._children = []

 def __repr__(self):
 return 'Node({!r})'.format(self._value)

 def add_child(self, node):
 self._children.append(node)

 def __iter__(self):
 return iter(self._children)

Example
if __name__ == '__main__':
 root = Node(0)
 child1 = Node(1)
 child2 = Node(2)
 root.add_child(child1)
 root.add_child(child2)
 for ch in root:
 print(ch)
 # Outputs Node(1), Node(2)

In this code, the __iter__() method simply forwards the iteration request to the in‐
ternally held _children attribute.

Discussion
Python’s iterator protocol requires __iter__() to return a special iterator object that
implements a __next__() method to carry out the actual iteration. If all you are doing
is iterating over the contents of another container, you don’t really need to worry about
the underlying details of how it works. All you need to do is to forward the iteration
request along.

The use of the iter() function here is a bit of a shortcut that cleans up the code. iter(s)
simply returns the underlying iterator by calling s.__iter__(), much in the same way
that len(s) invokes s.__len__().

4.3. Creating New Iteration Patterns with Generators
Problem
You want to implement a custom iteration pattern that’s different than the usual built-
in functions (e.g., range(), reversed(), etc.).

4.3. Creating New Iteration Patterns with Generators | 115

Solution
If you want to implement a new kind of iteration pattern, define it using a generator
function. Here’s a generator that produces a range of floating-point numbers:

def frange(start, stop, increment):
 x = start
 while x < stop:
 yield x
 x += increment

To use such a function, you iterate over it using a for loop or use it with some other
function that consumes an iterable (e.g., sum(), list(), etc.). For example:

>>> for n in frange(0, 4, 0.5):
... print(n)
...
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
>>> list(frange(0, 1, 0.125))
[0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875]
>>>

Discussion
The mere presence of the yield statement in a function turns it into a generator. Unlike
a normal function, a generator only runs in response to iteration. Here’s an experiment
you can try to see the underlying mechanics of how such a function works:

>>> def countdown(n):
... print('Starting to count from', n)
... while n > 0:
... yield n
... n -= 1
... print('Done!')
...

>>> # Create the generator, notice no output appears
>>> c = countdown(3)
>>> c
<generator object countdown at 0x1006a0af0>

>>> # Run to first yield and emit a value
>>> next(c)
Starting to count from 3
3

116 | Chapter 4: Iterators and Generators

>>> # Run to the next yield
>>> next(c)
2

>>> # Run to next yield
>>> next(c)
1

>>> # Run to next yield (iteration stops)
>>> next(c)
Done!
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>

The key feature is that a generator function only runs in response to “next” operations
carried out in iteration. Once a generator function returns, iteration stops. However,
the for statement that’s usually used to iterate takes care of these details, so you don’t
normally need to worry about them.

4.4. Implementing the Iterator Protocol
Problem
You are building custom objects on which you would like to support iteration, but would
like an easy way to implement the iterator protocol.

Solution
By far, the easiest way to implement iteration on an object is to use a generator function.
In Recipe 4.2, a Node class was presented for representing tree structures. Perhaps you
want to implement an iterator that traverses nodes in a depth-first pattern. Here is how
you could do it:

class Node:
 def __init__(self, value):
 self._value = value
 self._children = []

 def __repr__(self):
 return 'Node({!r})'.format(self._value)

 def add_child(self, node):
 self._children.append(node)

 def __iter__(self):
 return iter(self._children)

4.4. Implementing the Iterator Protocol | 117

 def depth_first(self):
 yield self
 for c in self:
 yield from c.depth_first()

Example
if __name__ == '__main__':
 root = Node(0)
 child1 = Node(1)
 child2 = Node(2)
 root.add_child(child1)
 root.add_child(child2)
 child1.add_child(Node(3))
 child1.add_child(Node(4))
 child2.add_child(Node(5))

 for ch in root.depth_first():
 print(ch)
 # Outputs Node(0), Node(1), Node(3), Node(4), Node(2), Node(5)

In this code, the depth_first() method is simple to read and describe. It first yields
itself and then iterates over each child yielding the items produced by the child’s
depth_first() method (using yield from).

Discussion
Python’s iterator protocol requires __iter__() to return a special iterator object that
implements a __next__() operation and uses a StopIteration exception to signal
completion. However, implementing such objects can often be a messy affair. For ex‐
ample, the following code shows an alternative implementation of the depth_first()
method using an associated iterator class:

class Node:
 def __init__(self, value):
 self._value = value
 self._children = []

 def __repr__(self):
 return 'Node({!r})'.format(self._value)

 def add_child(self, other_node):
 self._children.append(other_node)

 def __iter__(self):
 return iter(self._children)

 def depth_first(self):
 return DepthFirstIterator(self)

class DepthFirstIterator(object):

118 | Chapter 4: Iterators and Generators

 '''
 Depth-first traversal
 '''
 def __init__(self, start_node):
 self._node = start_node
 self._children_iter = None
 self._child_iter = None

 def __iter__(self):
 return self

 def __next__(self):
 # Return myself if just started; create an iterator for children
 if self._children_iter is None:
 self._children_iter = iter(self._node)
 return self._node

 # If processing a child, return its next item
 elif self._child_iter:
 try:
 nextchild = next(self._child_iter)
 return nextchild
 except StopIteration:
 self._child_iter = None
 return next(self)

 # Advance to the next child and start its iteration
 else:
 self._child_iter = next(self._children_iter).depth_first()
 return next(self)

The DepthFirstIterator class works in the same way as the generator version, but it’s
a mess because the iterator has to maintain a lot of complex state about where it is in
the iteration process. Frankly, nobody likes to write mind-bending code like that. Define
your iterator as a generator and be done with it.

4.5. Iterating in Reverse
Problem
You want to iterate in reverse over a sequence.

Solution
Use the built-in reversed() function. For example:

>>> a = [1, 2, 3, 4]
>>> for x in reversed(a):
... print(x)
...

4.5. Iterating in Reverse | 119

4
3
2
1

Reversed iteration only works if the object in question has a size that can be determined
or if the object implements a __reversed__() special method. If neither of these can
be satisfied, you’ll have to convert the object into a list first. For example:

Print a file backwards
f = open('somefile')
for line in reversed(list(f)):
 print(line, end='')

Be aware that turning an iterable into a list as shown could consume a lot of memory
if it’s large.

Discussion
Many programmers don’t realize that reversed iteration can be customized on user-
defined classes if they implement the __reversed__() method. For example:

class Countdown:
 def __init__(self, start):
 self.start = start

 # Forward iterator
 def __iter__(self):
 n = self.start
 while n > 0:
 yield n
 n -= 1

 # Reverse iterator
 def __reversed__(self):
 n = 1
 while n <= self.start:
 yield n
 n += 1

Defining a reversed iterator makes the code much more efficient, as it’s no longer nec‐
essary to pull the data into a list and iterate in reverse on the list.

4.6. Defining Generator Functions with Extra State
Problem
You would like to define a generator function, but it involves extra state that you would
like to expose to the user somehow.

120 | Chapter 4: Iterators and Generators

Solution
If you want a generator to expose extra state to the user, don’t forget that you can easily
implement it as a class, putting the generator function code in the __iter__() method.
For example:

from collections import deque

class linehistory:
 def __init__(self, lines, histlen=3):
 self.lines = lines
 self.history = deque(maxlen=histlen)

 def __iter__(self):
 for lineno, line in enumerate(self.lines,1):
 self.history.append((lineno, line))
 yield line

 def clear(self):
 self.history.clear()

To use this class, you would treat it like a normal generator function. However, since it
creates an instance, you can access internal attributes, such as the history attribute or
the clear() method. For example:

with open('somefile.txt') as f:
 lines = linehistory(f)
 for line in lines:
 if 'python' in line:
 for lineno, hline in lines.history:
 print('{}:{}'.format(lineno, hline), end='')

Discussion
With generators, it is easy to fall into a trap of trying to do everything with functions
alone. This can lead to rather complicated code if the generator function needs to in‐
teract with other parts of your program in unusual ways (exposing attributes, allowing
control via method calls, etc.). If this is the case, just use a class definition, as shown.
Defining your generator in the __iter__() method doesn’t change anything about how
you write your algorithm. The fact that it’s part of a class makes it easy for you to provide
attributes and methods for users to interact with.

One potential subtlety with the method shown is that it might require an extra step of
calling iter() if you are going to drive iteration using a technique other than a for
loop. For example:

>>> f = open('somefile.txt')
>>> lines = linehistory(f)
>>> next(lines)
Traceback (most recent call last):

4.6. Defining Generator Functions with Extra State | 121

 File "<stdin>", line 1, in <module>
TypeError: 'linehistory' object is not an iterator

>>> # Call iter() first, then start iterating
>>> it = iter(lines)
>>> next(it)
'hello world\n'
>>> next(it)
'this is a test\n'
>>>

4.7. Taking a Slice of an Iterator
Problem
You want to take a slice of data produced by an iterator, but the normal slicing operator
doesn’t work.

Solution
The itertools.islice() function is perfectly suited for taking slices of iterators and
generators. For example:

>>> def count(n):
... while True:
... yield n
... n += 1
...
>>> c = count(0)
>>> c[10:20]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'generator' object is not subscriptable

>>> # Now using islice()
>>> import itertools
>>> for x in itertools.islice(c, 10, 20):
... print(x)
...
10
11
12
13
14
15
16
17
18
19
>>>

122 | Chapter 4: Iterators and Generators

Discussion
Iterators and generators can’t normally be sliced, because no information is known about
their length (and they don’t implement indexing). The result of islice() is an iterator
that produces the desired slice items, but it does this by consuming and discarding all
of the items up to the starting slice index. Further items are then produced by the islice
object until the ending index has been reached.

It’s important to emphasize that islice() will consume data on the supplied iterator.
Since iterators can’t be rewound, that is something to consider. If it’s important to go
back, you should probably just turn the data into a list first.

4.8. Skipping the First Part of an Iterable
Problem
You want to iterate over items in an iterable, but the first few items aren’t of interest and
you just want to discard them.

Solution
The itertools module has a few functions that can be used to address this task. The
first is the itertools.dropwhile() function. To use it, you supply a function and an
iterable. The returned iterator discards the first items in the sequence as long as the
supplied function returns True. Afterward, the entirety of the sequence is produced.

To illustrate, suppose you are reading a file that starts with a series of comment lines.
For example:

>>> with open('/etc/passwd') as f:
... for line in f:
... print(line, end='')
...
##
User Database
#
Note that this file is consulted directly only when the system is running
in single-user mode. At other times, this information is provided by
Open Directory.
...
##
nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false
root:*:0:0:System Administrator:/var/root:/bin/sh
...
>>>

If you want to skip all of the initial comment lines, here’s one way to do it:

4.8. Skipping the First Part of an Iterable | 123

>>> from itertools import dropwhile
>>> with open('/etc/passwd') as f:
... for line in dropwhile(lambda line: line.startswith('#'), f):
... print(line, end='')
...
nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false
root:*:0:0:System Administrator:/var/root:/bin/sh
...
>>>

This example is based on skipping the first items according to a test function. If you
happen to know the exact number of items you want to skip, then you can use iter
tools.islice() instead. For example:

>>> from itertools import islice
>>> items = ['a', 'b', 'c', 1, 4, 10, 15]
>>> for x in islice(items, 3, None):
... print(x)
...
1
4
10
15
>>>

In this example, the last None argument to islice() is required to indicate that you
want everything beyond the first three items as opposed to only the first three items
(e.g., a slice of [3:] as opposed to a slice of [:3]).

Discussion
The dropwhile() and islice() functions are mainly convenience functions that you
can use to avoid writing rather messy code such as this:

with open('/etc/passwd') as f:
 # Skip over initial comments
 while True:
 line = next(f, '')
 if not line.startswith('#'):
 break

 # Process remaining lines
 while line:
 # Replace with useful processing
 print(line, end='')
 line = next(f, None)

Discarding the first part of an iterable is also slightly different than simply filtering all
of it. For example, the first part of this recipe might be rewritten as follows:

with open('/etc/passwd') as f:
 lines = (line for line in f if not line.startswith('#'))

124 | Chapter 4: Iterators and Generators

 for line in lines:
 print(line, end='')

This will obviously discard the comment lines at the start, but will also discard all such
lines throughout the entire file. On the other hand, the solution only discards items
until an item no longer satisfies the supplied test. After that, all subsequent items are
returned with no filtering.

Last, but not least, it should be emphasized that this recipe works with all iterables,
including those whose size can’t be determined in advance. This includes generators,
files, and similar kinds of objects.

4.9. Iterating Over All Possible Combinations or
Permutations
Problem
You want to iterate over all of the possible combinations or permutations of a collection
of items.

Solution
The itertools module provides three functions for this task. The first of these—iter

tools.permutations()—takes a collection of items and produces a sequence of tuples
that rearranges all of the items into all possible permutations (i.e., it shuffles them into
all possible configurations). For example:

>>> items = ['a', 'b', 'c']
>>> from itertools import permutations
>>> for p in permutations(items):
... print(p)
...
('a', 'b', 'c')
('a', 'c', 'b')
('b', 'a', 'c')
('b', 'c', 'a')
('c', 'a', 'b')
('c', 'b', 'a')
>>>

If you want all permutations of a smaller length, you can give an optional length argu‐
ment. For example:

>>> for p in permutations(items, 2):
... print(p)
...
('a', 'b')
('a', 'c')

4.9. Iterating Over All Possible Combinations or Permutations | 125

('b', 'a')
('b', 'c')
('c', 'a')
('c', 'b')
>>>

Use itertools.combinations() to produce a sequence of combinations of items taken
from the input. For example:

>>> from itertools import combinations
>>> for c in combinations(items, 3):
... print(c)
...
('a', 'b', 'c')
>>> for c in combinations(items, 2):
... print(c)
...
('a', 'b')
('a', 'c')
('b', 'c')
>>> for c in combinations(items, 1):
... print(c)
...
('a',)
('b',)
('c',)
>>>

For combinations(), the actual order of the elements is not considered. That is, the
combination ('a', 'b') is considered to be the same as ('b', 'a') (which is not
produced).

When producing combinations, chosen items are removed from the collection of pos‐
sible candidates (i.e., if 'a' has already been chosen, then it is removed from consider‐
ation). The itertools.combinations_with_replacement() function relaxes this, and
allows the same item to be chosen more than once. For example:

>>> for c in combinations_with_replacement(items, 3):
... print(c)
...
('a', 'a', 'a')
('a', 'a', 'b')
('a', 'a', 'c')
('a', 'b', 'b')
('a', 'b', 'c')
('a', 'c', 'c')
('b', 'b', 'b')
('b', 'b', 'c')
('b', 'c', 'c')
('c', 'c', 'c')
>>>

126 | Chapter 4: Iterators and Generators

Discussion
This recipe demonstrates only some of the power found in the itertools module.
Although you could certainly write code to produce permutations and combinations
yourself, doing so would probably require more than a fair bit of thought. When faced
with seemingly complicated iteration problems, it always pays to look at itertools first.
If the problem is common, chances are a solution is already available.

4.10. Iterating Over the Index-Value Pairs of a Sequence
Problem
You want to iterate over a sequence, but would like to keep track of which element of
the sequence is currently being processed.

Solution
The built-in enumerate() function handles this quite nicely:

>>> my_list = ['a', 'b', 'c']
>>> for idx, val in enumerate(my_list):
... print(idx, val)
...
0 a
1 b
2 c

For printing output with canonical line numbers (where you typically start the num‐
bering at 1 instead of 0), you can pass in a start argument:

>>> my_list = ['a', 'b', 'c']
>>> for idx, val in enumerate(my_list, 1):
... print(idx, val)
...
1 a
2 b
3 c

This case is especially useful for tracking line numbers in files should you want to use
a line number in an error message:

def parse_data(filename):
 with open(filename, 'rt') as f:
 for lineno, line in enumerate(f, 1):
 fields = line.split()
 try:
 count = int(fields[1])
 ...
 except ValueError as e:
 print('Line {}: Parse error: {}'.format(lineno, e))

4.10. Iterating Over the Index-Value Pairs of a Sequence | 127

enumerate() can be handy for keeping track of the offset into a list for occurrences of
certain values, for example. So, if you want to map words in a file to the lines in which
they occur, it can easily be accomplished using enumerate() to map each word to the
line offset in the file where it was found:

word_summary = defaultdict(list)

with open('myfile.txt', 'r') as f:
 lines = f.readlines()

for idx, line in enumerate(lines):
 # Create a list of words in current line
 words = [w.strip().lower() for w in line.split()]
 for word in words:
 word_summary[word].append(idx)

If you print word_summary after processing the file, it’ll be a dictionary (a default
dict to be precise), and it’ll have a key for each word. The value for each word-key will
be a list of line numbers that word occurred on. If the word occurred twice on a single
line, that line number will be listed twice, making it possible to identify various simple
metrics about the text.

Discussion
enumerate() is a nice shortcut for situations where you might be inclined to keep your
own counter variable. You could write code like this:

lineno = 1
for line in f:
 # Process line
 ...
 lineno += 1

But it’s usually much more elegant (and less error prone) to use enumerate() instead:

for lineno, line in enumerate(f):
 # Process line
 ...

The value returned by enumerate() is an instance of an enumerate object, which is an
iterator that returns successive tuples consisting of a counter and the value returned by
calling next() on the sequence you’ve passed in.

Although a minor point, it’s worth mentioning that sometimes it is easy to get tripped
up when applying enumerate() to a sequence of tuples that are also being unpacked.
To do it, you have to write code like this:

data = [(1, 2), (3, 4), (5, 6), (7, 8)]

Correct!
for n, (x, y) in enumerate(data):

128 | Chapter 4: Iterators and Generators

 ...

Error!
for n, x, y in enumerate(data):
 ...

4.11. Iterating Over Multiple Sequences Simultaneously
Problem
You want to iterate over the items contained in more than one sequence at a time.

Solution
To iterate over more than one sequence simultaneously, use the zip() function. For
example:

>>> xpts = [1, 5, 4, 2, 10, 7]
>>> ypts = [101, 78, 37, 15, 62, 99]
>>> for x, y in zip(xpts, ypts):
... print(x,y)
...
1 101
5 78
4 37
2 15
10 62
7 99
>>>

zip(a, b) works by creating an iterator that produces tuples (x, y) where x is taken
from a and y is taken from b. Iteration stops whenever one of the input sequences is
exhausted. Thus, the length of the iteration is the same as the length of the shortest
input. For example:

>>> a = [1, 2, 3]
>>> b = ['w', 'x', 'y', 'z']
>>> for i in zip(a,b):
... print(i)
...
(1, 'w')
(2, 'x')
(3, 'y')
>>>

If this behavior is not desired, use itertools.zip_longest() instead. For example:

>>> from itertools import zip_longest
>>> for i in zip_longest(a,b):
... print(i)
...

4.11. Iterating Over Multiple Sequences Simultaneously | 129

(1, 'w')
(2, 'x')
(3, 'y')
(None, 'z')
>>> for i in zip_longest(a, b, fillvalue=0):
... print(i)
...
(1, 'w')
(2, 'x')
(3, 'y')
(0, 'z')
>>>

Discussion
zip() is commonly used whenever you need to pair data together. For example, suppose
you have a list of column headers and column values like this:

headers = ['name', 'shares', 'price']
values = ['ACME', 100, 490.1]

Using zip(), you can pair the values together to make a dictionary like this:

s = dict(zip(headers,values))

Alternatively, if you are trying to produce output, you can write code like this:

for name, val in zip(headers, values):
 print(name, '=', val)

It’s less common, but zip() can be passed more than two sequences as input. For this
case, the resulting tuples have the same number of items in them as the number of input
sequences. For example:

>>> a = [1, 2, 3]
>>> b = [10, 11, 12]
>>> c = ['x','y','z']
>>> for i in zip(a, b, c):
... print(i)
...
(1, 10, 'x')
(2, 11, 'y')
(3, 12, 'z')
>>>

Last, but not least, it’s important to emphasize that zip() creates an iterator as a result.
If you need the paired values stored in a list, use the list() function. For example:

>>> zip(a, b)
<zip object at 0x1007001b8>
>>> list(zip(a, b))
[(1, 10), (2, 11), (3, 12)]
>>>

130 | Chapter 4: Iterators and Generators

4.12. Iterating on Items in Separate Containers
Problem
You need to perform the same operation on many objects, but the objects are contained
in different containers, and you’d like to avoid nested loops without losing the readability
of your code.

Solution
The itertools.chain() method can be used to simplify this task. It takes a list of
iterables as input, and returns an iterator that effectively masks the fact that you’re really
acting on multiple containers. To illustrate, consider this example:

>>> from itertools import chain
>>> a = [1, 2, 3, 4]
>>> b = ['x', 'y', 'z']
>>> for x in chain(a, b):
... print(x)
...
1
2
3
4
x
y
z
>>>

A common use of chain() is in programs where you would like to perform certain
operations on all of the items at once but the items are pooled into different working
sets. For example:

Various working sets of items
active_items = set()
inactive_items = set()

Iterate over all items
for item in chain(active_items, inactive_items):
 # Process item
 ...

This solution is much more elegant than using two separate loops, as in the following:

for item in active_items:
 # Process item
 ...

for item in inactive_items:
 # Process item
 ...

4.12. Iterating on Items in Separate Containers | 131

Discussion
itertools.chain() accepts one or more iterables as arguments. It then works by cre‐
ating an iterator that successively consumes and returns the items produced by each of
the supplied iterables you provided. It’s a subtle distinction, but chain() is more efficient
than first combining the sequences and iterating. For example:

Inefficent
for x in a + b:
 ...

Better
for x in chain(a, b):
 ...

In the first case, the operation a + b creates an entirely new sequence and additionally
requires a and b to be of the same type. chain() performs no such operation, so it’s far
more efficient with memory if the input sequences are large and it can be easily applied
when the iterables in question are of different types.

4.13. Creating Data Processing Pipelines
Problem
You want to process data iteratively in the style of a data processing pipeline (similar to
Unix pipes). For instance, you have a huge amount of data that needs to be processed,
but it can’t fit entirely into memory.

Solution
Generator functions are a good way to implement processing pipelines. To illustrate,
suppose you have a huge directory of log files that you want to process:

 foo/
 access-log-012007.gz
 access-log-022007.gz
 access-log-032007.gz
 ...
 access-log-012008
 bar/
 access-log-092007.bz2
 ...
 access-log-022008

Suppose each file contains lines of data like this:

 124.115.6.12 - - [10/Jul/2012:00:18:50 -0500] "GET /robots.txt ..." 200 71
 210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] "GET /ply/ ..." 200 11875
 210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] "GET /favicon.ico ..." 404 369

132 | Chapter 4: Iterators and Generators

 61.135.216.105 - - [10/Jul/2012:00:20:04 -0500] "GET /blog/atom.xml ..." 304 -
 ...

To process these files, you could define a collection of small generator functions that
perform specific self-contained tasks. For example:

import os
import fnmatch
import gzip
import bz2
import re

def gen_find(filepat, top):
 '''
 Find all filenames in a directory tree that match a shell wildcard pattern
 '''
 for path, dirlist, filelist in os.walk(top):
 for name in fnmatch.filter(filelist, filepat):
 yield os.path.join(path,name)

def gen_opener(filenames):
 '''
 Open a sequence of filenames one at a time producing a file object.
 The file is closed immediately when proceeding to the next iteration.
 '''
 for filename in filenames:
 if filename.endswith('.gz'):
 f = gzip.open(filename, 'rt')
 elif filename.endswith('.bz2'):
 f = bz2.open(filename, 'rt')
 else:
 f = open(filename, 'rt')
 yield f
 f.close()

def gen_concatenate(iterators):
 '''
 Chain a sequence of iterators together into a single sequence.
 '''
 for it in iterators:
 yield from it

def gen_grep(pattern, lines):
 '''
 Look for a regex pattern in a sequence of lines
 '''
 pat = re.compile(pattern)
 for line in lines:
 if pat.search(line):
 yield line

You can now easily stack these functions together to make a processing pipeline. For
example, to find all log lines that contain the word python, you would just do this:

4.13. Creating Data Processing Pipelines | 133

lognames = gen_find('access-log*', 'www')
files = gen_opener(lognames)
lines = gen_concatenate(files)
pylines = gen_grep('(?i)python', lines)
for line in pylines:
 print(line)

If you want to extend the pipeline further, you can even feed the data in generator
expressions. For example, this version finds the number of bytes transferred and sums
the total:

lognames = gen_find('access-log*', 'www')
files = gen_opener(lognames)
lines = gen_concatenate(files)
pylines = gen_grep('(?i)python', lines)
bytecolumn = (line.rsplit(None,1)[1] for line in pylines)
bytes = (int(x) for x in bytecolumn if x != '-')
print('Total', sum(bytes))

Discussion
Processing data in a pipelined manner works well for a wide variety of other problems,
including parsing, reading from real-time data sources, periodic polling, and so on.

In understanding the code, it is important to grasp that the yield statement acts as a
kind of data producer whereas a for loop acts as a data consumer. When the generators
are stacked together, each yield feeds a single item of data to the next stage of the
pipeline that is consuming it with iteration. In the last example, the sum() function is
actually driving the entire program, pulling one item at a time out of the pipeline of
generators.

One nice feature of this approach is that each generator function tends to be small and
self-contained. As such, they are easy to write and maintain. In many cases, they are so
general purpose that they can be reused in other contexts. The resulting code that glues
the components together also tends to read like a simple recipe that is easily understood.

The memory efficiency of this approach can also not be overstated. The code shown
would still work even if used on a massive directory of files. In fact, due to the iterative
nature of the processing, very little memory would be used at all.

There is a bit of extreme subtlety involving the gen_concatenate() function. The
purpose of this function is to concatenate input sequences together into one long se‐
quence of lines. The itertools.chain() function performs a similar function, but re‐
quires that all of the chained iterables be specified as arguments. In the case of this
particular recipe, doing that would involve a statement such as lines = iter

tools.chain(*files), which would cause the gen_opener() generator to be fully con‐
sumed. Since that generator is producing a sequence of open files that are immediately

134 | Chapter 4: Iterators and Generators

closed in the next iteration step, chain() can’t be used. The solution shown avoids this
issue.

Also appearing in the gen_concatenate() function is the use of yield from to delegate
to a subgenerator. The statement yield from it simply makes gen_concatenate()
emit all of the values produced by the generator it. This is described further in
Recipe 4.14.

Last, but not least, it should be noted that a pipelined approach doesn’t always work for
every data handling problem. Sometimes you just need to work with all of the data at
once. However, even in that case, using generator pipelines can be a way to logically
break a problem down into a kind of workflow.

David Beazley has written extensively about these techniques in his “Generator Tricks
for Systems Programmers” tutorial presentation. Consult that for even more examples.

4.14. Flattening a Nested Sequence
Problem
You have a nested sequence that you want to flatten into a single list of values.

Solution
This is easily solved by writing a recursive generator function involving a yield from
statement. For example:

from collections import Iterable

def flatten(items, ignore_types=(str, bytes)):
 for x in items:
 if isinstance(x, Iterable) and not isinstance(x, ignore_types):
 yield from flatten(x)
 else:
 yield x

items = [1, 2, [3, 4, [5, 6], 7], 8]

Produces 1 2 3 4 5 6 7 8
for x in flatten(items):
 print(x)

In the code, the isinstance(x, Iterable) simply checks to see if an item is iterable.
If so, yield from is used to emit all of its values as a kind of subroutine. The end result
is a single sequence of output with no nesting.

The extra argument ignore_types and the check for not isinstance(x, ig

nore_types) is there to prevent strings and bytes from being interpreted as iterables

4.14. Flattening a Nested Sequence | 135

http://www.dabeaz.com/generators
http://www.dabeaz.com/generators

and expanded as individual characters. This allows nested lists of strings to work in the
way that most people would expect. For example:

>>> items = ['Dave', 'Paula', ['Thomas', 'Lewis']]
>>> for x in flatten(items):
... print(x)
...
Dave
Paula
Thomas
Lewis
>>>

Discussion
The yield from statement is a nice shortcut to use if you ever want to write generators
that call other generators as subroutines. If you don’t use it, you need to write code that
uses an extra for loop. For example:

def flatten(items, ignore_types=(str, bytes)):
 for x in items:
 if isinstance(x, Iterable) and not isinstance(x, ignore_types):
 for i in flatten(x):
 yield i
 else:
 yield x

Although it’s only a minor change, the yield from statement just feels better and leads
to cleaner code.

As noted, the extra check for strings and bytes is there to prevent the expansion of those
types into individual characters. If there are other types that you don’t want expanded,
you can supply a different value for the ignore_types argument.

Finally, it should be noted that yield from has a more important role in advanced
programs involving coroutines and generator-based concurrency. See Recipe 12.12 for
another example.

4.15. Iterating in Sorted Order Over Merged Sorted
Iterables
Problem
You have a collection of sorted sequences and you want to iterate over a sorted sequence
of them all merged together.

136 | Chapter 4: Iterators and Generators

Solution
The heapq.merge() function does exactly what you want. For example:

>>> import heapq
>>> a = [1, 4, 7, 10]
>>> b = [2, 5, 6, 11]
>>> for c in heapq.merge(a, b):
... print(c)
...
1
2
4
5
6
7
10
11

Discussion
The iterative nature of heapq.merge means that it never reads any of the supplied se‐
quences all at once. This means that you can use it on very long sequences with very
little overhead. For instance, here is an example of how you would merge two sorted
files:

import heapq

with open('sorted_file_1', 'rt') as file1, \
 open('sorted_file_2') 'rt' as file2, \
 open('merged_file', 'wt') as outf:

 for line in heapq.merge(file1, file2):
 outf.write(line)

It’s important to emphasize that heapq.merge() requires that all of the input sequences
already be sorted. In particular, it does not first read all of the data into a heap or do any
preliminary sorting. Nor does it perform any kind of validation of the inputs to check
if they meet the ordering requirements. Instead, it simply examines the set of items from
the front of each input sequence and emits the smallest one found. A new item from
the chosen sequence is then read, and the process repeats itself until all input sequences
have been fully consumed.

4.15. Iterating in Sorted Order Over Merged Sorted Iterables | 137

4.16. Replacing Infinite while Loops with an Iterator
Problem
You have code that uses a while loop to iteratively process data because it involves a
function or some kind of unusual test condition that doesn’t fall into the usual iteration
pattern.

Solution
A somewhat common scenario in programs involving I/O is to write code like this:

CHUNKSIZE = 8192

def reader(s):
 while True:
 data = s.recv(CHUNKSIZE)
 if data == b'':
 break
 process_data(data)

Such code can often be replaced using iter(), as follows:

def reader(s):
 for chunk in iter(lambda: s.recv(CHUNKSIZE), b''):
 process_data(data)

If you’re a bit skeptical that it might work, you can try a similar example involving files.
For example:

>>> import sys
>>> f = open('/etc/passwd')
>>> for chunk in iter(lambda: f.read(10), ''):
... n = sys.stdout.write(chunk)
...
nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false
root:*:0:0:System Administrator:/var/root:/bin/sh
daemon:*:1:1:System Services:/var/root:/usr/bin/false
_uucp:*:4:4:Unix to Unix Copy Protocol:/var/spool/uucp:/usr/sbin/uucico
...
>>>

Discussion
A little-known feature of the built-in iter() function is that it optionally accepts a zero-
argument callable and sentinel (terminating) value as inputs. When used in this way, it
creates an iterator that repeatedly calls the supplied callable over and over again until it
returns the value given as a sentinel.

138 | Chapter 4: Iterators and Generators

This particular approach works well with certain kinds of repeatedly called functions,
such as those involving I/O. For example, if you want to read data in chunks from sockets
or files, you usually have to repeatedly execute read() or recv() calls followed by an
end-of-file test. This recipe simply takes these two features and combines them together
into a single iter() call. The use of lambda in the solution is needed to create a callable
that takes no arguments, yet still supplies the desired size argument to recv() or read().

4.16. Replacing Infinite while Loops with an Iterator | 139

CHAPTER 5

Files and I/O

All programs need to perform input and output. This chapter covers common idioms
for working with different kinds of files, including text and binary files, file encodings,
and other related matters. Techniques for manipulating filenames and directories are
also covered.

5.1. Reading and Writing Text Data
Problem
You need to read or write text data, possibly in different text encodings such as ASCII,
UTF-8, or UTF-16.

Solution
Use the open() function with mode rt to read a text file. For example:

Read the entire file as a single string
with open('somefile.txt', 'rt') as f:
 data = f.read()

Iterate over the lines of the file
with open('somefile.txt', 'rt') as f:
 for line in f:
 # process line
 ...

Similarly, to write a text file, use open() with mode wt to write a file, clearing and
overwriting the previous contents (if any). For example:

Write chunks of text data
with open('somefile.txt', 'wt') as f:
 f.write(text1)

141

 f.write(text2)
 ...

Redirected print statement
with open('somefile.txt', 'wt') as f:
 print(line1, file=f)
 print(line2, file=f)
 ...

To append to the end of an existing file, use open() with mode at.

By default, files are read/written using the system default text encoding, as can be found
in sys.getdefaultencoding(). On most machines, this is set to utf-8. If you know
that the text you are reading or writing is in a different encoding, supply the optional
encoding parameter to open(). For example:

with open('somefile.txt', 'rt', encoding='latin-1') as f:
 ...

Python understands several hundred possible text encodings. However, some of the
more common encodings are ascii, latin-1, utf-8, and utf-16. UTF-8 is usually a
safe bet if working with web applications. ascii corresponds to the 7-bit characters in
the range U+0000 to U+007F. latin-1 is a direct mapping of bytes 0-255 to Unicode
characters U+0000 to U+00FF. latin-1 encoding is notable in that it will never produce
a decoding error when reading text of a possibly unknown encoding. Reading a file as
latin-1 might not produce a completely correct text decoding, but it still might be
enough to extract useful data out of it. Also, if you later write the data back out, the
original input data will be preserved.

Discussion
Reading and writing text files is typically very straightforward. However, there are a
number of subtle aspects to keep in mind. First, the use of the with statement in the
examples establishes a context in which the file will be used. When control leaves the
with block, the file will be closed automatically. You don’t need to use the with statement,
but if you don’t use it, make sure you remember to close the file:

f = open('somefile.txt', 'rt')
data = f.read()
f.close()

Another minor complication concerns the recognition of newlines, which are different
on Unix and Windows (i.e., \n versus \r\n). By default, Python operates in what’s known
as “universal newline” mode. In this mode, all common newline conventions are rec‐
ognized, and newline characters are converted to a single \n character while reading.
Similarly, the newline character \n is converted to the system default newline character

142 | Chapter 5: Files and I/O

on output. If you don’t want this translation, supply the newline='' argument to
open(), like this:

Read with disabled newline translation
with open('somefile.txt', 'rt', newline='') as f:
 ...

To illustrate the difference, here’s what you will see on a Unix machine if you read the
contents of a Windows-encoded text file containing the raw data hello world!\r\n:

>>> # Newline translation enabled (the default)
>>> f = open('hello.txt', 'rt')
>>> f.read()
'hello world!\n'

>>> # Newline translation disabled
>>> g = open('hello.txt', 'rt', newline='')
>>> g.read()
'hello world!\r\n'
>>>

A final issue concerns possible encoding errors in text files. When reading or writing a
text file, you might encounter an encoding or decoding error. For instance:

>>> f = open('sample.txt', 'rt', encoding='ascii')
>>> f.read()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python3.3/encodings/ascii.py", line 26, in decode
 return codecs.ascii_decode(input, self.errors)[0]
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position
12: ordinal not in range(128)
>>>

If you get this error, it usually means that you’re not reading the file in the correct
encoding. You should carefully read the specification of whatever it is that you’re reading
and check that you’re doing it right (e.g., reading data as UTF-8 instead of Latin-1 or
whatever it needs to be). If encoding errors are still a possibility, you can supply an
optional errors argument to open() to deal with the errors. Here are a few samples of
common error handling schemes:

>>> # Replace bad chars with Unicode U+fffd replacement char
>>> f = open('sample.txt', 'rt', encoding='ascii', errors='replace')
>>> f.read()
'Spicy Jalape?o!'
>>> # Ignore bad chars entirely
>>> g = open('sample.txt', 'rt', encoding='ascii', errors='ignore')
>>> g.read()
'Spicy Jalapeo!'
>>>

5.1. Reading and Writing Text Data | 143

If you’re constantly fiddling with the encoding and errors arguments to open() and
doing lots of hacks, you’re probably making life more difficult than it needs to be. The
number one rule with text is that you simply need to make sure you’re always using the
proper text encoding. When in doubt, use the default setting (typically UTF-8).

5.2. Printing to a File
Problem
You want to redirect the output of the print() function to a file.

Solution
Use the file keyword argument to print(), like this:

with open('somefile.txt', 'rt') as f:
 print('Hello World!', file=f)

Discussion
There’s not much more to printing to a file other than this. However, make sure that the
file is opened in text mode. Printing will fail if the underlying file is in binary mode.

5.3. Printing with a Different Separator or Line Ending
Problem
You want to output data using print(), but you also want to change the separator
character or line ending.

Solution
Use the sep and end keyword arguments to print() to change the output as you wish.
For example:

>>> print('ACME', 50, 91.5)
ACME 50 91.5
>>> print('ACME', 50, 91.5, sep=',')
ACME,50,91.5
>>> print('ACME', 50, 91.5, sep=',', end='!!\n')
ACME,50,91.5!!
>>>

Use of the end argument is also how you suppress the output of newlines in output. For
example:

144 | Chapter 5: Files and I/O

>>> for i in range(5):
... print(i)
...
0
1
2
3
4
>>> for i in range(5):
... print(i, end=' ')
...
0 1 2 3 4 >>>

Discussion
Using print() with a different item separator is often the easiest way to output data
when you need something other than a space separating the items. Sometimes you’ll
see programmers using str.join() to accomplish the same thing. For example:

>>> print(','.join('ACME','50','91.5'))
ACME,50,91.5
>>>

The problem with str.join() is that it only works with strings. This means that it’s
often necessary to perform various acrobatics to get it to work. For example:

>>> row = ('ACME', 50, 91.5)
>>> print(','.join(row))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: sequence item 1: expected str instance, int found
>>> print(','.join(str(x) for x in row))
ACME,50,91.5
>>>

Instead of doing that, you could just write the following:

>>> print(*row, sep=',')
ACME,50,91.5
>>>

5.4. Reading and Writing Binary Data
Problem
You need to read or write binary data, such as that found in images, sound files, and so
on.

5.4. Reading and Writing Binary Data | 145

Solution
Use the open() function with mode rb or wb to read or write binary data. For example:

Read the entire file as a single byte string
with open('somefile.bin', 'rb') as f:
 data = f.read()

Write binary data to a file
with open('somefile.bin', 'wb') as f:
 f.write(b'Hello World')

When reading binary, it is important to stress that all data returned will be in the form
of byte strings, not text strings. Similarly, when writing, you must supply data in the
form of objects that expose data as bytes (e.g., byte strings, bytearray objects, etc.).

Discussion
When reading binary data, the subtle semantic differences between byte strings and text
strings pose a potential gotcha. In particular, be aware that indexing and iteration return
integer byte values instead of byte strings. For example:

>>> # Text string
>>> t = 'Hello World'
>>> t[0]
'H'
>>> for c in t:
... print(c)
...
H
e
l
l
o
...
>>> # Byte string
>>> b = b'Hello World'
>>> b[0]
72
>>> for c in b:
... print(c)
...
72
101
108
108
111
...
>>>

146 | Chapter 5: Files and I/O

If you ever need to read or write text from a binary-mode file, make sure you remember
to decode or encode it. For example:

with open('somefile.bin', 'rb') as f:
 data = f.read(16)
 text = data.decode('utf-8')

with open('somefile.bin', 'wb') as f:
 text = 'Hello World'
 f.write(text.encode('utf-8'))

A lesser-known aspect of binary I/O is that objects such as arrays and C structures can
be used for writing without any kind of intermediate conversion to a bytes object. For
example:

import array
nums = array.array('i', [1, 2, 3, 4])
with open('data.bin','wb') as f:
 f.write(nums)

This applies to any object that implements the so-called “buffer interface,” which directly
exposes an underlying memory buffer to operations that can work with it. Writing
binary data is one such operation.

Many objects also allow binary data to be directly read into their underlying memory
using the readinto() method of files. For example:

>>> import array
>>> a = array.array('i', [0, 0, 0, 0, 0, 0, 0, 0])
>>> with open('data.bin', 'rb') as f:
... f.readinto(a)
...
16
>>> a
array('i', [1, 2, 3, 4, 0, 0, 0, 0])
>>>

However, great care should be taken when using this technique, as it is often platform
specific and may depend on such things as the word size and byte ordering (i.e., big
endian versus little endian). See Recipe 5.9 for another example of reading binary data
into a mutable buffer.

5.5. Writing to a File That Doesn’t Already Exist
Problem
You want to write data to a file, but only if it doesn’t already exist on the filesystem.

5.5. Writing to a File That Doesn’t Already Exist | 147

Solution
This problem is easily solved by using the little-known x mode to open() instead of the
usual w mode. For example:

>>> with open('somefile', 'wt') as f:
... f.write('Hello\n')
...
>>> with open('somefile', 'xt') as f:
... f.write('Hello\n')
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
FileExistsError: [Errno 17] File exists: 'somefile'
>>>

If the file is binary mode, use mode xb instead of xt.

Discussion
This recipe illustrates an extremely elegant solution to a problem that sometimes arises
when writing files (i.e., accidentally overwriting an existing file). An alternative solution
is to first test for the file like this:

>>> import os
>>> if not os.path.exists('somefile'):
... with open('somefile', 'wt') as f:
... f.write('Hello\n')
... else:
... print('File already exists!')
...
File already exists!
>>>

Clearly, using the x file mode is a lot more straightforward. It is important to note that
the x mode is a Python 3 specific extension to the open() function. In particular, no
such mode exists in earlier Python versions or the underlying C libraries used in Python’s
implementation.

5.6. Performing I/O Operations on a String
Problem
You want to feed a text or binary string to code that’s been written to operate on file-
like objects instead.

148 | Chapter 5: Files and I/O

Solution
Use the io.StringIO() and io.BytesIO() classes to create file-like objects that operate
on string data. For example:

>>> s = io.StringIO()
>>> s.write('Hello World\n')
12
>>> print('This is a test', file=s)
15
>>> # Get all of the data written so far
>>> s.getvalue()
'Hello World\nThis is a test\n'
>>>

>>> # Wrap a file interface around an existing string
>>> s = io.StringIO('Hello\nWorld\n')
>>> s.read(4)
'Hell'
>>> s.read()
'o\nWorld\n'
>>>

The io.StringIO class should only be used for text. If you are operating with binary
data, use the io.BytesIO class instead. For example:

>>> s = io.BytesIO()
>>> s.write(b'binary data')
>>> s.getvalue()
b'binary data'
>>>

Discussion
The StringIO and BytesIO classes are most useful in scenarios where you need to mimic
a normal file for some reason. For example, in unit tests, you might use StringIO to
create a file-like object containing test data that’s fed into a function that would otherwise
work with a normal file.

Be aware that StringIO and BytesIO instances don’t have a proper integer file-
descriptor. Thus, they do not work with code that requires the use of a real system-level
file such as a file, pipe, or socket.

5.7. Reading and Writing Compressed Datafiles
Problem
You need to read or write data in a file with gzip or bz2 compression.

5.7. Reading and Writing Compressed Datafiles | 149

Solution
The gzip and bz2 modules make it easy to work with such files. Both modules provide
an alternative implementation of open() that can be used for this purpose. For example,
to read compressed files as text, do this:

gzip compression
import gzip
with gzip.open('somefile.gz', 'rt') as f:
 text = f.read()

bz2 compression
import bz2
with bz2.open('somefile.bz2', 'rt') as f:
 text = f.read()

Similarly, to write compressed data, do this:

gzip compression
import gzip
with gzip.open('somefile.gz', 'wt') as f:
 f.write(text)

bz2 compression
import bz2
with bz2.open('somefile.bz2', 'wt') as f:
 f.write(text)

As shown, all I/O will use text and perform Unicode encoding/decoding. If you want
to work with binary data instead, use a file mode of rb or wb.

Discussion
For the most part, reading or writing compressed data is straightforward. However, be
aware that choosing the correct file mode is critically important. If you don’t specify a
mode, the default mode is binary, which will break programs that expect to receive text.
Both gzip.open() and bz2.open() accept the same parameters as the built-in open()
function, including encoding, errors, newline, and so forth.

When writing compressed data, the compression level can be optionally specified using
the compresslevel keyword argument. For example:

with gzip.open('somefile.gz', 'wt', compresslevel=5) as f:
 f.write(text)

The default level is 9, which provides the highest level of compression. Lower levels offer
better performance, but not as much compression.

Finally, a little-known feature of gzip.open() and bz2.open() is that they can be layered
on top of an existing file opened in binary mode. For example, this works:

150 | Chapter 5: Files and I/O

import gzip

f = open('somefile.gz', 'rb')
with gzip.open(f, 'rt') as g:
 text = g.read()

This allows the gzip and bz2 modules to work with various file-like objects such as
sockets, pipes, and in-memory files.

5.8. Iterating Over Fixed-Sized Records
Problem
Instead of iterating over a file by lines, you want to iterate over a collection of fixed-
sized records or chunks.

Solution
Use the iter() function and functools.partial() using this neat trick:

from functools import partial

RECORD_SIZE = 32

with open('somefile.data', 'rb') as f:
 records = iter(partial(f.read, RECORD_SIZE), b'')
 for r in records:
 ...

The records object in this example is an iterable that will produce fixed-sized chunks
until the end of the file is reached. However, be aware that the last item may have fewer
bytes than expected if the file size is not an exact multiple of the record size.

Discussion
A little-known feature of the iter() function is that it can create an iterator if you pass
it a callable and a sentinel value. The resulting iterator simply calls the supplied callable
over and over again until it returns the sentinel, at which point iteration stops.

In the solution, the functools.partial is used to create a callable that reads a fixed
number of bytes from a file each time it’s called. The sentinel of b'' is what gets returned
when a file is read but the end of file has been reached.

Last, but not least, the solution shows the file being opened in binary mode. For reading
fixed-sized records, this would probably be the most common case. For text files, reading
line by line (the default iteration behavior) is more common.

5.8. Iterating Over Fixed-Sized Records | 151

5.9. Reading Binary Data into a Mutable Buffer
Problem
You want to read binary data directly into a mutable buffer without any intermediate
copying. Perhaps you want to mutate the data in-place and write it back out to a file.

Solution
To read data into a mutable array, use the readinto() method of files. For example:

import os.path

def read_into_buffer(filename):
 buf = bytearray(os.path.getsize(filename))
 with open(filename, 'rb') as f:
 f.readinto(buf)
 return buf

Here is an example that illustrates the usage:

>>> # Write a sample file
>>> with open('sample.bin', 'wb') as f:
... f.write(b'Hello World')
...
>>> buf = read_into_buffer('sample.bin')
>>> buf
bytearray(b'Hello World')
>>> buf[0:5] = b'Hallo'
>>> buf
bytearray(b'Hallo World')
>>> with open('newsample.bin', 'wb') as f:
... f.write(buf)
...
11
>>>

Discussion
The readinto() method of files can be used to fill any preallocated array with data. This
even includes arrays created from the array module or libraries such as numpy. Unlike
the normal read() method, readinto() fills the contents of an existing buffer rather
than allocating new objects and returning them. Thus, you might be able to use it to
avoid making extra memory allocations. For example, if you are reading a binary file
consisting of equally sized records, you can write code like this:

record_size = 32 # Size of each record (adjust value)

buf = bytearray(record_size)
with open('somefile', 'rb') as f:

152 | Chapter 5: Files and I/O

 while True:
 n = f.readinto(buf)
 if n < record_size:
 break
 # Use the contents of buf
 ...

Another interesting feature to use here might be a memoryview, which lets you make
zero-copy slices of an existing buffer and even change its contents. For example:

>>> buf
bytearray(b'Hello World')
>>> m1 = memoryview(buf)
>>> m2 = m1[-5:]
>>> m2
<memory at 0x100681390>
>>> m2[:] = b'WORLD'
>>> buf
bytearray(b'Hello WORLD')
>>>

One caution with using f.readinto() is that you must always make sure to check its
return code, which is the number of bytes actually read.

If the number of bytes is smaller than the size of the supplied buffer, it might indicate
truncated or corrupted data (e.g., if you were expecting an exact number of bytes to be
read).

Finally, be on the lookout for other “into” related functions in various library modules
(e.g., recv_into(), pack_into(), etc.). Many other parts of Python have support for
direct I/O or data access that can be used to fill or alter the contents of arrays and buffers.

See Recipe 6.12 for a significantly more advanced example of interpreting binary struc‐
tures and usage of memoryviews.

5.10. Memory Mapping Binary Files
Problem
You want to memory map a binary file into a mutable byte array, possibly for random
access to its contents or to make in-place modifications.

Solution
Use the mmap module to memory map files. Here is a utility function that shows how to
open a file and memory map it in a portable manner:

import os
import mmap

5.10. Memory Mapping Binary Files | 153

def memory_map(filename, access=mmap.ACCESS_WRITE):
 size = os.path.getsize(filename)
 fd = os.open(filename, os.O_RDWR)
 return mmap.mmap(fd, size, access=access)

To use this function, you would need to have a file already created and filled with data.
Here is an example of how you could initially create a file and expand it to a desired
size:

>>> size = 1000000
>>> with open('data', 'wb') as f:
... f.seek(size-1)
... f.write(b'\x00')
...
>>>

Now here is an example of memory mapping the contents using the memory_map()
function:

>>> m = memory_map('data')
>>> len(m)
1000000
>>> m[0:10]
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
>>> m[0]
0
>>> # Reassign a slice
>>> m[0:11] = b'Hello World'
>>> m.close()

>>> # Verify that changes were made
>>> with open('data', 'rb') as f:
... print(f.read(11))
...
b'Hello World'
>>>

The mmap object returned by mmap() can also be used as a context manager, in which
case the underlying file is closed automatically. For example:

>>> with memory_map('data') as m:
... print(len(m))
... print(m[0:10])
...
1000000
b'Hello World'
>>> m.closed
True
>>>

By default, the memory_map() function shown opens a file for both reading and writing.
Any modifications made to the data are copied back to the original file. If read-only

154 | Chapter 5: Files and I/O

access is needed instead, supply mmap.ACCESS_READ for the access argument. For
example:

m = memory_map(filename, mmap.ACCESS_READ)

If you intend to modify the data locally, but don’t want those changes written back to
the original file, use mmap.ACCESS_COPY:

m = memory_map(filename, mmap.ACCESS_COPY)

Discussion
Using mmap to map files into memory can be an efficient and elegant means for randomly
accessing the contents of a file. For example, instead of opening a file and performing
various combinations of seek(), read(), and write() calls, you can simply map the
file and access the data using slicing operations.

Normally, the memory exposed by mmap() looks like a bytearray object. However, you
can interpret the data differently using a memoryview. For example:

>>> m = memory_map('data')
>>> # Memoryview of unsigned integers
>>> v = memoryview(m).cast('I')
>>> v[0] = 7
>>> m[0:4]
b'\x07\x00\x00\x00'
>>> m[0:4] = b'\x07\x01\x00\x00'
>>> v[0]
263
>>>

It should be emphasized that memory mapping a file does not cause the entire file to be
read into memory. That is, it’s not copied into some kind of memory buffer or array.
Instead, the operating system merely reserves a section of virtual memory for the file
contents. As you access different regions, those portions of the file will be read and
mapped into the memory region as needed. However, parts of the file that are never
accessed simply stay on disk. This all happens transparently, behind the scenes.

If more than one Python interpreter memory maps the same file, the resulting mmap
object can be used to exchange data between interpreters. That is, all interpreters can
read/write data simultaneously, and changes made to the data in one interpreter will
automatically appear in the others. Obviously, some extra care is required to synchronize
things, but this kind of approach is sometimes used as an alternative to transmitting
data in messages over pipes or sockets.

As shown, this recipe has been written to be as general purpose as possible, working on
both Unix and Windows. Be aware that there are some platform differences concerning
the use of the mmap() call hidden behind the scenes. In addition, there are options to

5.10. Memory Mapping Binary Files | 155

create anonymously mapped memory regions. If this is of interest to you, make sure
you carefully read the Python documentation on the subject.

5.11. Manipulating Pathnames
Problem
You need to manipulate pathnames in order to find the base filename, directory name,
absolute path, and so on.

Solution
To manipulate pathnames, use the functions in the os.path module. Here is an inter‐
active example that illustrates a few key features:

>>> import os
>>> path = '/Users/beazley/Data/data.csv'

>>> # Get the last component of the path
>>> os.path.basename(path)
'data.csv'

>>> # Get the directory name
>>> os.path.dirname(path)
'/Users/beazley/Data'

>>> # Join path components together
>>> os.path.join('tmp', 'data', os.path.basename(path))
'tmp/data/data.csv'

>>> # Expand the user's home directory
>>> path = '~/Data/data.csv'
>>> os.path.expanduser(path)
'/Users/beazley/Data/data.csv'

>>> # Split the file extension
>>> os.path.splitext(path)
('~/Data/data', '.csv')
>>>

Discussion
For any manipulation of filenames, you should use the os.path module instead of trying
to cook up your own code using the standard string operations. In part, this is for
portability. The os.path module knows about differences between Unix and Windows
and can reliably deal with filenames such as Data/data.csv and Data\data.csv. Second,
you really shouldn’t spend your time reinventing the wheel. It’s usually best to use the
functionality that’s already provided for you.

156 | Chapter 5: Files and I/O

http://docs.python.org/3/library/mmap.html

It should be noted that the os.path module has many more features not shown in this
recipe. Consult the documentation for more functions related to file testing, symbolic
links, and so forth.

5.12. Testing for the Existence of a File
Problem
You need to test whether or not a file or directory exists.

Solution
Use the os.path module to test for the existence of a file or directory. For example:

>>> import os
>>> os.path.exists('/etc/passwd')
True
>>> os.path.exists('/tmp/spam')
False
>>>

You can perform further tests to see what kind of file it might be. These tests return
False if the file in question doesn’t exist:

>>> # Is a regular file
>>> os.path.isfile('/etc/passwd')
True

>>> # Is a directory
>>> os.path.isdir('/etc/passwd')
False

>>> # Is a symbolic link
>>> os.path.islink('/usr/local/bin/python3')
True

>>> # Get the file linked to
>>> os.path.realpath('/usr/local/bin/python3')
'/usr/local/bin/python3.3'
>>>

If you need to get metadata (e.g., the file size or modification date), that is also available
in the os.path module.

>>> os.path.getsize('/etc/passwd')
3669
>>> os.path.getmtime('/etc/passwd')
1272478234.0
>>> import time
>>> time.ctime(os.path.getmtime('/etc/passwd'))

5.12. Testing for the Existence of a File | 157

'Wed Apr 28 13:10:34 2010'
>>>

Discussion
File testing is a straightforward operation using os.path. Probably the only thing to be
aware of when writing scripts is that you might need to worry about permissions—
especially for operations that get metadata. For example:

>>> os.path.getsize('/Users/guido/Desktop/foo.txt')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python3.3/genericpath.py", line 49, in getsize
 return os.stat(filename).st_size
PermissionError: [Errno 13] Permission denied: '/Users/guido/Desktop/foo.txt'
>>>

5.13. Getting a Directory Listing
Problem
You want to get a list of the files contained in a directory on the filesystem.

Solution
Use the os.listdir() function to obtain a list of files in a directory:

import os
names = os.listdir('somedir')

This will give you the raw directory listing, including all files, subdirectories, symbolic
links, and so forth. If you need to filter the data in some way, consider using a list
comprehension combined with various functions in the os.path library. For example:

import os.path
Get all regular files
names = [name for name in os.listdir('somedir')
 if os.path.isfile(os.path.join('somedir', name))]

Get all dirs
dirnames = [name for name in os.listdir('somedir')
 if os.path.isdir(os.path.join('somedir', name))]

The startswith() and endswith() methods of strings can be useful for filtering the
contents of a directory as well. For example:

pyfiles = [name for name in os.listdir('somedir')
 if name.endswith('.py')]

158 | Chapter 5: Files and I/O

For filename matching, you may want to use the glob or fnmatch modules instead. For
example:

import glob
pyfiles = glob.glob('somedir/*.py')

from fnmatch import fnmatch
pyfiles = [name for name in os.listdir('somedir')
 if fnmatch(name, '*.py')]

Discussion
Getting a directory listing is easy, but it only gives you the names of entries in the
directory. If you want to get additional metadata, such as file sizes, modification dates,
and so forth, you either need to use additional functions in the os.path module or use
the os.stat() function. To collect the data. For example:

Example of getting a directory listing

import os
import os.path
import glob

pyfiles = glob.glob('*.py')

Get file sizes and modification dates
name_sz_date = [(name, os.path.getsize(name), os.path.getmtime(name))
 for name in pyfiles]

for name, size, mtime in name_sz_date:
 print(name, size, mtime)

Alternative: Get file metadata
file_metadata = [(name, os.stat(name)) for name in pyfiles]
for name, meta in file_metadata:
 print(name, meta.st_size, meta.st_mtime)

Last, but not least, be aware that there are subtle issues that can arise in filename handling
related to encodings. Normally, the entries returned by a function such as os.list
dir() are decoded according to the system default filename encoding. However, it’s
possible under certain circumstances to encounter un-decodable filenames. Recipes
5.14 and 5.15 have more details about handling such names.

5.13. Getting a Directory Listing | 159

5.14. Bypassing Filename Encoding
Problem
You want to perform file I/O operations using raw filenames that have not been decoded
or encoded according to the default filename encoding.

Solution
By default, all filenames are encoded and decoded according to the text encoding re‐
turned by sys.getfilesystemencoding(). For example:

>>> sys.getfilesystemencoding()
'utf-8'
>>>

If you want to bypass this encoding for some reason, specify a filename using a raw byte
string instead. For example:

>>> # Wrte a file using a unicode filename
>>> with open('jalape\xf1o.txt', 'w') as f:
... f.write('Spicy!')
...
6
>>> # Directory listing (decoded)
>>> import os
>>> os.listdir('.')
['jalapeño.txt']

>>> # Directory listing (raw)
>>> os.listdir(b'.') # Note: byte string
[b'jalapen\xcc\x83o.txt']

>>> # Open file with raw filename
>>> with open(b'jalapen\xcc\x83o.txt') as f:
... print(f.read())
...
Spicy!
>>>

As you can see in the last two operations, the filename handling changes ever so slightly
when byte strings are supplied to file-related functions, such as open() and os.list
dir().

Discussion
Under normal circumstances, you shouldn’t need to worry about filename encoding
and decoding—normal filename operations should just work. However, many operating
systems may allow a user through accident or malice to create files with names that don’t

160 | Chapter 5: Files and I/O

conform to the expected encoding rules. Such filenames may mysteriously break Python
programs that work with a lot of files.

Reading directories and working with filenames as raw undecoded bytes has the po‐
tential to avoid such problems, albeit at the cost of programming convenience.

See Recipe 5.15 for a recipe on printing undecodable filenames.

5.15. Printing Bad Filenames
Problem
Your program received a directory listing, but when it tried to print the filenames, it
crashed with a UnicodeEncodeError exception and a cryptic message about “surrogates
not allowed.”

Solution
When printing filenames of unknown origin, use this convention to avoid errors:

def bad_filename(filename):
 return repr(filename)[1:-1]

try:
 print(filename)
except UnicodeEncodeError:
 print(bad_filename(filename))

Discussion
This recipe is about a potentially rare but very annoying problem regarding programs
that must manipulate the filesystem. By default, Python assumes that all filenames are
encoded according to the setting reported by sys.getfilesystemencoding(). How‐
ever, certain filesystems don’t necessarily enforce this encoding restriction, thereby al‐
lowing files to be created without proper filename encoding. It’s not common, but there
is always the danger that some user will do something silly and create such a file by
accident (e.g., maybe passing a bad filename to open() in some buggy code).

When executing a command such as os.listdir(), bad filenames leave Python in a
bind. On the one hand, it can’t just discard bad names. On the other hand, it still can’t
turn the filename into a proper text string. Python’s solution to this problem is to take
an undecodable byte value \xhh in a filename and map it into a so-called “surrogate
encoding” represented by the Unicode character \udchh. Here is an example of how a
bad directory listing might look if it contained a filename bäd.txt, encoded as Latin-1
instead of UTF-8:

5.15. Printing Bad Filenames | 161

>>> import os
>>> files = os.listdir('.')
>>> files
['spam.py', 'b\udce4d.txt', 'foo.txt']
>>>

If you have code that manipulates filenames or even passes them to functions such as
open(), everything works normally. It’s only in situations where you want to output the
filename that you run into trouble (e.g., printing it to the screen, logging it, etc.). Specif‐
ically, if you tried to print the preceding listing, your program will crash:

>>> for name in files:
... print(name)
...
spam.py
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
UnicodeEncodeError: 'utf-8' codec can't encode character '\udce4' in
position 1: surrogates not allowed
>>>

The reason it crashes is that the character \udce4 is technically invalid Unicode. It’s
actually the second half of a two-character combination known as a surrogate pair.
However, since the first half is missing, it’s invalid Unicode. Thus, the only way to pro‐
duce successful output is to take corrective action when a bad filename is encountered.
For example, changing the code to the recipe produces the following:

>>> for name in files:
... try:
... print(name)
... except UnicodeEncodeError:
... print(bad_filename(name))
...
spam.py
b\udce4d.txt
foo.txt
>>>

The choice of what to do for the bad_filename() function is largely up to you. Another
option is to re-encode the value in some way, like this:

def bad_filename(filename):
 temp = filename.encode(sys.getfilesystemencoding(), errors='surrogateescape')
 return temp.decode('latin-1')

Using this version produces the following output:

>>> for name in files:
... try:
... print(name)
... except UnicodeEncodeError:
... print(bad_filename(name))
...

162 | Chapter 5: Files and I/O

spam.py
bäd.txt
foo.txt
>>>

This recipe will likely be ignored by most readers. However, if you’re writing mission-
critical scripts that need to work reliably with filenames and the filesystem, it’s something
to think about. Otherwise, you might find yourself called back into the office over the
weekend to debug a seemingly inscrutable error.

5.16. Adding or Changing the Encoding of an Already
Open File
Problem
You want to add or change the Unicode encoding of an already open file without closing
it first.

Solution
If you want to add Unicode encoding/decoding to an already existing file object that’s
opened in binary mode, wrap it with an io.TextIOWrapper() object. For example:

import urllib.request
import io

u = urllib.request.urlopen('http://www.python.org')
f = io.TextIOWrapper(u,encoding='utf-8')
text = f.read()

If you want to change the encoding of an already open text-mode file, use its detach()
method to remove the existing text encoding layer before replacing it with a new one.
Here is an example of changing the encoding on sys.stdout:

>>> import sys
>>> sys.stdout.encoding
'UTF-8'
>>> sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding='latin-1')
>>> sys.stdout.encoding
'latin-1'
>>>

Doing this might break the output of your terminal. It’s only meant to illustrate.

Discussion
The I/O system is built as a series of layers. You can see the layers yourself by trying this
simple example involving a text file:

5.16. Adding or Changing the Encoding of an Already Open File | 163

>>> f = open('sample.txt','w')
>>> f
<_io.TextIOWrapper name='sample.txt' mode='w' encoding='UTF-8'>
>>> f.buffer
<_io.BufferedWriter name='sample.txt'>
>>> f.buffer.raw
<_io.FileIO name='sample.txt' mode='wb'>
>>>

In this example, io.TextIOWrapper is a text-handling layer that encodes and decodes
Unicode, io.BufferedWriter is a buffered I/O layer that handles binary data, and
io.FileIO is a raw file representing the low-level file descriptor in the operating system.
Adding or changing the text encoding involves adding or changing the topmost
io.TextIOWrapper layer.

As a general rule, it’s not safe to directly manipulate the different layers by accessing the
attributes shown. For example, see what happens if you try to change the encoding using
this technique:

>>> f
<_io.TextIOWrapper name='sample.txt' mode='w' encoding='UTF-8'>
>>> f = io.TextIOWrapper(f.buffer, encoding='latin-1')
>>> f
<_io.TextIOWrapper name='sample.txt' encoding='latin-1'>
>>> f.write('Hello')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: I/O operation on closed file.
>>>

It doesn’t work because the original value of f got destroyed and closed the underlying
file in the process.

The detach() method disconnects the topmost layer of a file and returns the next lower
layer. Afterward, the top layer will no longer be usable. For example:

>>> f = open('sample.txt', 'w')
>>> f
<_io.TextIOWrapper name='sample.txt' mode='w' encoding='UTF-8'>
>>> b = f.detach()
>>> b
<_io.BufferedWriter name='sample.txt'>
>>> f.write('hello')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: underlying buffer has been detached
>>>

Once detached, however, you can add a new top layer to the returned result. For example:

>>> f = io.TextIOWrapper(b, encoding='latin-1')
>>> f

164 | Chapter 5: Files and I/O

<_io.TextIOWrapper name='sample.txt' encoding='latin-1'>
>>>

Although changing the encoding has been shown, it is also possible to use this technique
to change the line handling, error policy, and other aspects of file handling. For example:

>>> sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding='ascii',
... errors='xmlcharrefreplace')
>>> print('Jalape\u00f1o')
Jalapeño
>>>

Notice how the non-ASCII character ñ has been replaced by ñ in the output.

5.17. Writing Bytes to a Text File
Problem
You want to write raw bytes to a file opened in text mode.

Solution
Simply write the byte data to the files underlying buffer. For example:

>>> import sys
>>> sys.stdout.write(b'Hello\n')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: must be str, not bytes
>>> sys.stdout.buffer.write(b'Hello\n')
Hello
5
>>>

Similarly, binary data can be read from a text file by reading from its buffer attribute
instead.

Discussion
The I/O system is built from layers. Text files are constructed by adding a Unicode
encoding/decoding layer on top of a buffered binary-mode file. The buffer attribute
simply points at this underlying file. If you access it, you’ll bypass the text encoding/
decoding layer.

The example involving sys.stdout might be viewed as a special case. By default,
sys.stdout is always opened in text mode. However, if you are writing a script that
actually needs to dump binary data to standard output, you can use the technique shown
to bypass the text encoding.)

5.17. Writing Bytes to a Text File | 165

5.18. Wrapping an Existing File Descriptor As a File Object
Problem
You have an integer file descriptor correponding to an already open I/O channel on the
operating system (e.g., file, pipe, socket, etc.), and you want to wrap a higher-level
Python file object around it.

Solution
A file descriptor is different than a normal open file in that it is simply an integer handle
assigned by the operating system to refer to some kind of system I/O channel. If you
happen to have such a file descriptor, you can wrap a Python file object around it using
the open() function. However, you simply supply the integer file descriptor as the first
argument instead of the filename. For example:

Open a low-level file descriptor
import os
fd = os.open('somefile.txt', os.O_WRONLY | os.O_CREAT)

Turn into a proper file
f = open(fd, 'wt')
f.write('hello world\n')
f.close()

When the high-level file object is closed or destroyed, the underlying file descriptor will
also be closed. If this is not desired, supply the optional closefd=False argument to
open(). For example:

Create a file object, but don't close underlying fd when done
f = open(fd, 'wt', closefd=False)
...

Discussion
On Unix systems, this technique of wrapping a file descriptor can be a convenient means
for putting a file-like interface on an existing I/O channel that was opened in a different
way (e.g., pipes, sockets, etc.). For instance, here is an example involving sockets:

from socket import socket, AF_INET, SOCK_STREAM

def echo_client(client_sock, addr):
 print('Got connection from', addr)

 # Make text-mode file wrappers for socket reading/writing
 client_in = open(client_sock.fileno(), 'rt', encoding='latin-1',
 closefd=False)
 client_out = open(client_sock.fileno(), 'wt', encoding='latin-1',
 closefd=False)

166 | Chapter 5: Files and I/O

 # Echo lines back to the client using file I/O
 for line in client_in:
 client_out.write(line)
 client_out.flush()
 client_sock.close()

def echo_server(address):
 sock = socket(AF_INET, SOCK_STREAM)
 sock.bind(address)
 sock.listen(1)
 while True:
 client, addr = sock.accept()
 echo_client(client, addr)

It’s important to emphasize that the above example is only meant to illustrate a feature
of the built-in open() function and that it only works on Unix-based systems. If you are
trying to put a file-like interface on a socket and need your code to be cross platform,
use the makefile() method of sockets instead. However, if portability is not a concern,
you’ll find that the above solution provides much better performance than using make
file().

You can also use this to make a kind of alias that allows an already open file to be used
in a slightly different way than how it was first opened. For example, here’s how you
could create a file object that allows you to emit binary data on stdout (which is normally
opened in text mode):

import sys
Create a binary-mode file for stdout
bstdout = open(sys.stdout.fileno(), 'wb', closefd=False)
bstdout.write(b'Hello World\n')
bstdout.flush()

Although it’s possible to wrap an existing file descriptor as a proper file, be aware that
not all file modes may be supported and that certain kinds of file descriptors may have
funny side effects (especially with respect to error handling, end-of-file conditions, etc.).
The behavior can also vary according to operating system. In particular, none of the
examples are likely to work on non-Unix systems. The bottom line is that you’ll need
to thoroughly test your implementation to make sure it works as expected.

5.19. Making Temporary Files and Directories
Problem
You need to create a temporary file or directory for use when your program executes.
Afterward, you possibly want the file or directory to be destroyed.

5.19. Making Temporary Files and Directories | 167

Solution
The tempfile module has a variety of functions for performing this task. To make an
unnamed temporary file, use tempfile.TemporaryFile:

from tempfile import TemporaryFile

with TemporaryFile('w+t') as f:
 # Read/write to the file
 f.write('Hello World\n')
 f.write('Testing\n')

 # Seek back to beginning and read the data
 f.seek(0)
 data = f.read()

Temporary file is destroyed

Or, if you prefer, you can also use the file like this:

f = TemporaryFile('w+t')
Use the temporary file
...
f.close()
File is destroyed

The first argument to TemporaryFile() is the file mode, which is usually w+t for text
and w+b for binary. This mode simultaneously supports reading and writing, which is
useful here since closing the file to change modes would actually destroy it. Temporary
File() additionally accepts the same arguments as the built-in open() function. For
example:

with TemporaryFile('w+t', encoding='utf-8', errors='ignore') as f:
 ...

On most Unix systems, the file created by TemporaryFile() is unnamed and won’t even
have a directory entry. If you want to relax this constraint, use NamedTemporary
File() instead. For example:

from tempfile import NamedTemporaryFile

with NamedTemporaryFile('w+t') as f:
 print('filename is:', f.name)
 ...

File automatically destroyed

Here, the f.name attribute of the opened file contains the filename of the temporary file.
This can be useful if it needs to be given to some other code that needs to open the file.
As with TemporaryFile(), the resulting file is automatically deleted when it’s closed. If
you don’t want this, supply a delete=False keyword argument. For example:

168 | Chapter 5: Files and I/O

with NamedTemporaryFile('w+t', delete=False) as f:
 print('filename is:', f.name)
 ...

To make a temporary directory, use tempfile.TemporaryDirectory(). For example:

from tempfile import TemporaryDirectory
with TemporaryDirectory() as dirname:
 print('dirname is:', dirname)
 # Use the directory
 ...
Directory and all contents destroyed

Discussion
The TemporaryFile(), NamedTemporaryFile(), and TemporaryDirectory() functions
are probably the most convenient way to work with temporary files and directories,
because they automatically handle all of the steps of creation and subsequent cleanup.
At a lower level, you can also use the mkstemp() and mkdtemp() to create temporary
files and directories. For example:

>>> import tempfile
>>> tempfile.mkstemp()
(3, '/var/folders/7W/7WZl5sfZEF0pljrEB1UMWE+++TI/-Tmp-/tmp7fefhv')
>>> tempfile.mkdtemp()
'/var/folders/7W/7WZl5sfZEF0pljrEB1UMWE+++TI/-Tmp-/tmp5wvcv6'
>>>

However, these functions don’t really take care of further management. For example,
the mkstemp() function simply returns a raw OS file descriptor and leaves it up to you
to turn it into a proper file. Similarly, it’s up to you to clean up the files if you want.

Normally, temporary files are created in the system’s default location, such
as /var/tmp or similar. To find out the actual location, use the tempfile.gettemp
dir() function. For example:

>>> tempfile.gettempdir()
'/var/folders/7W/7WZl5sfZEF0pljrEB1UMWE+++TI/-Tmp-'
>>>

All of the temporary-file-related functions allow you to override this directory as well
as the naming conventions using the prefix, suffix, and dir keyword arguments. For
example:

>>> f = NamedTemporaryFile(prefix='mytemp', suffix='.txt', dir='/tmp')
>>> f.name
'/tmp/mytemp8ee899.txt'
>>>

Last, but not least, to the extent possible, the tempfile() module creates temporary
files in the most secure manner possible. This includes only giving access permission

5.19. Making Temporary Files and Directories | 169

to the current user and taking steps to avoid race conditions in file creation. Be aware
that there can be differences between platforms. Thus, you should make sure to check
the official documentation for the finer points.

5.20. Communicating with Serial Ports
Problem
You want to read and write data over a serial port, typically to interact with some kind
of hardware device (e.g., a robot or sensor).

Solution
Although you can probably do this directly using Python’s built-in I/O primitives, your
best bet for serial communication is to use the pySerial package. Getting started with
the package is very easy. You simply open up a serial port using code like this:

import serial
ser = serial.Serial('/dev/tty.usbmodem641', # Device name varies
 baudrate=9600,
 bytesize=8,
 parity='N',
 stopbits=1)

The device name will vary according to the kind of device and operating system. For
instance, on Windows, you can use a device of 0, 1, and so on, to open up the commu‐
nication ports such as “COM0” and “COM1.” Once open, you can read and write data
using read(), readline(), and write() calls. For example:

ser.write(b'G1 X50 Y50\r\n')
resp = ser.readline()

For the most part, simple serial communication should be pretty simple from this point
forward.

Discussion
Although simple on the surface, serial communication can sometimes get rather messy.
One reason you should use a package such as pySerial is that it provides support for
advanced features (e.g., timeouts, control flow, buffer flushing, handshaking, etc.). For
instance, if you want to enable RTS-CTS handshaking, you simply provide a
rtscts=True argument to Serial(). The provided documentation is excellent, so
there’s little benefit to paraphrasing it here.

Keep in mind that all I/O involving serial ports is binary. Thus, make sure you write
your code to use bytes instead of text (or perform proper text encoding/decoding as

170 | Chapter 5: Files and I/O

http://docs.python.org/3/library/tempfile.html
http://pyserial.sourceforge.net

needed). The struct module may also be useful should you need to create binary-coded
commands or packets.

5.21. Serializing Python Objects
Problem
You need to serialize a Python object into a byte stream so that you can do things such
as save it to a file, store it in a database, or transmit it over a network connection.

Solution
The most common approach for serializing data is to use the pickle module. To dump
an object to a file, you do this:

import pickle

data = ... # Some Python object
f = open('somefile', 'wb')
pickle.dump(data, f)

To dump an object to a string, use pickle.dumps():

s = pickle.dumps(data)

To re-create an object from a byte stream, use either the pickle.load() or pick
le.loads() functions. For example:

Restore from a file
f = open('somefile', 'rb')
data = pickle.load(f)

Restore from a string
data = pickle.loads(s)

Discussion
For most programs, usage of the dump() and load() function is all you need to effectively
use pickle. It simply works with most Python data types and instances of user-defined
classes. If you’re working with any kind of library that lets you do things such as save/
restore Python objects in databases or transmit objects over the network, there’s a pretty
good chance that pickle is being used.

pickle is a Python-specific self-describing data encoding. By self-describing, the seri‐
alized data contains information related to the start and end of each object as well as
information about its type. Thus, you don’t need to worry about defining records—it
simply works. For example, if working with multiple objects, you can do this:

5.21. Serializing Python Objects | 171

>>> import pickle
>>> f = open('somedata', 'wb')
>>> pickle.dump([1, 2, 3, 4], f)
>>> pickle.dump('hello', f)
>>> pickle.dump({'Apple', 'Pear', 'Banana'}, f)
>>> f.close()
>>> f = open('somedata', 'rb')
>>> pickle.load(f)
[1, 2, 3, 4]
>>> pickle.load(f)
'hello'
>>> pickle.load(f)
{'Apple', 'Pear', 'Banana'}
>>>

You can pickle functions, classes, and instances, but the resulting data only encodes
name references to the associated code objects. For example:

>>> import math
>>> import pickle.
>>> pickle.dumps(math.cos)
b'\x80\x03cmath\ncos\nq\x00.'
>>>

When the data is unpickled, it is assumed that all of the required source is available.
Modules, classes, and functions will automatically be imported as needed. For applica‐
tions where Python data is being shared between interpreters on different machines,
this is a potential maintenance issue, as all machines must have access to the same source
code.

pickle.load() should never be used on untrusted data. As a side effect
of loading, pickle will automatically load modules and make instances.
However, an evildoer who knows how pickle works can create “mal‐
formed” data that causes Python to execute arbitrary system com‐
mands. Thus, it’s essential that pickle only be used internally with in‐
terpreters that have some ability to authenticate one another.

Certain kinds of objects can’t be pickled. These are typically objects that involve some
sort of external system state, such as open files, open network connections, threads,
processes, stack frames, and so forth. User-defined classes can sometimes work around
these limitations by providing __getstate__() and __setstate__() methods. If de‐
fined, pickle.dump() will call __getstate__() to get an object that can be pickled.
Similarly, __setstate__() will be invoked on unpickling. To illustrate what’s possible,
here is a class that internally defines a thread but can still be pickled/unpickled:

countdown.py
import time
import threading

172 | Chapter 5: Files and I/O

class Countdown:
 def __init__(self, n):
 self.n = n
 self.thr = threading.Thread(target=self.run)
 self.thr.daemon = True
 self.thr.start()

 def run(self):
 while self.n > 0:
 print('T-minus', self.n)
 self.n -= 1
 time.sleep(5)

 def __getstate__(self):
 return self.n

 def __setstate__(self, n):
 self.__init__(n)

Try the following experiment involving pickling:

>>> import countdown
>>> c = countdown.Countdown(30)
>>> T-minus 30
T-minus 29
T-minus 28
...

>>> # After a few moments
>>> f = open('cstate.p', 'wb')
>>> import pickle
>>> pickle.dump(c, f)
>>> f.close()

Now quit Python and try this after restart:

>>> f = open('cstate.p', 'rb')
>>> pickle.load(f)
countdown.Countdown object at 0x10069e2d0>
T-minus 19
T-minus 18
...

You should see the thread magically spring to life again, picking up where it left off when
you first pickled it.

pickle is not a particularly efficient encoding for large data structures such as binary
arrays created by libraries like the array module or numpy. If you’re moving large
amounts of array data around, you may be better off simply saving bulk array data in a
file or using a more standardized encoding, such as HDF5 (supported by third-party
libraries).

5.21. Serializing Python Objects | 173

Because of its Python-specific nature and attachment to source code, you probably
shouldn’t use pickle as a format for long-term storage. For example, if the source code
changes, all of your stored data might break and become unreadable. Frankly, for storing
data in databases and archival storage, you’re probably better off using a more standard
data encoding, such as XML, CSV, or JSON. These encodings are more standardized,
supported by many different languages, and more likely to be better adapted to changes
in your source code.

Last, but not least, be aware that pickle has a huge variety of options and tricky corner
cases. For the most common uses, you don’t need to worry about them, but a look at
the official documentation should be required if you’re going to build a signficant ap‐
plication that uses pickle for serialization.

174 | Chapter 5: Files and I/O

http://docs.python.org/3/library/pickle.html

CHAPTER 6

Data Encoding and Processing

The main focus of this chapter is using Python to process data presented in different
kinds of common encodings, such as CSV files, JSON, XML, and binary packed records.
Unlike the chapter on data structures, this chapter is not focused on specific algorithms,
but instead on the problem of getting data in and out of a program.

6.1. Reading and Writing CSV Data
Problem
You want to read or write data encoded as a CSV file.

Solution
For most kinds of CSV data, use the csv library. For example, suppose you have some
stock market data in a file named stocks.csv like this:

 Symbol,Price,Date,Time,Change,Volume
 "AA",39.48,"6/11/2007","9:36am",-0.18,181800
 "AIG",71.38,"6/11/2007","9:36am",-0.15,195500
 "AXP",62.58,"6/11/2007","9:36am",-0.46,935000
 "BA",98.31,"6/11/2007","9:36am",+0.12,104800
 "C",53.08,"6/11/2007","9:36am",-0.25,360900
 "CAT",78.29,"6/11/2007","9:36am",-0.23,225400

Here’s how you would read the data as a sequence of tuples:

import csv
with open('stocks.csv') as f:
 f_csv = csv.reader(f)
 headers = next(f_csv)
 for row in f_csv:

175

 # Process row
 ...

In the preceding code, row will be a tuple. Thus, to access certain fields, you will need
to use indexing, such as row[0] (Symbol) and row[4] (Change).

Since such indexing can often be confusing, this is one place where you might want to
consider the use of named tuples. For example:

from collections import namedtuple
with open('stock.csv') as f:
 f_csv = csv.reader(f)
 headings = next(f_csv)
 Row = namedtuple('Row', headings)
 for r in f_csv:
 row = Row(*r)
 # Process row
 ...

This would allow you to use the column headers such as row.Symbol and row.Change
instead of indices. It should be noted that this only works if the column headers are valid
Python identifiers. If not, you might have to massage the initial headings (e.g., replacing
nonidentifier characters with underscores or similar).

Another alternative is to read the data as a sequence of dictionaries instead. To do that,
use this code:

import csv
with open('stocks.csv') as f:
 f_csv = csv.DictReader(f)
 for row in f_csv:
 # process row
 ...

In this version, you would access the elements of each row using the row headers. For
example, row['Symbol'] or row['Change'].

To write CSV data, you also use the csv module but create a writer object. For example:

headers = ['Symbol','Price','Date','Time','Change','Volume']
rows = [('AA', 39.48, '6/11/2007', '9:36am', -0.18, 181800),
 ('AIG', 71.38, '6/11/2007', '9:36am', -0.15, 195500),
 ('AXP', 62.58, '6/11/2007', '9:36am', -0.46, 935000),
]

with open('stocks.csv','w') as f:
 f_csv = csv.writer(f)
 f_csv.writerow(headers)
 f_csv.writerows(rows)

If you have the data as a sequence of dictionaries, do this:

176 | Chapter 6: Data Encoding and Processing

headers = ['Symbol', 'Price', 'Date', 'Time', 'Change', 'Volume']
rows = [{'Symbol':'AA', 'Price':39.48, 'Date':'6/11/2007',
 'Time':'9:36am', 'Change':-0.18, 'Volume':181800},
 {'Symbol':'AIG', 'Price': 71.38, 'Date':'6/11/2007',
 'Time':'9:36am', 'Change':-0.15, 'Volume': 195500},
 {'Symbol':'AXP', 'Price': 62.58, 'Date':'6/11/2007',
 'Time':'9:36am', 'Change':-0.46, 'Volume': 935000},
]

with open('stocks.csv','w') as f:
 f_csv = csv.DictWriter(f, headers)
 f_csv.writeheader()
 f_csv.writerows(rows)

Discussion
You should almost always prefer the use of the csv module over manually trying to split
and parse CSV data yourself. For instance, you might be inclined to just write some
code like this:

with open('stocks.csv') as f:
 for line in f:
 row = line.split(',')
 # process row
 ...

The problem with this approach is that you’ll still need to deal with some nasty details.
For example, if any of the fields are surrounded by quotes, you’ll have to strip the quotes.
In addition, if a quoted field happens to contain a comma, the code will break by pro‐
ducing a row with the wrong size.

By default, the csv library is programmed to understand CSV encoding rules used by
Microsoft Excel. This is probably the most common variant, and will likely give you the
best compatibility. However, if you consult the documentation for csv, you’ll see a few
ways to tweak the encoding to different formats (e.g., changing the separator character,
etc.). For example, if you want to read tab-delimited data instead, use this:

Example of reading tab-separated values
with open('stock.tsv') as f:
 f_tsv = csv.reader(f, delimiter='\t')
 for row in f_tsv:
 # Process row
 ...

If you’re reading CSV data and converting it into named tuples, you need to be a little
careful with validating column headers. For example, a CSV file could have a header
line containing nonvalid identifier characters like this:

Street Address,Num-Premises,Latitude,Longitude
5412 N CLARK,10,41.980262,-87.668452

6.1. Reading and Writing CSV Data | 177

This will actually cause the creation of a namedtuple to fail with a ValueError exception.
To work around this, you might have to scrub the headers first. For instance, carrying
a regex substitution on nonvalid identifier characters like this:

import re
with open('stock.csv') as f:
 f_csv = csv.reader(f)
 headers = [re.sub('[^a-zA-Z_]', '_', h) for h in next(f_csv)]
 Row = namedtuple('Row', headers)
 for r in f_csv:
 row = Row(*r)
 # Process row
 ...

It’s also important to emphasize that csv does not try to interpret the data or convert it
to a type other than a string. If such conversions are important, that is something you’ll
need to do yourself. Here is one example of performing extra type conversions on CSV
data:

col_types = [str, float, str, str, float, int]
with open('stocks.csv') as f:
 f_csv = csv.reader(f)
 headers = next(f_csv)
 for row in f_csv:
 # Apply conversions to the row items
 row = tuple(convert(value) for convert, value in zip(col_types, row))
 ...

Alternatively, here is an example of converting selected fields of dictionaries:

print('Reading as dicts with type conversion')
field_types = [('Price', float),
 ('Change', float),
 ('Volume', int)]

with open('stocks.csv') as f:
 for row in csv.DictReader(f):
 row.update((key, conversion(row[key]))
 for key, conversion in field_types)
 print(row)

In general, you’ll probably want to be a bit careful with such conversions, though. In
the real world, it’s common for CSV files to have missing values, corrupted data, and
other issues that would break type conversions. So, unless your data is guaranteed to be
error free, that’s something you’ll need to consider (you might need to add suitable
exception handling).

Finally, if your goal in reading CSV data is to perform data analysis and statistics, you
might want to look at the Pandas package. Pandas includes a convenient pan
das.read_csv() function that will load CSV data into a DataFrame object. From there,

178 | Chapter 6: Data Encoding and Processing

http://pandas.pydata.org

you can generate various summary statistics, filter the data, and perform other kinds of
high-level operations. An example is given in Recipe 6.13.

6.2. Reading and Writing JSON Data
Problem
You want to read or write data encoded as JSON (JavaScript Object Notation).

Solution
The json module provides an easy way to encode and decode data in JSON. The two
main functions are json.dumps() and json.loads(), mirroring the interface used in
other serialization libraries, such as pickle. Here is how you turn a Python data struc‐
ture into JSON:

import json

data = {
 'name' : 'ACME',
 'shares' : 100,
 'price' : 542.23
}

json_str = json.dumps(data)

Here is how you turn a JSON-encoded string back into a Python data structure:

data = json.loads(json_str)

If you are working with files instead of strings, you can alternatively use json.dump()
and json.load() to encode and decode JSON data. For example:

Writing JSON data
with open('data.json', 'w') as f:
 json.dump(data, f)

Reading data back
with open('data.json', 'r') as f:
 data = json.load(f)

Discussion
JSON encoding supports the basic types of None, bool, int, float, and str, as well as
lists, tuples, and dictionaries containing those types. For dictionaries, keys are assumed
to be strings (any nonstring keys in a dictionary are converted to strings when encoding).
To be compliant with the JSON specification, you should only encode Python lists and

6.2. Reading and Writing JSON Data | 179

dictionaries. Moreover, in web applications, it is standard practice for the top-level ob‐
ject to be a dictionary.

The format of JSON encoding is almost identical to Python syntax except for a few
minor changes. For instance, True is mapped to true, False is mapped to false, and
None is mapped to null. Here is an example that shows what the encoding looks like:

>>> json.dumps(False)
'false'
>>> d = {'a': True,
... 'b': 'Hello',
... 'c': None}
>>> json.dumps(d)
'{"b": "Hello", "c": null, "a": true}'
>>>

If you are trying to examine data you have decoded from JSON, it can often be hard to
ascertain its structure simply by printing it out—especially if the data contains a deep
level of nested structures or a lot of fields. To assist with this, consider using the pprint()
function in the pprint module. This will alphabetize the keys and output a dictionary
in a more sane way. Here is an example that illustrates how you would pretty print the
results of a search on Twitter:

>>> from urllib.request import urlopen
>>> import json
>>> u = urlopen('http://search.twitter.com/search.json?q=python&rpp=5')
>>> resp = json.loads(u.read().decode('utf-8'))
>>> from pprint import pprint
>>> pprint(resp)
{'completed_in': 0.074,
 'max_id': 264043230692245504,
 'max_id_str': '264043230692245504',
 'next_page': '?page=2&max_id=264043230692245504&q=python&rpp=5',
 'page': 1,
 'query': 'python',
 'refresh_url': '?since_id=264043230692245504&q=python',
 'results': [{'created_at': 'Thu, 01 Nov 2012 16:36:26 +0000',
 'from_user': ...
 },
 {'created_at': 'Thu, 01 Nov 2012 16:36:14 +0000',
 'from_user': ...
 },
 {'created_at': 'Thu, 01 Nov 2012 16:36:13 +0000',
 'from_user': ...
 },
 {'created_at': 'Thu, 01 Nov 2012 16:36:07 +0000',
 'from_user': ...
 }
 {'created_at': 'Thu, 01 Nov 2012 16:36:04 +0000',
 'from_user': ...
 }],

180 | Chapter 6: Data Encoding and Processing

 'results_per_page': 5,
 'since_id': 0,
 'since_id_str': '0'}
>>>

Normally, JSON decoding will create dicts or lists from the supplied data. If you want
to create different kinds of objects, supply the object_pairs_hook or object_hook to
json.loads(). For example, here is how you would decode JSON data, preserving its
order in an OrderedDict:

>>> s = '{"name": "ACME", "shares": 50, "price": 490.1}'
>>> from collections import OrderedDict
>>> data = json.loads(s, object_pairs_hook=OrderedDict)
>>> data
OrderedDict([('name', 'ACME'), ('shares', 50), ('price', 490.1)])
>>>

Here is how you could turn a JSON dictionary into a Python object:

>>> class JSONObject:
... def __init__(self, d):
... self.__dict__ = d
...
>>>
>>> data = json.loads(s, object_hook=JSONObject)
>>> data.name
'ACME'
>>> data.shares
50
>>> data.price
490.1
>>>

In this last example, the dictionary created by decoding the JSON data is passed as a
single argument to __init__(). From there, you are free to use it as you will, such as
using it directly as the instance dictionary of the object.

There are a few options that can be useful for encoding JSON. If you would like the
output to be nicely formatted, you can use the indent argument to json.dumps(). This
causes the output to be pretty printed in a format similar to that with the pprint()
function. For example:

>>> print(json.dumps(data))
{"price": 542.23, "name": "ACME", "shares": 100}
>>> print(json.dumps(data, indent=4))
{
 "price": 542.23,
 "name": "ACME",
 "shares": 100
}
>>>

6.2. Reading and Writing JSON Data | 181

If you want the keys to be sorted on output, used the sort_keys argument:

>>> print(json.dumps(data, sort_keys=True))
{"name": "ACME", "price": 542.23, "shares": 100}
>>>

Instances are not normally serializable as JSON. For example:

>>> class Point:
... def __init__(self, x, y):
... self.x = x
... self.y = y
...
>>> p = Point(2, 3)
>>> json.dumps(p)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python3.3/json/__init__.py", line 226, in dumps
 return _default_encoder.encode(obj)
 File "/usr/local/lib/python3.3/json/encoder.py", line 187, in encode
 chunks = self.iterencode(o, _one_shot=True)
 File "/usr/local/lib/python3.3/json/encoder.py", line 245, in iterencode
 return _iterencode(o, 0)
 File "/usr/local/lib/python3.3/json/encoder.py", line 169, in default
 raise TypeError(repr(o) + " is not JSON serializable")
TypeError: <__main__.Point object at 0x1006f2650> is not JSON serializable
>>>

If you want to serialize instances, you can supply a function that takes an instance as
input and returns a dictionary that can be serialized. For example:

def serialize_instance(obj):
 d = { '__classname__' : type(obj).__name__ }
 d.update(vars(obj))
 return d

If you want to get an instance back, you could write code like this:

Dictionary mapping names to known classes
classes = {
 'Point' : Point
}

def unserialize_object(d):
 clsname = d.pop('__classname__', None)
 if clsname:
 cls = classes[clsname]
 obj = cls.__new__(cls) # Make instance without calling __init__
 for key, value in d.items():
 setattr(obj, key, value)
 return obj
 else:
 return d

182 | Chapter 6: Data Encoding and Processing

Here is an example of how these functions are used:

>>> p = Point(2,3)
>>> s = json.dumps(p, default=serialize_instance)
>>> s
'{"__classname__": "Point", "y": 3, "x": 2}'
>>> a = json.loads(s, object_hook=unserialize_object)
>>> a
<__main__.Point object at 0x1017577d0>
>>> a.x
2
>>> a.y
3
>>>

The json module has a variety of other options for controlling the low-level interpre‐
tation of numbers, special values such as NaN, and more. Consult the documentation
for further details.

6.3. Parsing Simple XML Data
Problem
You would like to extract data from a simple XML document.

Solution
The xml.etree.ElementTree module can be used to extract data from simple XML
documents. To illustrate, suppose you want to parse and make a summary of the RSS
feed on Planet Python. Here is a script that will do it:

from urllib.request import urlopen
from xml.etree.ElementTree import parse

Download the RSS feed and parse it
u = urlopen('http://planet.python.org/rss20.xml')
doc = parse(u)

Extract and output tags of interest
for item in doc.iterfind('channel/item'):
 title = item.findtext('title')
 date = item.findtext('pubDate')
 link = item.findtext('link')

 print(title)
 print(date)
 print(link)
 print()

6.3. Parsing Simple XML Data | 183

http://docs.python.org/3/library/json.html
http://planet.python.org

If you run the preceding script, the output looks similar to the following:

 Steve Holden: Python for Data Analysis
 Mon, 19 Nov 2012 02:13:51 +0000
 http://holdenweb.blogspot.com/2012/11/python-for-data-analysis.html

 Vasudev Ram: The Python Data model (for v2 and v3)
 Sun, 18 Nov 2012 22:06:47 +0000
 http://jugad2.blogspot.com/2012/11/the-python-data-model.html

 Python Diary: Been playing around with Object Databases
 Sun, 18 Nov 2012 20:40:29 +0000
 http://www.pythondiary.com/blog/Nov.18,2012/been-...-object-databases.html

 Vasudev Ram: Wakari, Scientific Python in the cloud
 Sun, 18 Nov 2012 20:19:41 +0000
 http://jugad2.blogspot.com/2012/11/wakari-scientific-python-in-cloud.html

 Jesse Jiryu Davis: Toro: synchronization primitives for Tornado coroutines
 Sun, 18 Nov 2012 20:17:49 +0000
 http://feedproxy.google.com/~r/EmptysquarePython/~3/_DOZT2Kd0hQ/

Obviously, if you want to do more processing, you need to replace the print() state‐
ments with something more interesting.

Discussion
Working with data encoded as XML is commonplace in many applications. Not only is
XML widely used as a format for exchanging data on the Internet, it is a common format
for storing application data (e.g., word processing, music libraries, etc.). The discussion
that follows already assumes the reader is familiar with XML basics.

In many cases, when XML is simply being used to store data, the document structure
is compact and straightforward. For example, the RSS feed from the example looks
similar to the following:

 <?xml version="1.0"?>
 <rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/">
 <channel>
 <title>Planet Python</title>
 <link>http://planet.python.org/</link>
 <language>en</language>
 <description>Planet Python - http://planet.python.org/</description>
 <item>
 <title>Steve Holden: Python for Data Analysis</title>
 <guid>http://holdenweb.blogspot.com/...-data-analysis.html</guid>
 <link>http://holdenweb.blogspot.com/...-data-analysis.html</link>
 <description>...</description>
 <pubDate>Mon, 19 Nov 2012 02:13:51 +0000</pubDate>
 </item>
 <item>

184 | Chapter 6: Data Encoding and Processing

 <title>Vasudev Ram: The Python Data model (for v2 and v3)</title>
 <guid>http://jugad2.blogspot.com/...-data-model.html</guid>
 <link>http://jugad2.blogspot.com/...-data-model.html</link>
 <description>...</description>
 <pubDate>Sun, 18 Nov 2012 22:06:47 +0000</pubDate>
 </item>
 <item>
 <title>Python Diary: Been playing around with Object Databases</title>
 <guid>http://www.pythondiary.com/...-object-databases.html</guid>
 <link>http://www.pythondiary.com/...-object-databases.html</link>
 <description>...</description>
 <pubDate>Sun, 18 Nov 2012 20:40:29 +0000</pubDate>
 </item>
 ...
 </channel>
 </rss>

The xml.etree.ElementTree.parse() function parses the entire XML document into
a document object. From there, you use methods such as find(), iterfind(), and
findtext() to search for specific XML elements. The arguments to these functions are
the names of a specific tag, such as channel/item or title.

When specifying tags, you need to take the overall document structure into account.
Each find operation takes place relative to a starting element. Likewise, the tagname that
you supply to each operation is also relative to the start. In the example, the call to
doc.iterfind('channel/item') looks for all “item” elements under a “channel” ele‐
ment. doc represents the top of the document (the top-level “rss” element). The later
calls to item.findtext() take place relative to the found “item” elements.

Each element represented by the ElementTree module has a few essential attributes and
methods that are useful when parsing. The tag attribute contains the name of the tag,
the text attribute contains enclosed text, and the get() method can be used to extract
attributes (if any). For example:

>>> doc
<xml.etree.ElementTree.ElementTree object at 0x101339510>
>>> e = doc.find('channel/title')
>>> e
<Element 'title' at 0x10135b310>
>>> e.tag
'title'
>>> e.text
'Planet Python'
>>> e.get('some_attribute')
>>>

It should be noted that xml.etree.ElementTree is not the only option for XML parsing.
For more advanced applications, you might consider lxml. It uses the same program‐
ming interface as ElementTree, so the example shown in this recipe works in the same

6.3. Parsing Simple XML Data | 185

http://pypi.python.org/pypi/lxml

manner. You simply need to change the first import to from lxml.etree import
parse. lxml provides the benefit of being fully compliant with XML standards. It is also
extremely fast, and provides support for features such as validation, XSLT, and XPath.

6.4. Parsing Huge XML Files Incrementally
Problem
You need to extract data from a huge XML document using as little memory as possible.

Solution
Any time you are faced with the problem of incremental data processing, you should
think of iterators and generators. Here is a simple function that can be used to incre‐
mentally process huge XML files using a very small memory footprint:

from xml.etree.ElementTree import iterparse

def parse_and_remove(filename, path):
 path_parts = path.split('/')
 doc = iterparse(filename, ('start', 'end'))
 # Skip the root element
 next(doc)

 tag_stack = []
 elem_stack = []
 for event, elem in doc:
 if event == 'start':
 tag_stack.append(elem.tag)
 elem_stack.append(elem)
 elif event == 'end':
 if tag_stack == path_parts:
 yield elem
 elem_stack[-2].remove(elem)
 try:
 tag_stack.pop()
 elem_stack.pop()
 except IndexError:
 pass

To test the function, you now need to find a large XML file to work with. You can often
find such files on government and open data websites. For example, you can download
Chicago’s pothole database as XML. At the time of this writing, the downloaded file
consists of more than 100,000 rows of data, which are encoded like this:

 <response>
 <row>
 <row ...>
 <creation_date>2012-11-18T00:00:00</creation_date>

186 | Chapter 6: Data Encoding and Processing

http://bit.ly/YQh2Oh

 <status>Completed</status>
 <completion_date>2012-11-18T00:00:00</completion_date>
 <service_request_number>12-01906549</service_request_number>
 <type_of_service_request>Pot Hole in Street</type_of_service_request>
 <current_activity>Final Outcome</current_activity>
 <most_recent_action>CDOT Street Cut ... Outcome</most_recent_action>
 <street_address>4714 S TALMAN AVE</street_address>
 <zip>60632</zip>
 <x_coordinate>1159494.68618856</x_coordinate>
 <y_coordinate>1873313.83503384</y_coordinate>
 <ward>14</ward>
 <police_district>9</police_district>
 <community_area>58</community_area>
 <latitude>41.808090232127896</latitude>
 <longitude>-87.69053684711305</longitude>
 <location latitude="41.808090232127896"
 longitude="-87.69053684711305" />
 </row>
 <row ...>
 <creation_date>2012-11-18T00:00:00</creation_date>
 <status>Completed</status>
 <completion_date>2012-11-18T00:00:00</completion_date>
 <service_request_number>12-01906695</service_request_number>
 <type_of_service_request>Pot Hole in Street</type_of_service_request>
 <current_activity>Final Outcome</current_activity>
 <most_recent_action>CDOT Street Cut ... Outcome</most_recent_action>
 <street_address>3510 W NORTH AVE</street_address>
 <zip>60647</zip>
 <x_coordinate>1152732.14127696</x_coordinate>
 <y_coordinate>1910409.38979075</y_coordinate>
 <ward>26</ward>
 <police_district>14</police_district>
 <community_area>23</community_area>
 <latitude>41.91002084292946</latitude>
 <longitude>-87.71435952353961</longitude>
 <location latitude="41.91002084292946"
 longitude="-87.71435952353961" />
 </row>
 </row>
 </response>

Suppose you want to write a script that ranks ZIP codes by the number of pothole
reports. To do it, you could write code like this:

from xml.etree.ElementTree import parse
from collections import Counter

potholes_by_zip = Counter()

doc = parse('potholes.xml')
for pothole in doc.iterfind('row/row'):
 potholes_by_zip[pothole.findtext('zip')] += 1

6.4. Parsing Huge XML Files Incrementally | 187

for zipcode, num in potholes_by_zip.most_common():
 print(zipcode, num)

The only problem with this script is that it reads and parses the entire XML file into
memory. On our machine, it takes about 450 MB of memory to run. Using this recipe’s
code, the program changes only slightly:

from collections import Counter
potholes_by_zip = Counter()

data = parse_and_remove('potholes.xml', 'row/row')
for pothole in data:
 potholes_by_zip[pothole.findtext('zip')] += 1

for zipcode, num in potholes_by_zip.most_common():
 print(zipcode, num)

This version of code runs with a memory footprint of only 7 MB—a huge savings!

Discussion
This recipe relies on two core features of the ElementTree module. First, the iter
parse() method allows incremental processing of XML documents. To use it, you sup‐
ply the filename along with an event list consisting of one or more of the following:
start, end, start-ns, and end-ns. The iterator created by iterparse() produces tuples
of the form (event, elem), where event is one of the listed events and elem is the
resulting XML element. For example:

>>> data = iterparse('potholes.xml',('start','end'))
>>> next(data)
('start', <Element 'response' at 0x100771d60>)
>>> next(data)
('start', <Element 'row' at 0x100771e68>)
>>> next(data)
('start', <Element 'row' at 0x100771fc8>)
>>> next(data)
('start', <Element 'creation_date' at 0x100771f18>)
>>> next(data)
('end', <Element 'creation_date' at 0x100771f18>)
>>> next(data)
('start', <Element 'status' at 0x1006a7f18>)
>>> next(data)
('end', <Element 'status' at 0x1006a7f18>)
>>>

start events are created when an element is first created but not yet populated with any
other data (e.g., child elements). end events are created when an element is completed.
Although not shown in this recipe, start-ns and end-ns events are used to handle XML
namespace declarations.

188 | Chapter 6: Data Encoding and Processing

In this recipe, the start and end events are used to manage stacks of elements and tags.
The stacks represent the current hierarchical structure of the document as it’s being
parsed, and are also used to determine if an element matches the requested path given
to the parse_and_remove() function. If a match is made, yield is used to emit it back
to the caller.

The following statement after the yield is the core feature of ElementTree that makes
this recipe save memory:

elem_stack[-2].remove(elem)

This statement causes the previously yielded element to be removed from its parent.
Assuming that no references are left to it anywhere else, the element is destroyed and
memory reclaimed.

The end effect of the iterative parse and the removal of nodes is a highly efficient in‐
cremental sweep over the document. At no point is a complete document tree ever
constructed. Yet, it is still possible to write code that processes the XML data in a
straightforward manner.

The primary downside to this recipe is its runtime performance. When tested, the ver‐
sion of code that reads the entire document into memory first runs approximately twice
as fast as the version that processes it incrementally. However, it requires more than 60
times as much memory. So, if memory use is a greater concern, the incremental version
is a big win.

6.5. Turning a Dictionary into XML
Problem
You want to take the data in a Python dictionary and turn it into XML.

Solution
Although the xml.etree.ElementTree library is commonly used for parsing, it can also
be used to create XML documents. For example, consider this function:

from xml.etree.ElementTree import Element

def dict_to_xml(tag, d):
 '''
 Turn a simple dict of key/value pairs into XML
 '''
 elem = Element(tag)
 for key, val in d.items():
 child = Element(key)
 child.text = str(val)

6.5. Turning a Dictionary into XML | 189

 elem.append(child)
 return elem

Here is an example:

>>> s = { 'name': 'GOOG', 'shares': 100, 'price':490.1 }
>>> e = dict_to_xml('stock', s)
>>> e
<Element 'stock' at 0x1004b64c8>
>>>

The result of this conversion is an Element instance. For I/O, it is easy to convert this
to a byte string using the tostring() function in xml.etree.ElementTree. For
example:

>>> from xml.etree.ElementTree import tostring
>>> tostring(e)
b'<stock><price>490.1</price><shares>100</shares><name>GOOG</name></stock>'
>>>

If you want to attach attributes to an element, use its set() method:

>>> e.set('_id','1234')
>>> tostring(e)
b'<stock _id="1234"><price>490.1</price><shares>100</shares><name>GOOG</name>
</stock>'
>>>

If the order of the elements matters, consider making an OrderedDict instead of a
normal dictionary. See Recipe 1.7.

Discussion
When creating XML, you might be inclined to just make strings instead. For example:

def dict_to_xml_str(tag, d):
 '''
 Turn a simple dict of key/value pairs into XML
 '''
 parts = ['<{}>'.format(tag)]
 for key, val in d.items():
 parts.append('<{0}>{1}</{0}>'.format(key,val))
 parts.append('</{}>'.format(tag))
 return ''.join(parts)

The problem is that you’re going to make a real mess for yourself if you try to do things
manually. For example, what happens if the dictionary values contain special characters
like this?

>>> d = { 'name' : '<spam>' }

>>> # String creation
>>> dict_to_xml_str('item',d)

190 | Chapter 6: Data Encoding and Processing

'<item><name><spam></name></item>'

>>> # Proper XML creation
>>> e = dict_to_xml('item',d)
>>> tostring(e)
b'<item><name><spam></name></item>'
>>>

Notice how in the latter example, the characters < and > got replaced with < and >.

Just for reference, if you ever need to manually escape or unescape such characters, you
can use the escape() and unescape() functions in xml.sax.saxutils. For example:

>>> from xml.sax.saxutils import escape, unescape
>>> escape('<spam>')
'<spam>'
>>> unescape(_)
'<spam>'
>>>

Aside from creating correct output, the other reason why it’s a good idea to create
Element instances instead of strings is that they can be more easily combined together
to make a larger document. The resulting Element instances can also be processed in
various ways without ever having to worry about parsing the XML text. Essentially, you
can do all of the processing of the data in a more high-level form and then output it as
a string at the very end.

6.6. Parsing, Modifying, and Rewriting XML
Problem
You want to read an XML document, make changes to it, and then write it back out as
XML.

Solution
The xml.etree.ElementTree module makes it easy to perform such tasks. Essentially,
you start out by parsing the document in the usual way. For example, suppose you have
a document named pred.xml that looks like this:

<?xml version="1.0"?>
<stop>
 <id>14791</id>
 <nm>Clark & Balmoral</nm>
 <sri>
 <rt>22</rt>
 <d>North Bound</d>
 <dd>North Bound</dd>
 </sri>

6.6. Parsing, Modifying, and Rewriting XML | 191

 <cr>22</cr>
 <pre>
 <pt>5 MIN</pt>
 <fd>Howard</fd>
 <v>1378</v>
 <rn>22</rn>
 </pre>
 <pre>
 <pt>15 MIN</pt>
 <fd>Howard</fd>
 <v>1867</v>
 <rn>22</rn>
 </pre>
</stop>

Here is an example of using ElementTree to read it and make changes to the structure:

>>> from xml.etree.ElementTree import parse, Element
>>> doc = parse('pred.xml')
>>> root = doc.getroot()
>>> root
<Element 'stop' at 0x100770cb0>

>>> # Remove a few elements
>>> root.remove(root.find('sri'))
>>> root.remove(root.find('cr'))

>>> # Insert a new element after <nm>...</nm>
>>> root.getchildren().index(root.find('nm'))
1
>>> e = Element('spam')
>>> e.text = 'This is a test'
>>> root.insert(2, e)

>>> # Write back to a file
>>> doc.write('newpred.xml', xml_declaration=True)
>>>

The result of these operations is a new XML file that looks like this:

<?xml version='1.0' encoding='us-ascii'?>
<stop>
 <id>14791</id>
 <nm>Clark & Balmoral</nm>
 <spam>This is a test</spam><pre>
 <pt>5 MIN</pt>
 <fd>Howard</fd>
 <v>1378</v>
 <rn>22</rn>
 </pre>
 <pre>
 <pt>15 MIN</pt>
 <fd>Howard</fd>

192 | Chapter 6: Data Encoding and Processing

 <v>1867</v>
 <rn>22</rn>
 </pre>
</stop>

Discussion
Modifying the structure of an XML document is straightforward, but you must re‐
member that all modifications are generally made to the parent element, treating it as
if it were a list. For example, if you remove an element, it is removed from its immediate
parent using the parent’s remove() method. If you insert or append new elements, you
also use insert() and append() methods on the parent. Elements can also be manip‐
ulated using indexing and slicing operations, such as element[i] or element[i:j].

If you need to make new elements, use the Element class, as shown in this recipe’s
solution. This is described further in Recipe 6.5.

6.7. Parsing XML Documents with Namespaces
Problem
You need to parse an XML document, but it’s using XML namespaces.

Solution
Consider a document that uses namespaces like this:

<?xml version="1.0" encoding="utf-8"?>
<top>
 <author>David Beazley</author>
 <content>
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <h1>Hello World!</h1>
 </body>
 </html>
 </content>
</top>

If you parse this document and try to perform the usual queries, you’ll find that it doesn’t
work so easily because everything becomes incredibly verbose:

>>> # Some queries that work
>>> doc.findtext('author')
'David Beazley'
>>> doc.find('content')

6.7. Parsing XML Documents with Namespaces | 193

<Element 'content' at 0x100776ec0>

>>> # A query involving a namespace (doesn't work)
>>> doc.find('content/html')

>>> # Works if fully qualified
>>> doc.find('content/{http://www.w3.org/1999/xhtml}html')
<Element '{http://www.w3.org/1999/xhtml}html' at 0x1007767e0>

>>> # Doesn't work
>>> doc.findtext('content/{http://www.w3.org/1999/xhtml}html/head/title')

>>> # Fully qualified
>>> doc.findtext('content/{http://www.w3.org/1999/xhtml}html/'
... '{http://www.w3.org/1999/xhtml}head/{http://www.w3.org/1999/xhtml}title')
'Hello World'
>>>

You can often simplify matters for yourself by wrapping namespace handling up into a
utility class.

class XMLNamespaces:
 def __init__(self, **kwargs):
 self.namespaces = {}
 for name, uri in kwargs.items():
 self.register(name, uri)
 def register(self, name, uri):
 self.namespaces[name] = '{'+uri+'}'
 def __call__(self, path):
 return path.format_map(self.namespaces)

To use this class, you do the following:

>>> ns = XMLNamespaces(html='http://www.w3.org/1999/xhtml')
>>> doc.find(ns('content/{html}html'))
<Element '{http://www.w3.org/1999/xhtml}html' at 0x1007767e0>
>>> doc.findtext(ns('content/{html}html/{html}head/{html}title'))
'Hello World'
>>>

Discussion
Parsing XML documents that contain namespaces can be messy. The XMLNamespaces
class is really just meant to clean it up slightly by allowing you to use the shortened
namespace names in subsequent operations as opposed to fully qualified URIs.

Unfortunately, there is no mechanism in the basic ElementTree parser to get further
information about namespaces. However, you can get a bit more information about the
scope of namespace processing if you’re willing to use the iterparse() function instead.
For example:

194 | Chapter 6: Data Encoding and Processing

>>> from xml.etree.ElementTree import iterparse
>>> for evt, elem in iterparse('ns2.xml', ('end', 'start-ns', 'end-ns')):
... print(evt, elem)
...
end <Element 'author' at 0x10110de10>
start-ns ('', 'http://www.w3.org/1999/xhtml')
end <Element '{http://www.w3.org/1999/xhtml}title' at 0x1011131b0>
end <Element '{http://www.w3.org/1999/xhtml}head' at 0x1011130a8>
end <Element '{http://www.w3.org/1999/xhtml}h1' at 0x101113310>
end <Element '{http://www.w3.org/1999/xhtml}body' at 0x101113260>
end <Element '{http://www.w3.org/1999/xhtml}html' at 0x10110df70>
end-ns None
end <Element 'content' at 0x10110de68>
end <Element 'top' at 0x10110dd60>
>>> elem # This is the topmost element
<Element 'top' at 0x10110dd60>
>>>

As a final note, if the text you are parsing makes use of namespaces in addition to other
advanced XML features, you’re really better off using the lxml library instead of Ele
mentTree. For instance, lxml provides better support for validating documents against
a DTD, more complete XPath support, and other advanced XML features. This recipe
is really just a simple fix to make parsing a little easier.

6.8. Interacting with a Relational Database
Problem
You need to select, insert, or delete rows in a relational database.

Solution
A standard way to represent rows of data in Python is as a sequence of tuples. For
example:

stocks = [
 ('GOOG', 100, 490.1),
 ('AAPL', 50, 545.75),
 ('FB', 150, 7.45),
 ('HPQ', 75, 33.2),
]

Given data in this form, it is relatively straightforward to interact with a relational
database using Python’s standard database API, as described in PEP 249. The gist of the
API is that all operations on the database are carried out by SQL queries. Each row of
input or output data is represented by a tuple.

To illustrate, you can use the sqlite3 module that comes with Python. If you are using
a different database (e.g., MySql, Postgres, or ODBC), you’ll have to install a third-party

6.8. Interacting with a Relational Database | 195

http://lxml.de
http://www.python.org/dev/peps/pep-0249

module to support it. However, the underlying programming interface will be virtually
the same, if not identical.

The first step is to connect to the database. Typically, you execute a connect() function,
supplying parameters such as the name of the database, hostname, username, password,
and other details as needed. For example:

>>> import sqlite3
>>> db = sqlite3.connect('database.db')
>>>

To do anything with the data, you next create a cursor. Once you have a cursor, you can
start executing SQL queries. For example:

>>> c = db.cursor()
>>> c.execute('create table portfolio (symbol text, shares integer, price real)')
<sqlite3.Cursor object at 0x10067a730>
>>> db.commit()
>>>

To insert a sequence of rows into the data, use a statement like this:

>>> c.executemany('insert into portfolio values (?,?,?)', stocks)
<sqlite3.Cursor object at 0x10067a730>
>>> db.commit()
>>>

To perform a query, use a statement such as this:

>>> for row in db.execute('select * from portfolio'):
... print(row)
...
('GOOG', 100, 490.1)
('AAPL', 50, 545.75)
('FB', 150, 7.45)
('HPQ', 75, 33.2)
>>>

If you want to perform queries that accept user-supplied input parameters, make sure
you escape the parameters using ? like this:

>>> min_price = 100
>>> for row in db.execute('select * from portfolio where price >= ?',
 (min_price,)):
... print(row)
...
('GOOG', 100, 490.1)
('AAPL', 50, 545.75)
>>>

196 | Chapter 6: Data Encoding and Processing

Discussion
At a low level, interacting with a database is an extremely straightforward thing to do.
You simply form SQL statements and feed them to the underlying module to either
update the database or retrieve data. That said, there are still some tricky details you’ll
need to sort out on a case-by-case basis.

One complication is the mapping of data from the database into Python types. For
entries such as dates, it is most common to use datetime instances from the date
time module, or possibly system timestamps, as used in the time module. For numerical
data, especially financial data involving decimals, numbers may be represented as Dec
imal instances from the decimal module. Unfortunately, the exact mapping varies by
database backend so you’ll have to read the associated documentation.

Another extremely critical complication concerns the formation of SQL statement
strings. You should never use Python string formatting operators (e.g., %) or the .for
mat() method to create such strings. If the values provided to such formatting operators
are derived from user input, this opens up your program to an SQL-injection attack (see
http://xkcd.com/327). The special ? wildcard in queries instructs the database backend
to use its own string substitution mechanism, which (hopefully) will do it safely.

Sadly, there is some inconsistency across database backends with respect to the wildcard.
Many modules use ? or %s, while others may use a different symbol, such as :0 or :1,
to refer to parameters. Again, you’ll have to consult the documentation for the database
module you’re using. The paramstyle attribute of a database module also contains in‐
formation about the quoting style.

For simply pulling data in and out of a database table, using the database API is usually
simple enough. If you’re doing something more complicated, it may make sense to use
a higher-level interface, such as that provided by an object-relational mapper. Libraries
such as SQLAlchemy allow database tables to be described as Python classes and for
database operations to be carried out while hiding most of the underlying SQL.

6.9. Decoding and Encoding Hexadecimal Digits
Problem
You need to decode a string of hexadecimal digits into a byte string or encode a byte
string as hex.

Solution
If you simply need to decode or encode a raw string of hex digits, use the binascii
module. For example:

6.9. Decoding and Encoding Hexadecimal Digits | 197

http://xkcd.com/327
http://www.sqlalchemy.org

>>> # Initial byte string
>>> s = b'hello'

>>> # Encode as hex
>>> import binascii
>>> h = binascii.b2a_hex(s)
>>> h
b'68656c6c6f'

>>> # Decode back to bytes
>>> binascii.a2b_hex(h)
b'hello'
>>>

Similar functionality can also be found in the base64 module. For example:

>>> import base64
>>> h = base64.b16encode(s)
>>> h
b'68656C6C6F'
>>> base64.b16decode(h)
b'hello'
>>>

Discussion
For the most part, converting to and from hex is straightforward using the functions
shown. The main difference between the two techniques is in case folding. The
base64.b16decode() and base64.b16encode() functions only operate with uppercase
hexadecimal letters, whereas the functions in binascii work with either case.

It’s also important to note that the output produced by the encoding functions is always
a byte string. To coerce it to Unicode for output, you may need to add an extra decoding
step. For example:

>>> h = base64.b16encode(s)
>>> print(h)
b'68656C6C6F'
>>> print(h.decode('ascii'))
68656C6C6F
>>>

When decoding hex digits, the b16decode() and a2b_hex() functions accept either
bytes or unicode strings. However, those strings must only contain ASCII-encoded
hexadecimal digits.

198 | Chapter 6: Data Encoding and Processing

6.10. Decoding and Encoding Base64
Problem
You need to decode or encode binary data using Base64 encoding.

Solution
The base64 module has two functions—b64encode() and b64decode()—that do ex‐
actly what you want. For example:

>>> # Some byte data
>>> s = b'hello'
>>> import base64

>>> # Encode as Base64
>>> a = base64.b64encode(s)
>>> a
b'aGVsbG8='

>>> # Decode from Base64
>>> base64.b64decode(a)
b'hello'
>>>

Discussion
Base64 encoding is only meant to be used on byte-oriented data such as byte strings and
byte arrays. Moreover, the output of the encoding process is always a byte string. If you
are mixing Base64-encoded data with Unicode text, you may have to perform an extra
decoding step. For example:

>>> a = base64.b64encode(s).decode('ascii')
>>> a
'aGVsbG8='
>>>

When decoding Base64, both byte strings and Unicode text strings can be supplied.
However, Unicode strings can only contain ASCII characters.

6.11. Reading and Writing Binary Arrays of Structures
Problem
You want to read or write data encoded as a binary array of uniform structures into
Python tuples.

6.10. Decoding and Encoding Base64 | 199

Solution
To work with binary data, use the struct module. Here is an example of code that writes
a list of Python tuples out to a binary file, encoding each tuple as a structure using
struct:

from struct import Struct

def write_records(records, format, f):
 '''
 Write a sequence of tuples to a binary file of structures.
 '''
 record_struct = Struct(format)
 for r in records:
 f.write(record_struct.pack(*r))

Example
if __name__ == '__main__':
 records = [(1, 2.3, 4.5),
 (6, 7.8, 9.0),
 (12, 13.4, 56.7)]

 with open('data.b', 'wb') as f:
 write_records(records, '<idd', f)

There are several approaches for reading this file back into a list of tuples. First, if you’re
going to read the file incrementally in chunks, you can write code such as this:

from struct import Struct

def read_records(format, f):
 record_struct = Struct(format)
 chunks = iter(lambda: f.read(record_struct.size), b'')
 return (record_struct.unpack(chunk) for chunk in chunks)

Example
if __name__ == '__main__':
 with open('data.b','rb') as f:
 for rec in read_records('<idd', f):
 # Process rec
 ...

If you want to read the file entirely into a byte string with a single read and convert it
piece by piece, you can write the following:

from struct import Struct

def unpack_records(format, data):
 record_struct = Struct(format)
 return (record_struct.unpack_from(data, offset)
 for offset in range(0, len(data), record_struct.size))

200 | Chapter 6: Data Encoding and Processing

Example
if __name__ == '__main__':
 with open('data.b', 'rb') as f:
 data = f.read()

 for rec in unpack_records('<idd', data):
 # Process rec
 ...

In both cases, the result is an iterable that produces the tuples originally stored when
the file was created.

Discussion
For programs that must encode and decode binary data, it is common to use the struct
module. To declare a new structure, simply create an instance of Struct such as:

Little endian 32-bit integer, two double precision floats
record_struct = Struct('<idd')

Structures are always defined using a set of structure codes such as i, d, f, and so forth
[see the Python documentation]. These codes correspond to specific binary data types
such as 32-bit integers, 64-bit floats, 32-bit floats, and so forth. The < in the first character
specifies the byte ordering. In this example, it is indicating “little endian.” Change the
character to > for big endian or ! for network byte order.

The resulting Struct instance has various attributes and methods for manipulating
structures of that type. The size attribute contains the size of the structure in bytes,
which is useful to have in I/O operations. pack() and unpack() methods are used to
pack and unpack data. For example:

>>> from struct import Struct
>>> record_struct = Struct('<idd')
>>> record_struct.size
20
>>> record_struct.pack(1, 2.0, 3.0)
b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x08@'
>>> record_struct.unpack(_)
(1, 2.0, 3.0)
>>>

Sometimes you’ll see the pack() and unpack() operations called as module-level func‐
tions, as in the following:

>>> import struct
>>> struct.pack('<idd', 1, 2.0, 3.0)
b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x08@'
>>> struct.unpack('<idd', _)
(1, 2.0, 3.0)
>>>

6.11. Reading and Writing Binary Arrays of Structures | 201

http://docs.python.org/3/library/struct.html

This works, but feels less elegant than creating a single Struct instance—especially if
the same structure appears in multiple places in your code. By creating a Struct in‐
stance, the format code is only specified once and all of the useful operations are grouped
together nicely. This certainly makes it easier to maintain your code if you need to fiddle
with the structure code (as you only have to change it in one place).

The code for reading binary structures involves a number of interesting, yet elegant
programming idioms. In the read_records() function, iter() is being used to make
an iterator that returns fixed-sized chunks. See Recipe 5.8. This iterator repeatedly calls
a user-supplied callable (e.g., lambda: f.read(record_struct.size)) until it returns
a specified value (e.g., b), at which point iteration stops. For example:

>>> f = open('data.b', 'rb')
>>> chunks = iter(lambda: f.read(20), b'')
>>> chunks
<callable_iterator object at 0x10069e6d0>
>>> for chk in chunks:
... print(chk)
...
b'\x01\x00\x00\x00ffffff\x02@\x00\x00\x00\x00\x00\x00\x12@'
b'\x06\x00\x00\x00333333\x1f@\x00\x00\x00\x00\x00\x00"@'
b'\x0c\x00\x00\x00\xcd\xcc\xcc\xcc\xcc\xcc*@\x9a\x99\x99\x99\x99YL@'
>>>

One reason for creating an iterable is that it nicely allows records to be created using a
generator comprehension, as shown in the solution. If you didn’t use this approach, the
code might look like this:

def read_records(format, f):
 record_struct = Struct(format)
 while True:
 chk = f.read(record_struct.size)
 if chk == b'':
 break
 yield record_struct.unpack(chk)
 return records

In the unpack_records() function, a different approach using the unpack_from()
method is used. unpack_from() is a useful method for extracting binary data from a
larger binary array, because it does so without making any temporary objects or memory
copies. You just give it a byte string (or any array) along with a byte offset, and it will
unpack fields directly from that location.

If you used unpack() instead of unpack_from(), you would need to modify the code to
make a lot of small slices and offset calculations. For example:

def unpack_records(format, data):
 record_struct = Struct(format)
 return (record_struct.unpack(data[offset:offset + record_struct.size])
 for offset in range(0, len(data), record_struct.size))

202 | Chapter 6: Data Encoding and Processing

In addition to being more complicated to read, this version also requires a lot more
work, as it performs various offset calculations, copies data, and makes small slice ob‐
jects. If you’re going to be unpacking a lot of structures from a large byte string you’ve
already read, unpack_from() is a more elegant approach.

Unpacking records is one place where you might want to use namedtuple objects from
the collections module. This allows you to set attribute names on the returned tuples.
For example:

from collections import namedtuple

Record = namedtuple('Record', ['kind','x','y'])

with open('data.p', 'rb') as f:
 records = (Record(*r) for r in read_records('<idd', f))

for r in records:
 print(r.kind, r.x, r.y)

If you’re writing a program that needs to work with a large amount of binary data, you
may be better off using a library such as numpy. For example, instead of reading a binary
into a list of tuples, you could read it into a structured array, like this:

>>> import numpy as np
>>> f = open('data.b', 'rb')
>>> records = np.fromfile(f, dtype='<i,<d,<d')
>>> records
array([(1, 2.3, 4.5), (6, 7.8, 9.0), (12, 13.4, 56.7)],
 dtype=[('f0', '<i4'), ('f1', '<f8'), ('f2', '<f8')])
>>> records[0]
(1, 2.3, 4.5)
>>> records[1]
(6, 7.8, 9.0)
>>>

Last, but not least, if you’re faced with the task of reading binary data in some known
file format (i.e., image formats, shape files, HDF5, etc.), check to see if a Python module
already exists for it. There’s no reason to reinvent the wheel if you don’t have to.

6.12. Reading Nested and Variable-Sized Binary
Structures
Problem
You need to read complicated binary-encoded data that contains a collection of nested
and/or variable-sized records. Such data might include images, video, shapefiles, and
so on.

6.12. Reading Nested and Variable-Sized Binary Structures | 203

Solution
The struct module can be used to decode and encode almost any kind of binary data
structure. To illustrate the kind of data in question here, suppose you have this Python
data structure representing a collection of points that make up a series of polygons:

polys = [
 [(1.0, 2.5), (3.5, 4.0), (2.5, 1.5)],
 [(7.0, 1.2), (5.1, 3.0), (0.5, 7.5), (0.8, 9.0)],
 [(3.4, 6.3), (1.2, 0.5), (4.6, 9.2)],
]

Now suppose this data was to be encoded into a binary file where the file started with
the following header:

Byte Type Description

0 int File code (0x1234, little endian)

4 double Minimum x (little endian)

12 double Minimum y (little endian)

20 double Maximum x (little endian)

28 double Maximum y (little endian)

36 int Number of polygons (little endian)

Following the header, a series of polygon records follow, each encoded as follows:

Byte Type Description

0 int Record length including length (N bytes)

4-N Points Pairs of (X,Y) coords as doubles

To write this file, you can use Python code like this:

import struct
import itertools

def write_polys(filename, polys):
 # Determine bounding box
 flattened = list(itertools.chain(*polys))
 min_x = min(x for x, y in flattened)
 max_x = max(x for x, y in flattened)
 min_y = min(y for x, y in flattened)
 max_y = max(y for x, y in flattened)

 with open(filename, 'wb') as f:
 f.write(struct.pack('<iddddi',
 0x1234,
 min_x, min_y,
 max_x, max_y,
 len(polys)))

204 | Chapter 6: Data Encoding and Processing

 for poly in polys:
 size = len(poly) * struct.calcsize('<dd')
 f.write(struct.pack('<i', size+4))
 for pt in poly:
 f.write(struct.pack('<dd', *pt))

Call it with our polygon data
write_polys('polys.bin', polys)

To read the resulting data back, you can write very similar looking code using the
struct.unpack() function, reversing the operations performed during writing. For
example:

import struct

def read_polys(filename):
 with open(filename, 'rb') as f:
 # Read the header
 header = f.read(40)
 file_code, min_x, min_y, max_x, max_y, num_polys = \
 struct.unpack('<iddddi', header)

 polys = []
 for n in range(num_polys):
 pbytes, = struct.unpack('<i', f.read(4))
 poly = []
 for m in range(pbytes // 16):
 pt = struct.unpack('<dd', f.read(16))
 poly.append(pt)
 polys.append(poly)
 return polys

Although this code works, it’s also a rather messy mix of small reads, struct unpacking,
and other details. If code like this is used to process a real datafile, it can quickly become
even messier. Thus, it’s an obvious candidate for an alternative solution that might sim‐
plify some of the steps and free the programmer to focus on more important matters.

In the remainder of this recipe, a rather advanced solution for interpreting binary data
will be built up in pieces. The goal will be to allow a programmer to provide a high-level
specification of the file format, and to simply have the details of reading and unpacking
all of the data worked out under the covers. As a forewarning, the code that follows may
be the most advanced example in this entire book, utilizing various object-oriented
programming and metaprogramming techniques. Be sure to carefully read the discus‐
sion section as well as cross-references to other recipes.

First, when reading binary data, it is common for the file to contain headers and other
data structures. Although the struct module can unpack this data into a tuple, another
way to represent such information is through the use of a class. Here’s some code that
allows just that:

6.12. Reading Nested and Variable-Sized Binary Structures | 205

import struct

class StructField:
 '''
 Descriptor representing a simple structure field
 '''
 def __init__(self, format, offset):
 self.format = format
 self.offset = offset
 def __get__(self, instance, cls):
 if instance is None:
 return self
 else:
 r = struct.unpack_from(self.format,
 instance._buffer, self.offset)
 return r[0] if len(r) == 1 else r

class Structure:
 def __init__(self, bytedata):
 self._buffer = memoryview(bytedata)

This code uses a descriptor to represent each structure field. Each descriptor contains
a struct-compatible format code along with a byte offset into an underlying memory
buffer. In the __get__() method, the struct.unpack_from() function is used to unpack
a value from the buffer without having to make extra slices or copies.

The Structure class just serves as a base class that accepts some byte data and stores it
as the underlying memory buffer used by the StructField descriptor. The use of a
memoryview() in this class serves a purpose that will become clear later.

Using this code, you can now define a structure as a high-level class that mirrors the
information found in the tables that described the expected file format. For example:

class PolyHeader(Structure):
 file_code = StructField('<i', 0)
 min_x = StructField('<d', 4)
 min_y = StructField('<d', 12)
 max_x = StructField('<d', 20)
 max_y = StructField('<d', 28)
 num_polys = StructField('<i', 36)

Here is an example of using this class to read the header from the polygon data written
earlier:

>>> f = open('polys.bin', 'rb')
>>> phead = PolyHeader(f.read(40))
>>> phead.file_code == 0x1234
True
>>> phead.min_x
0.5
>>> phead.min_y
0.5

206 | Chapter 6: Data Encoding and Processing

>>> phead.max_x
7.0
>>> phead.max_y
9.2
>>> phead.num_polys
3
>>>

This is interesting, but there are a number of annoyances with this approach. For one,
even though you get the convenience of a class-like interface, the code is rather verbose
and requires the user to specify a lot of low-level detail (e.g., repeated uses of Struct
Field, specification of offsets, etc.). The resulting class is also missing common con‐
veniences such as providing a way to compute the total size of the structure.

Any time you are faced with class definitions that are overly verbose like this, you might
consider the use of a class decorator or metaclass. One of the features of a metaclass is
that it can be used to fill in a lot of low-level implementation details, taking that burden
off of the user. As an example, consider this metaclass and slight reformulation of the
Structure class:

class StructureMeta(type):
 '''
 Metaclass that automatically creates StructField descriptors
 '''
 def __init__(self, clsname, bases, clsdict):
 fields = getattr(self, '_fields_', [])
 byte_order = ''
 offset = 0
 for format, fieldname in fields:
 if format.startswith(('<','>','!','@')):
 byte_order = format[0]
 format = format[1:]
 format = byte_order + format
 setattr(self, fieldname, StructField(format, offset))
 offset += struct.calcsize(format)
 setattr(self, 'struct_size', offset)

class Structure(metaclass=StructureMeta):
 def __init__(self, bytedata):
 self._buffer = bytedata

 @classmethod
 def from_file(cls, f):
 return cls(f.read(cls.struct_size))

Using this new Structure class, you can now write a structure definition like this:

class PolyHeader(Structure):
 fields = [
 ('<i', 'file_code'),
 ('d', 'min_x'),
 ('d', 'min_y'),

6.12. Reading Nested and Variable-Sized Binary Structures | 207

 ('d', 'max_x'),
 ('d', 'max_y'),
 ('i', 'num_polys')
]

As you can see, the specification is a lot less verbose. The added from_file() class
method also makes it easier to read the data from a file without knowing any details
about the size or structure of the data. For example:

>>> f = open('polys.bin', 'rb')
>>> phead = PolyHeader.from_file(f)
>>> phead.file_code == 0x1234
True
>>> phead.min_x
0.5
>>> phead.min_y
0.5
>>> phead.max_x
7.0
>>> phead.max_y
9.2
>>> phead.num_polys
3
>>>

Once you introduce a metaclass into the mix, you can build more intelligence into it.
For example, suppose you want to support nested binary structures. Here’s a reformu‐
lation of the metaclass along with a new supporting descriptor that allows it:

class NestedStruct:
 '''
 Descriptor representing a nested structure
 '''
 def __init__(self, name, struct_type, offset):
 self.name = name
 self.struct_type = struct_type
 self.offset = offset
 def __get__(self, instance, cls):
 if instance is None:
 return self
 else:
 data = instance._buffer[self.offset:
 self.offset+self.struct_type.struct_size]
 result = self.struct_type(data)
 # Save resulting structure back on instance to avoid
 # further recomputation of this step
 setattr(instance, self.name, result)
 return result

class StructureMeta(type):
 '''
 Metaclass that automatically creates StructField descriptors

208 | Chapter 6: Data Encoding and Processing

 '''
 def __init__(self, clsname, bases, clsdict):
 fields = getattr(self, '_fields_', [])
 byte_order = ''
 offset = 0
 for format, fieldname in fields:
 if isinstance(format, StructureMeta):
 setattr(self, fieldname,
 NestedStruct(fieldname, format, offset))
 offset += format.struct_size
 else:
 if format.startswith(('<','>','!','@')):
 byte_order = format[0]
 format = format[1:]
 format = byte_order + format
 setattr(self, fieldname, StructField(format, offset))
 offset += struct.calcsize(format)
 setattr(self, 'struct_size', offset)

In this code, the NestedStruct descriptor is used to overlay another structure definition
over a region of memory. It does this by taking a slice of the original memory buffer
and using it to instantiate the given structure type. Since the underlying memory buffer
was initialized as a memoryview, this slicing does not incur any extra memory copies.
Instead, it’s just an overlay on the original memory. Moreover, to avoid repeated in‐
stantiations, the descriptor then stores the resulting inner structure object on the in‐
stance using the same technique described in Recipe 8.10.

Using this new formulation, you can start to write code like this:

class Point(Structure):
 fields = [
 ('<d', 'x'),
 ('d', 'y')
]

class PolyHeader(Structure):
 fields = [
 ('<i', 'file_code'),
 (Point, 'min'), # nested struct
 (Point, 'max'), # nested struct
 ('i', 'num_polys')
]

Amazingly, it will all still work as you expect. For example:

>>> f = open('polys.bin', 'rb')
>>> phead = PolyHeader.from_file(f)
>>> phead.file_code == 0x1234
True
>>> phead.min # Nested structure
<__main__.Point object at 0x1006a48d0>
>>> phead.min.x

6.12. Reading Nested and Variable-Sized Binary Structures | 209

0.5
>>> phead.min.y
0.5
>>> phead.max.x
7.0
>>> phead.max.y
9.2
>>> phead.num_polys
3
>>>

At this point, a framework for dealing with fixed-sized records has been developed, but
what about the variable-sized components? For example, the remainder of the polygon
files contain sections of variable size.

One way to handle this is to write a class that simply represents a chunk of binary data
along with a utility function for interpreting the contents in different ways. This is closely
related to the code in Recipe 6.11:

class SizedRecord:
 def __init__(self, bytedata):
 self._buffer = memoryview(bytedata)

 @classmethod
 def from_file(cls, f, size_fmt, includes_size=True):
 sz_nbytes = struct.calcsize(size_fmt)
 sz_bytes = f.read(sz_nbytes)
 sz, = struct.unpack(size_fmt, sz_bytes)
 buf = f.read(sz - includes_size * sz_nbytes)
 return cls(buf)

 def iter_as(self, code):
 if isinstance(code, str):
 s = struct.Struct(code)
 for off in range(0, len(self._buffer), s.size):
 yield s.unpack_from(self._buffer, off)
 elif isinstance(code, StructureMeta):
 size = code.struct_size
 for off in range(0, len(self._buffer), size):
 data = self._buffer[off:off+size]
 yield code(data)

The SizedRecord.from_file() class method is a utility for reading a size-prefixed
chunk of data from a file, which is common in many file formats. As input, it accepts a
structure format code containing the encoding of the size, which is expected to be in
bytes. The optional includes_size argument specifies whether the number of bytes
includes the size header or not. Here’s an example of how you would use this code to
read the individual polygons in the polygon file:

210 | Chapter 6: Data Encoding and Processing

>>> f = open('polys.bin', 'rb')
>>> phead = PolyHeader.from_file(f)
>>> phead.num_polys
3
>>> polydata = [SizedRecord.from_file(f, '<i')
... for n in range(phead.num_polys)]
>>> polydata
[<__main__.SizedRecord object at 0x1006a4d50>,
 <__main__.SizedRecord object at 0x1006a4f50>,
 <__main__.SizedRecord object at 0x10070da90>]
>>>

As shown, the contents of the SizedRecord instances have not yet been interpreted. To
do that, use the iter_as() method, which accepts a structure format code or Struc
ture class as input. This gives you a lot of flexibility in how to interpret the data. For
example:

>>> for n, poly in enumerate(polydata):
... print('Polygon', n)
... for p in poly.iter_as('<dd'):
... print(p)
...
Polygon 0
(1.0, 2.5)
(3.5, 4.0)
(2.5, 1.5)
Polygon 1
(7.0, 1.2)
(5.1, 3.0)
(0.5, 7.5)
(0.8, 9.0)
Polygon 2
(3.4, 6.3)
(1.2, 0.5)
(4.6, 9.2)
>>>

>>> for n, poly in enumerate(polydata):
... print('Polygon', n)
... for p in poly.iter_as(Point):
... print(p.x, p.y)
...
Polygon 0
1.0 2.5
3.5 4.0
2.5 1.5
Polygon 1
7.0 1.2
5.1 3.0
0.5 7.5
0.8 9.0
Polygon 2

6.12. Reading Nested and Variable-Sized Binary Structures | 211

3.4 6.3
1.2 0.5
4.6 9.2
>>>

Putting all of this together, here’s an alternative formulation of the read_polys() func‐
tion:

class Point(Structure):
 fields = [
 ('<d', 'x'),
 ('d', 'y')
]

class PolyHeader(Structure):
 fields = [
 ('<i', 'file_code'),
 (Point, 'min'),
 (Point, 'max'),
 ('i', 'num_polys')
]

def read_polys(filename):
 polys = []
 with open(filename, 'rb') as f:
 phead = PolyHeader.from_file(f)
 for n in range(phead.num_polys):
 rec = SizedRecord.from_file(f, '<i')
 poly = [(p.x, p.y)
 for p in rec.iter_as(Point)]
 polys.append(poly)
 return polys

Discussion
This recipe provides a practical application of various advanced programming techni‐
ques, including descriptors, lazy evaluation, metaclasses, class variables, and memory‐
views. However, they all serve a very specific purpose.

A major feature of the implementation is that it is strongly based on the idea of lazy-
unpacking. When an instance of Structure is created, the __init__() merely creates
a memoryview of the supplied byte data and does nothing else. Specifically, no unpack‐
ing or other structure-related operations take place at this time. One motivation for
taking this approach is that you might only be interested in a few specific parts of a
binary record. Rather than unpacking the whole file, only the parts that are actually
accessed will be unpacked.

To implement the lazy unpacking and packing of values, the StructField descriptor
class is used. Each attribute the user lists in _fields_ gets converted to a Struct
Field descriptor that stores the associated structure format code and byte offset into

212 | Chapter 6: Data Encoding and Processing

the stored buffer. The StructureMeta metaclass is what creates these descriptors auto‐
matically when various structure classes are defined. The main reason for using a
metaclass is to make it extremely easy for a user to specify a structure format with a
high-level description without worrying about low-level details.

One subtle aspect of the StructureMeta metaclass is that it makes byte order sticky.
That is, if any attribute specifies a byte order (< for little endian or > for big endian),
that ordering is applied to all fields that follow. This helps avoid extra typing, but also
makes it possible to switch in the middle of a definition. For example, you might have
something more complicated, such as this:

class ShapeFile(Structure):
 fields = [('>i', 'file_code'), # Big endian
 ('20s', 'unused'),
 ('i', 'file_length'),
 ('<i', 'version'), # Little endian
 ('i', 'shape_type'),
 ('d', 'min_x'),
 ('d', 'min_y'),
 ('d', 'max_x'),
 ('d', 'max_y'),
 ('d', 'min_z'),
 ('d', 'max_z'),
 ('d', 'min_m'),
 ('d', 'max_m')]

As noted, the use of a memoryview() in the solution serves a useful role in avoiding
memory copies. When structures start to nest, memoryviews can be used to overlay
different parts of the structure definition on the same region of memory. This aspect of
the solution is subtle, but it concerns the slicing behavior of a memoryview versus a
normal byte array. If you slice a byte string or byte array, you usually get a copy of the
data. Not so with a memoryview—slices simply overlay the existing memory. Thus, this
approach is more efficient.

A number of related recipes will help expand upon the topics used in the solution. See
Recipe 8.13 for a closely related recipe that uses descriptors to build a type system.
Recipe 8.10 has information about lazily computed properties and is related to the
implementation of the NestedStruct descriptor. Recipe 9.19 has an example of using a
metaclass to initialize class members, much in the same manner as the StructureMe
ta class. The source code for Python’s ctypes library may also be of interest, due to its
similar support for defining data structures, nesting of data structures, and similar
functionality.

6.12. Reading Nested and Variable-Sized Binary Structures | 213

6.13. Summarizing Data and Performing Statistics
Problem
You need to crunch through large datasets and generate summaries or other kinds of
statistics.

Solution
For any kind of data analysis involving statistics, time series, and other related techni‐
ques, you should look at the Pandas library.

To give you a taste, here’s an example of using Pandas to analyze the City of Chicago
rat and rodent database. At the time of this writing, it’s a CSV file with about 74,000
entries:

>>> import pandas

>>> # Read a CSV file, skipping last line
>>> rats = pandas.read_csv('rats.csv', skip_footer=1)
>>> rats
<class 'pandas.core.frame.DataFrame'>
Int64Index: 74055 entries, 0 to 74054
Data columns:
Creation Date 74055 non-null values
Status 74055 non-null values
Completion Date 72154 non-null values
Service Request Number 74055 non-null values
Type of Service Request 74055 non-null values
Number of Premises Baited 65804 non-null values
Number of Premises with Garbage 65600 non-null values
Number of Premises with Rats 65752 non-null values
Current Activity 66041 non-null values
Most Recent Action 66023 non-null values
Street Address 74055 non-null values
ZIP Code 73584 non-null values
X Coordinate 74043 non-null values
Y Coordinate 74043 non-null values
Ward 74044 non-null values
Police District 74044 non-null values
Community Area 74044 non-null values
Latitude 74043 non-null values
Longitude 74043 non-null values
Location 74043 non-null values
dtypes: float64(11), object(9)

>>> # Investigate range of values for a certain field
>>> rats['Current Activity'].unique()
array([nan, Dispatch Crew, Request Sanitation Inspector], dtype=object)

214 | Chapter 6: Data Encoding and Processing

http://pandas.pydata.org
https://data.cityofchicago.org/Service-Requests/311-Service-Requests-Rodent-Baiting/97t6-zrhs

>>> # Filter the data
>>> crew_dispatched = rats[rats['Current Activity'] == 'Dispatch Crew']
>>> len(crew_dispatched)
65676
>>>

>>> # Find 10 most rat-infested ZIP codes in Chicago
>>> crew_dispatched['ZIP Code'].value_counts()[:10]
60647 3837
60618 3530
60614 3284
60629 3251
60636 2801
60657 2465
60641 2238
60609 2206
60651 2152
60632 2071
>>>

>>> # Group by completion date
>>> dates = crew_dispatched.groupby('Completion Date')
<pandas.core.groupby.DataFrameGroupBy object at 0x10d0a2a10>
>>> len(dates)
472
>>>

>>> # Determine counts on each day
>>> date_counts = dates.size()
>>> date_counts[0:10]
Completion Date
01/03/2011 4
01/03/2012 125
01/04/2011 54
01/04/2012 38
01/05/2011 78
01/05/2012 100
01/06/2011 100
01/06/2012 58
01/07/2011 1
01/09/2012 12
>>>

>>> # Sort the counts
>>> date_counts.sort()
>>> date_counts[-10:]
Completion Date
10/12/2012 313
10/21/2011 314
09/20/2011 316
10/26/2011 319
02/22/2011 325

6.13. Summarizing Data and Performing Statistics | 215

10/26/2012 333
03/17/2011 336
10/13/2011 378
10/14/2011 391
10/07/2011 457
>>>

Yes, October 7, 2011, was indeed a very busy day for rats.

Discussion
Pandas is a large library that has more features than can be described here. However, if
you need to analyze large datasets, group data, perform statistics, or other similar tasks,
it’s definitely worth a look.

Python for Data Analysis by Wes McKinney (O’Reilly) also contains much more
information.

216 | Chapter 6: Data Encoding and Processing

http://shop.oreilly.com/product/0636920023784.do

CHAPTER 7

Functions

Defining functions using the def statement is a cornerstone of all programs. The goal
of this chapter is to present some more advanced and unusual function definition and
usage patterns. Topics include default arguments, functions that take any number of
arguments, keyword-only arguments, annotations, and closures. In addition, some
tricky control flow and data passing problems involving callback functions are
addressed.

7.1. Writing Functions That Accept Any Number of
Arguments
Problem
You want to write a function that accepts any number of input arguments.

Solution
To write a function that accepts any number of positional arguments, use a * argument.
For example:

def avg(first, *rest):
 return (first + sum(rest)) / (1 + len(rest))

Sample use
avg(1, 2) # 1.5
avg(1, 2, 3, 4) # 2.5

In this example, rest is a tuple of all the extra positional arguments passed. The code
treats it as a sequence in performing subsequent calculations.

217

To accept any number of keyword arguments, use an argument that starts with **. For
example:

import html

def make_element(name, value, **attrs):
 keyvals = [' %s="%s"' % item for item in attrs.items()]
 attr_str = ''.join(keyvals)
 element = '<{name}{attrs}>{value}</{name}>'.format(
 name=name,
 attrs=attr_str,
 value=html.escape(value))
 return element

Example
Creates '<item size="large" quantity="6">Albatross</item>'
make_element('item', 'Albatross', size='large', quantity=6)

Creates '<p><spam></p>'
make_element('p', '<spam>')

Here, attrs is a dictionary that holds the passed keyword arguments (if any).

If you want a function that can accept both any number of positional and keyword-only
arguments, use * and ** together. For example:

def anyargs(*args, **kwargs):
 print(args) # A tuple
 print(kwargs) # A dict

With this function, all of the positional arguments are placed into a tuple args, and all
of the keyword arguments are placed into a dictionary kwargs.

Discussion
A * argument can only appear as the last positional argument in a function definition.
A ** argument can only appear as the last argument. A subtle aspect of function defi‐
nitions is that arguments can still appear after a * argument.

def a(x, *args, y):
 pass

def b(x, *args, y, **kwargs):
 pass

Such arguments are known as keyword-only arguments, and are discussed further in
Recipe 7.2.

218 | Chapter 7: Functions

7.2. Writing Functions That Only Accept Keyword
Arguments
Problem
You want a function to only accept certain arguments by keyword.

Solution
This feature is easy to implement if you place the keyword arguments after a * argument
or a single unnamed *. For example:

def recv(maxsize, *, block):
 'Receives a message'
 pass

recv(1024, True) # TypeError
recv(1024, block=True) # Ok

This technique can also be used to specify keyword arguments for functions that accept
a varying number of positional arguments. For example:

def mininum(*values, clip=None):
 m = min(values)
 if clip is not None:
 m = clip if clip > m else m
 return m

minimum(1, 5, 2, -5, 10) # Returns -5
minimum(1, 5, 2, -5, 10, clip=0) # Returns 0

Discussion
Keyword-only arguments are often a good way to enforce greater code clarity when
specifying optional function arguments. For example, consider a call like this:

msg = recv(1024, False)

If someone is not intimately familiar with the workings of the recv(), they may have
no idea what the False argument means. On the other hand, it is much clearer if the
call is written like this:

msg = recv(1024, block=False)

The use of keyword-only arguments is also often preferrable to tricks involving
**kwargs, since they show up properly when the user asks for help:

>>> help(recv)
Help on function recv in module __main__:

7.2. Writing Functions That Only Accept Keyword Arguments | 219

recv(maxsize, *, block)
 Receives a message

Keyword-only arguments also have utility in more advanced contexts. For example,
they can be used to inject arguments into functions that make use of the *args and
**kwargs convention for accepting all inputs. See Recipe 9.11 for an example.

7.3. Attaching Informational Metadata to Function
Arguments
Problem
You’ve written a function, but would like to attach some additional information to the
arguments so that others know more about how a function is supposed to be used.

Solution
Function argument annotations can be a useful way to give programmers hints about
how a function is supposed to be used. For example, consider the following annotated
function:

def add(x:int, y:int) -> int:
 return x + y

The Python interpreter does not attach any semantic meaning to the attached annota‐
tions. They are not type checks, nor do they make Python behave any differently than
it did before. However, they might give useful hints to others reading the source code
about what you had in mind. Third-party tools and frameworks might also attach se‐
mantic meaning to the annotations. They also appear in documentation:

>>> help(add)
Help on function add in module __main__:

add(x: int, y: int) -> int
>>>

Although you can attach any kind of object to a function as an annotation (e.g., numbers,
strings, instances, etc.), classes or strings often seem to make the most sense.

Discussion
Function annotations are merely stored in a function’s __annotations__ attribute. For
example:

>>> add.__annotations__
{'y': <class 'int'>, 'return': <class 'int'>, 'x': <class 'int'>}

220 | Chapter 7: Functions

Although there are many potential uses of annotations, their primary utility is probably
just documentation. Because Python doesn’t have type declarations, it can often be dif‐
ficult to know what you’re supposed to pass into a function if you’re simply reading its
source code in isolation. An annotation gives someone more of a hint.

See Recipe 9.20 for an advanced example showing how to use annotations to implement
multiple dispatch (i.e., overloaded functions).

7.4. Returning Multiple Values from a Function
Problem
You want to return multiple values from a function.

Solution
To return multiple values from a function, simply return a tuple. For example:

>>> def myfun():
... return 1, 2, 3
...
>>> a, b, c = myfun()
>>> a
1
>>> b
2
>>> c
3

Discussion
Although it looks like myfun() returns multiple values, a tuple is actually being created.
It looks a bit peculiar, but it’s actually the comma that forms a tuple, not the parentheses.
For example:

>>> a = (1, 2) # With parentheses
>>> a
(1, 2)
>>> b = 1, 2 # Without parentheses
>>> b
(1, 2)
>>>

When calling functions that return a tuple, it is common to assign the result to multiple
variables, as shown. This is simply tuple unpacking, as described in Recipe 1.1. The
return value could also have been assigned to a single variable:

>>> x = myfun()
>>> x

7.4. Returning Multiple Values from a Function | 221

(1, 2, 3)
>>>

7.5. Defining Functions with Default Arguments
Problem
You want to define a function or method where one or more of the arguments are
optional and have a default value.

Solution
On the surface, defining a function with optional arguments is easy—simply assign
values in the definition and make sure that default arguments appear last. For example:

def spam(a, b=42):
 print(a, b)

spam(1) # Ok. a=1, b=42
spam(1, 2) # Ok. a=1, b=2

If the default value is supposed to be a mutable container, such as a list, set, or dictionary,
use None as the default and write code like this:

Using a list as a default value
def spam(a, b=None):
 if b is None:
 b = []
 ...

If, instead of providing a default value, you want to write code that merely tests whether
an optional argument was given an interesting value or not, use this idiom:

_no_value = object()

def spam(a, b=_no_value):
 if b is _no_value:
 print('No b value supplied')
 ...

Here’s how this function behaves:

>>> spam(1)
No b value supplied
>>> spam(1, 2) # b = 2
>>> spam(1, None) # b = None
>>>

Carefully observe that there is a distinction between passing no value at all and passing
a value of None.

222 | Chapter 7: Functions

Discussion
Defining functions with default arguments is easy, but there is a bit more to it than meets
the eye.

First, the values assigned as a default are bound only once at the time of function defi‐
nition. Try this example to see it:

>>> x = 42
>>> def spam(a, b=x):
... print(a, b)
...
>>> spam(1)
1 42
>>> x = 23 # Has no effect
>>> spam(1)
1 42
>>>

Notice how changing the variable x (which was used as a default value) has no effect
whatsoever. This is because the default value was fixed at function definition time.

Second, the values assigned as defaults should always be immutable objects, such as
None, True, False, numbers, or strings. Specifically, never write code like this:

def spam(a, b=[]): # NO!
 ...

If you do this, you can run into all sorts of trouble if the default value ever escapes the
function and gets modified. Such changes will permanently alter the default value across
future function calls. For example:

>>> def spam(a, b=[]):
... print(b)
... return b
...
>>> x = spam(1)
>>> x
[]
>>> x.append(99)
>>> x.append('Yow!')
>>> x
[99, 'Yow!']
>>> spam(1) # Modified list gets returned!
[99, 'Yow!']
>>>

That’s probably not what you want. To avoid this, it’s better to assign None as a default
and add a check inside the function for it, as shown in the solution.

The use of the is operator when testing for None is a critical part of this recipe. Some‐
times people make this mistake:

7.5. Defining Functions with Default Arguments | 223

def spam(a, b=None):
 if not b: # NO! Use 'b is None' instead
 b = []
 ...

The problem here is that although None evaluates to False, many other objects (e.g.,
zero-length strings, lists, tuples, dicts, etc.) do as well. Thus, the test just shown would
falsely treat certain inputs as missing. For example:

>>> spam(1) # OK
>>> x = []
>>> spam(1, x) # Silent error. x value overwritten by default
>>> spam(1, 0) # Silent error. 0 ignored
>>> spam(1, '') # Silent error. '' ignored
>>>

The last part of this recipe is something that’s rather subtle—a function that tests to see
whether a value (any value) has been supplied to an optional argument or not. The tricky
part here is that you can’t use a default value of None, 0, or False to test for the presence
of a user-supplied argument (since all of these are perfectly valid values that a user might
supply). Thus, you need something else to test against.

To solve this problem, you can create a unique private instance of object, as shown in
the solution (the _no_value variable). In the function, you then check the identity of
the supplied argument against this special value to see if an argument was supplied or
not. The thinking here is that it would be extremely unlikely for a user to pass the
_no_value instance in as an input value. Therefore, it becomes a safe value to check
against if you’re trying to determine whether an argument was supplied or not.

The use of object() might look rather unusual here. object is a class that serves as the
common base class for almost all objects in Python. You can create instances of ob
ject, but they are wholly uninteresting, as they have no notable methods nor any in‐
stance data (because there is no underlying instance dictionary, you can’t even set any
attributes). About the only thing you can do is perform tests for identity. This makes
them useful as special values, as shown in the solution.

7.6. Defining Anonymous or Inline Functions
Problem
You need to supply a short callback function for use with an operation such as sort(),
but you don’t want to write a separate one-line function using the def statement. Instead,
you’d like a shortcut that allows you to specify the function “in line.”

224 | Chapter 7: Functions

Solution
Simple functions that do nothing more than evaluate an expression can be replaced by
a lambda expression. For example:

>>> add = lambda x, y: x + y
>>> add(2,3)
5
>>> add('hello', 'world')
'helloworld'
>>>

The use of lambda here is the same as having typed this:

>>> def add(x, y):
... return x + y
...
>>> add(2,3)
5
>>>

Typically, lambda is used in the context of some other operation, such as sorting or a
data reduction:

>>> names = ['David Beazley', 'Brian Jones',
... 'Raymond Hettinger', 'Ned Batchelder']
>>> sorted(names, key=lambda name: name.split()[-1].lower())
['Ned Batchelder', 'David Beazley', 'Raymond Hettinger', 'Brian Jones']
>>>

Discussion
Although lambda allows you to define a simple function, its use is highly restricted. In
particular, only a single expression can be specified, the result of which is the return
value. This means that no other language features, including multiple statements, con‐
ditionals, iteration, and exception handling, can be included.

You can quite happily write a lot of Python code without ever using lambda. However,
you’ll occasionally encounter it in programs where someone is writing a lot of tiny
functions that evaluate various expressions, or in programs that require users to supply
callback functions.

7.7. Capturing Variables in Anonymous Functions
Problem
You’ve defined an anonymous function using lambda, but you also need to capture the
values of certain variables at the time of definition.

7.7. Capturing Variables in Anonymous Functions | 225

Solution
Consider the behavior of the following code:

>>> x = 10
>>> a = lambda y: x + y
>>> x = 20
>>> b = lambda y: x + y
>>>

Now ask yourself a question. What are the values of a(10) and b(10)? If you think the
results might be 20 and 30, you would be wrong:

>>> a(10)
30
>>> b(10)
30
>>>

The problem here is that the value of x used in the lambda expression is a free variable
that gets bound at runtime, not definition time. Thus, the value of x in the lambda
expressions is whatever the value of the x variable happens to be at the time of execution.
For example:

>>> x = 15
>>> a(10)
25
>>> x = 3
>>> a(10)
13
>>>

If you want an anonymous function to capture a value at the point of definition and
keep it, include the value as a default value, like this:

>>> x = 10
>>> a = lambda y, x=x: x + y
>>> x = 20
>>> b = lambda y, x=x: x + y
>>> a(10)
20
>>> b(10)
30
>>>

Discussion
The problem addressed in this recipe is something that tends to come up in code that
tries to be just a little bit too clever with the use of lambda functions. For example,
creating a list of lambda expressions using a list comprehension or in a loop of some

226 | Chapter 7: Functions

kind and expecting the lambda functions to remember the iteration variable at the time
of definition. For example:

>>> funcs = [lambda x: x+n for n in range(5)]
>>> for f in funcs:
... print(f(0))
...
4
4
4
4
4
>>>

Notice how all functions think that n has the last value during iteration. Now compare
to the following:

>>> funcs = [lambda x, n=n: x+n for n in range(5)]
>>> for f in funcs:
... print(f(0))
...
0
1
2
3
4
>>>

As you can see, the functions now capture the value of n at the time of definition.

7.8. Making an N-Argument Callable Work As a Callable
with Fewer Arguments
Problem
You have a callable that you would like to use with some other Python code, possibly as
a callback function or handler, but it takes too many arguments and causes an exception
when called.

Solution
If you need to reduce the number of arguments to a function, you should use func
tools.partial(). The partial() function allows you to assign fixed values to one or
more of the arguments, thus reducing the number of arguments that need to be supplied
to subsequent calls. To illustrate, suppose you have this function:

def spam(a, b, c, d):
 print(a, b, c, d)

7.8. Making an N-Argument Callable Work As a Callable with Fewer Arguments | 227

Now consider the use of partial() to fix certain argument values:

>>> from functools import partial
>>> s1 = partial(spam, 1) # a = 1
>>> s1(2, 3, 4)
1 2 3 4
>>> s1(4, 5, 6)
1 4 5 6
>>> s2 = partial(spam, d=42) # d = 42
>>> s2(1, 2, 3)
1 2 3 42
>>> s2(4, 5, 5)
4 5 5 42
>>> s3 = partial(spam, 1, 2, d=42) # a = 1, b = 2, d = 42
>>> s3(3)
1 2 3 42
>>> s3(4)
1 2 4 42
>>> s3(5)
1 2 5 42
>>>

Observe that partial() fixes the values for certain arguments and returns a new callable
as a result. This new callable accepts the still unassigned arguments, combines them
with the arguments given to partial(), and passes everything to the original function.

Discussion
This recipe is really related to the problem of making seemingly incompatible bits of
code work together. A series of examples will help illustrate.

As a first example, suppose you have a list of points represented as tuples of (x,y) co‐
ordinates. You could use the following function to compute the distance between two
points:

points = [(1, 2), (3, 4), (5, 6), (7, 8)]

import math
def distance(p1, p2):
 x1, y1 = p1
 x2, y2 = p2
 return math.hypot(x2 - x1, y2 - y1)

Now suppose you want to sort all of the points according to their distance from some
other point. The sort() method of lists accepts a key argument that can be used to
customize sorting, but it only works with functions that take a single argument (thus,
distance() is not suitable). Here’s how you might use partial() to fix it:

228 | Chapter 7: Functions

>>> pt = (4, 3)
>>> points.sort(key=partial(distance,pt))
>>> points
[(3, 4), (1, 2), (5, 6), (7, 8)]
>>>

As an extension of this idea, partial() can often be used to tweak the argument sig‐
natures of callback functions used in other libraries. For example, here’s a bit of code
that uses multiprocessing to asynchronously compute a result which is handed to a
callback function that accepts both the result and an optional logging argument:

def output_result(result, log=None):
 if log is not None:
 log.debug('Got: %r', result)

A sample function
def add(x, y):
 return x + y

if __name__ == '__main__':
 import logging
 from multiprocessing import Pool
 from functools import partial

 logging.basicConfig(level=logging.DEBUG)
 log = logging.getLogger('test')

 p = Pool()
 p.apply_async(add, (3, 4), callback=partial(output_result, log=log))
 p.close()
 p.join()

When supplying the callback function using apply_async(), the extra logging argu‐
ment is given using partial(). multiprocessing is none the wiser about all of this—
it simply invokes the callback function with a single value.

As a similar example, consider the problem of writing network servers. The socket
server module makes it relatively easy. For example, here is a simple echo server:

from socketserver import StreamRequestHandler, TCPServer

class EchoHandler(StreamRequestHandler):
 def handle(self):
 for line in self.rfile:
 self.wfile.write(b'GOT:' + line)

serv = TCPServer(('', 15000), EchoHandler)
serv.serve_forever()

However, suppose you want to give the EchoHandler class an __init__() method that
accepts an additional configuration argument. For example:

7.8. Making an N-Argument Callable Work As a Callable with Fewer Arguments | 229

class EchoHandler(StreamRequestHandler):
 # ack is added keyword-only argument. *args, **kwargs are
 # any normal parameters supplied (which are passed on)
 def __init__(self, *args, ack, **kwargs):
 self.ack = ack
 super().__init__(*args, **kwargs)
 def handle(self):
 for line in self.rfile:
 self.wfile.write(self.ack + line)

If you make this change, you’ll find there is no longer an obvious way to plug it into the
TCPServer class. In fact, you’ll find that the code now starts generating exceptions like
this:

Exception happened during processing of request from ('127.0.0.1', 59834)
Traceback (most recent call last):
 ...
TypeError: __init__() missing 1 required keyword-only argument: 'ack'

At first glance, it seems impossible to fix this code, short of modifying the source code
to socketserver or coming up with some kind of weird workaround. However, it’s easy
to resolve using partial()—just use it to supply the value of the ack argument, like
this:

from functools import partial
serv = TCPServer(('', 15000), partial(EchoHandler, ack=b'RECEIVED:'))
serv.serve_forever()

In this example, the specification of the ack argument in the __init__() method might
look a little funny, but it’s being specified as a keyword-only argument. This is discussed
further in Recipe 7.2.

The functionality of partial() is sometimes replaced with a lambda expression. For
example, the previous examples might use statements such as this:

points.sort(key=lambda p: distance(pt, p))

p.apply_async(add, (3, 4), callback=lambda result: output_result(result,log))

serv = TCPServer(('', 15000),
 lambda *args, **kwargs: EchoHandler(*args,
 ack=b'RECEIVED:',
 **kwargs))

This code works, but it’s more verbose and potentially a lot more confusing to someone
reading it. Using partial() is a bit more explicit about your intentions (supplying
values for some of the arguments).)

230 | Chapter 7: Functions

7.9. Replacing Single Method Classes with Functions
Problem
You have a class that only defines a single method besides __init__(). However, to
simplify your code, you would much rather just have a simple function.

Solution
In many cases, single-method classes can be turned into functions using closures. Con‐
sider, as an example, the following class, which allows a user to fetch URLs using a kind
of templating scheme.

from urllib.request import urlopen

class UrlTemplate:
 def __init__(self, template):
 self.template = template
 def open(self, **kwargs):
 return urlopen(self.template.format_map(kwargs))

Example use. Download stock data from yahoo
yahoo = UrlTemplate('http://finance.yahoo.com/d/quotes.csv?s={names}&f={fields}')
for line in yahoo.open(names='IBM,AAPL,FB', fields='sl1c1v'):
 print(line.decode('utf-8'))

The class could be replaced with a much simpler function:

def urltemplate(template):
 def opener(**kwargs):
 return urlopen(template.format_map(kwargs))
 return opener

Example use
yahoo = urltemplate('http://finance.yahoo.com/d/quotes.csv?s={names}&f={fields}')
for line in yahoo(names='IBM,AAPL,FB', fields='sl1c1v'):
 print(line.decode('utf-8'))

Discussion
In many cases, the only reason you might have a single-method class is to store addi‐
tional state for use in the method. For example, the only purpose of the UrlTemplate
class is to hold the template value someplace so that it can be used in the open() method.

Using an inner function or closure, as shown in the solution, is often more elegant.
Simply stated, a closure is just a function, but with an extra environment of the variables
that are used inside the function. A key feature of a closure is that it remembers the
environment in which it was defined. Thus, in the solution, the opener() function
remembers the value of the template argument, and uses it in subsequent calls.

7.9. Replacing Single Method Classes with Functions | 231

Whenever you’re writing code and you encounter the problem of attaching additional
state to a function, think closures. They are often a more minimal and elegant solution
than the alternative of turning your function into a full-fledged class.

7.10. Carrying Extra State with Callback Functions
Problem
You’re writing code that relies on the use of callback functions (e.g., event handlers,
completion callbacks, etc.), but you want to have the callback function carry extra state
for use inside the callback function.

Solution
This recipe pertains to the use of callback functions that are found in many libraries
and frameworks—especially those related to asynchronous processing. To illustrate and
for the purposes of testing, define the following function, which invokes a callback:

def apply_async(func, args, *, callback):
 # Compute the result
 result = func(*args)

 # Invoke the callback with the result
 callback(result)

In reality, such code might do all sorts of advanced processing involving threads, pro‐
cesses, and timers, but that’s not the main focus here. Instead, we’re simply focused on
the invocation of the callback. Here’s an example that shows how the preceding code
gets used:

>>> def print_result(result):
... print('Got:', result)
...
>>> def add(x, y):
... return x + y
...
>>> apply_async(add, (2, 3), callback=print_result)
Got: 5
>>> apply_async(add, ('hello', 'world'), callback=print_result)
Got: helloworld
>>>

As you will notice, the print_result() function only accepts a single argument, which
is the result. No other information is passed in. This lack of information can sometimes
present problems when you want the callback to interact with other variables or parts
of the environment.

232 | Chapter 7: Functions

One way to carry extra information in a callback is to use a bound-method instead of
a simple function. For example, this class keeps an internal sequence number that is
incremented every time a result is received:

class ResultHandler:
 def __init__(self):
 self.sequence = 0
 def handler(self, result):
 self.sequence += 1
 print('[{}] Got: {}'.format(self.sequence, result))

To use this class, you would create an instance and use the bound method handler as
the callback:

>>> r = ResultHandler()
>>> apply_async(add, (2, 3), callback=r.handler)
[1] Got: 5
>>> apply_async(add, ('hello', 'world'), callback=r.handler)
[2] Got: helloworld
>>>

As an alternative to a class, you can also use a closure to capture state. For example:

def make_handler():
 sequence = 0
 def handler(result):
 nonlocal sequence
 sequence += 1
 print('[{}] Got: {}'.format(sequence, result))
 return handler

Here is an example of this variant:

>>> handler = make_handler()
>>> apply_async(add, (2, 3), callback=handler)
[1] Got: 5
>>> apply_async(add, ('hello', 'world'), callback=handler)
[2] Got: helloworld
>>>

As yet another variation on this theme, you can sometimes use a coroutine to accomplish
the same thing:

def make_handler():
 sequence = 0
 while True:
 result = yield
 sequence += 1
 print('[{}] Got: {}'.format(sequence, result))

For a coroutine, you would use its send() method as the callback, like this:

>>> handler = make_handler()
>>> next(handler) # Advance to the yield

7.10. Carrying Extra State with Callback Functions | 233

>>> apply_async(add, (2, 3), callback=handler.send)
[1] Got: 5
>>> apply_async(add, ('hello', 'world'), callback=handler.send)
[2] Got: helloworld
>>>

Last, but not least, you can also carry state into a callback using an extra argument and
partial function application. For example:

>>> class SequenceNo:
... def __init__(self):
... self.sequence = 0
...
>>> def handler(result, seq):
... seq.sequence += 1
... print('[{}] Got: {}'.format(seq.sequence, result))
...
>>> seq = SequenceNo()
>>> from functools import partial
>>> apply_async(add, (2, 3), callback=partial(handler, seq=seq))
[1] Got: 5
>>> apply_async(add, ('hello', 'world'), callback=partial(handler, seq=seq))
[2] Got: helloworld
>>>

Discussion
Software based on callback functions often runs the risk of turning into a huge tangled
mess. Part of the issue is that the callback function is often disconnected from the code
that made the initial request leading to callback execution. Thus, the execution envi‐
ronment between making the request and handling the result is effectively lost. If you
want the callback function to continue with a procedure involving multiple steps, you
have to figure out how to save and restore the associated state.

There are really two main approaches that are useful for capturing and carrying state.
You can carry it around on an instance (attached to a bound method perhaps) or you
can carry it around in a closure (an inner function). Of the two techniques, closures are
perhaps a bit more lightweight and natural in that they are simply built from functions.
They also automatically capture all of the variables being used. Thus, it frees you from
having to worry about the exact state needs to be stored (it’s determined automatically
from your code).

If using closures, you need to pay careful attention to mutable variables. In the solution,
the nonlocal declaration is used to indicate that the sequence variable is being modified
from within the callback. Without this declaration, you’ll get an error.

The use of a coroutine as a callback handler is interesting in that it is closely related to
the closure approach. In some sense, it’s even cleaner, since there is just a single function.
Moreover, variables can be freely modified without worrying about nonlocal declara‐

234 | Chapter 7: Functions

tions. The potential downside is that coroutines don’t tend to be as well understood as
other parts of Python. There are also a few tricky bits such as the need to call next() on
a coroutine prior to using it. That’s something that could be easy to forget in practice.
Nevertheless, coroutines have other potential uses here, such as the definition of an
inlined callback (covered in the next recipe).

The last technique involving partial() is useful if all you need to do is pass extra values
into a callback. Instead of using partial(), you’ll sometimes see the same thing ac‐
complished with the use of a lambda:

>>> apply_async(add, (2, 3), callback=lambda r: handler(r, seq))
[1] Got: 5
>>>

For more examples, see Recipe 7.8, which shows how to use partial() to change ar‐
gument signatures.

7.11. Inlining Callback Functions
Problem
You’re writing code that uses callback functions, but you’re concerned about the pro‐
liferation of small functions and mind boggling control flow. You would like some way
to make the code look more like a normal sequence of procedural steps.

Solution
Callback functions can be inlined into a function using generators and coroutines. To
illustrate, suppose you have a function that performs work and invokes a callback as
follows (see Recipe 7.10):

def apply_async(func, args, *, callback):
 # Compute the result
 result = func(*args)

 # Invoke the callback with the result
 callback(result)

Now take a look at the following supporting code, which involves an Async class and
an inlined_async decorator:

from queue import Queue
from functools import wraps

class Async:
 def __init__(self, func, args):
 self.func = func
 self.args = args

7.11. Inlining Callback Functions | 235

def inlined_async(func):
 @wraps(func)
 def wrapper(*args):
 f = func(*args)
 result_queue = Queue()
 result_queue.put(None)
 while True:
 result = result_queue.get()
 try:
 a = f.send(result)
 apply_async(a.func, a.args, callback=result_queue.put)
 except StopIteration:
 break
 return wrapper

These two fragments of code will allow you to inline the callback steps using yield
statements. For example:

def add(x, y):
 return x + y

@inlined_async
def test():
 r = yield Async(add, (2, 3))
 print(r)
 r = yield Async(add, ('hello', 'world'))
 print(r)
 for n in range(10):
 r = yield Async(add, (n, n))
 print(r)
 print('Goodbye')

If you call test(), you’ll get output like this:

5
helloworld
0
2
4
6
8
10
12
14
16
18
Goodbye

Aside from the special decorator and use of yield, you will notice that no callback
functions appear anywhere (except behind the scenes).

236 | Chapter 7: Functions

Discussion
This recipe will really test your knowledge of callback functions, generators, and control
flow.

First, in code involving callbacks, the whole point is that the current calculation will
suspend and resume at some later point in time (e.g., asynchronously). When the cal‐
culation resumes, the callback will get executed to continue the processing. The ap
ply_async() function illustrates the essential parts of executing the callback, although
in reality it might be much more complicated (involving threads, processes, event han‐
dlers, etc.).

The idea that a calculation will suspend and resume naturally maps to the execution
model of a generator function. Specifically, the yield operation makes a generator
function emit a value and suspend. Subsequent calls to the __next__() or send()
method of a generator will make it start again.

With this in mind, the core of this recipe is found in the inline_async() decorator
function. The key idea is that the decorator will step the generator function through all
of its yield statements, one at a time. To do this, a result queue is created and initially
populated with a value of None. A loop is then initiated in which a result is popped off
the queue and sent into the generator. This advances to the next yield, at which point
an instance of Async is received. The loop then looks at the function and arguments,
and initiates the asynchronous calculation apply_async(). However, the sneakiest part
of this calculation is that instead of using a normal callback function, the callback is set
to the queue put() method.

At this point, it is left somewhat open as to precisely what happens. The main loop
immediately goes back to the top and simply executes a get() operation on the queue.
If data is present, it must be the result placed there by the put() callback. If nothing is
there, the operation blocks, waiting for a result to arrive at some future time. How that
might happen depends on the precise implementation of the apply_async() function.

If you’re doubtful that anything this crazy would work, you can try it with the multi‐
processing library and have async operations executed in separate processes:

if __name__ == '__main__':
 import multiprocessing
 pool = multiprocessing.Pool()
 apply_async = pool.apply_async

 # Run the test function
 test()

Indeed, you’ll find that it works, but unraveling the control flow might require more
coffee.

7.11. Inlining Callback Functions | 237

Hiding tricky control flow behind generator functions is found elsewhere in the stan‐
dard library and third-party packages. For example, the @contextmanager decorator in
the contextlib performs a similar mind-bending trick that glues the entry and exit
from a context manager together across a yield statement. The popular Twisted pack‐
age has inlined callbacks that are also similar.

7.12. Accessing Variables Defined Inside a Closure
Problem
You would like to extend a closure with functions that allow the inner variables to be
accessed and modified.

Solution
Normally, the inner variables of a closure are completely hidden to the outside world.
However, you can provide access by writing accessor functions and attaching them to
the closure as function attributes. For example:

def sample():
 n = 0
 # Closure function
 def func():
 print('n=', n)

 # Accessor methods for n
 def get_n():
 return n

 def set_n(value):
 nonlocal n
 n = value

 # Attach as function attributes
 func.get_n = get_n
 func.set_n = set_n
 return func

Here is an example of using this code:

>>> f = sample()
>>> f()
n= 0
>>> f.set_n(10)
>>> f()
n= 10
>>> f.get_n()
10
>>>

238 | Chapter 7: Functions

http://twistedmatrix.com
http://twistedmatrix.com

Discussion
There are two main features that make this recipe work. First, nonlocal declarations
make it possible to write functions that change inner variables. Second, function at‐
tributes allow the accessor methods to be attached to the closure function in a straight‐
forward manner where they work a lot like instance methods (even though no class is
involved).

A slight extension to this recipe can be made to have closures emulate instances of a
class. All you need to do is copy the inner functions over to the dictionary of an instance
and return it. For example:

import sys
class ClosureInstance:
 def __init__(self, locals=None):
 if locals is None:
 locals = sys._getframe(1).f_locals

 # Update instance dictionary with callables
 self.__dict__.update((key,value) for key, value in locals.items()
 if callable(value))
 # Redirect special methods
 def __len__(self):
 return self.__dict__['__len__']()

Example use
def Stack():
 items = []

 def push(item):
 items.append(item)

 def pop():
 return items.pop()

 def __len__():
 return len(items)

 return ClosureInstance()

Here’s an interactive session to show that it actually works:

>>> s = Stack()
>>> s
<__main__.ClosureInstance object at 0x10069ed10>
>>> s.push(10)
>>> s.push(20)
>>> s.push('Hello')
>>> len(s)
3
>>> s.pop()
'Hello'

7.12. Accessing Variables Defined Inside a Closure | 239

>>> s.pop()
20
>>> s.pop()
10
>>>

Interestingly, this code runs a bit faster than using a normal class definition. For example,
you might be inclined to test the performance against a class like this:

class Stack2:
 def __init__(self):
 self.items = []

 def push(self, item):
 self.items.append(item)

 def pop(self):
 return self.items.pop()

 def __len__(self):
 return len(self.items)

If you do, you’ll get results similar to the following:

>>> from timeit import timeit
>>> # Test involving closures
>>> s = Stack()
>>> timeit('s.push(1);s.pop()', 'from __main__ import s')
0.9874754269840196
>>> # Test involving a class
>>> s = Stack2()
>>> timeit('s.push(1);s.pop()', 'from __main__ import s')
1.0707052160287276
>>>

As shown, the closure version runs about 8% faster. Most of that is coming from
streamlined access to the instance variables. Closures are faster because there’s no extra
self variable involved.

Raymond Hettinger has devised an even more diabolical variant of this idea. However,
should you be inclined to do something like this in your code, be aware that it’s still a
rather weird substitute for a real class. For example, major features such as inheritance,
properties, descriptors, or class methods don’t work. You also have to play some tricks
to get special methods to work (e.g., see the implementation of __len__() in Closur
eInstance).

240 | Chapter 7: Functions

http://bit.ly/11DSni2

Lastly, you’ll run the risk of confusing people who read your code and wonder why it
doesn’t look anything like a normal class definition (of course, they’ll also wonder why
it’s faster). Nevertheless, it’s an interesting example of what can be done by providing
access to the internals of a closure.

In the big picture, adding methods to closures might have more utility in settings where
you want to do things like reset the internal state, flush buffers, clear caches, or have
some kind of feedback mechanism.

7.12. Accessing Variables Defined Inside a Closure | 241

CHAPTER 8

Classes and Objects

The primary focus of this chapter is to present recipes to common programming pat‐
terns related to class definitions. Topics include making objects support common
Python features, usage of special methods, encapsulation techniques, inheritance, mem‐
ory management, and useful design patterns.

8.1. Changing the String Representation of Instances
Problem
You want to change the output produced by printing or viewing instances to something
more sensible.

Solution
To change the string representation of an instance, define the __str__() and
__repr__() methods. For example:

class Pair:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 def __repr__(self):
 return 'Pair({0.x!r}, {0.y!r})'.format(self)
 def __str__(self):
 return '({0.x!s}, {0.y!s})'.format(self)

The __repr__() method returns the code representation of an instance, and is usually
the text you would type to re-create the instance. The built-in repr() function returns
this text, as does the interactive interpreter when inspecting values. The __str__()
method converts the instance to a string, and is the output produced by the str() and
print() functions. For example:

243

>>> p = Pair(3, 4)
>>> p
Pair(3, 4) # __repr__() output
>>> print(p)
(3, 4) # __str__() output
>>>

The implementation of this recipe also shows how different string representations may
be used during formatting. Specifically, the special !r formatting code indicates that the
output of __repr__() should be used instead of __str__(), the default. You can try this
experiment with the preceding class to see this:

>>> p = Pair(3, 4)
>>> print('p is {0!r}'.format(p))
p is Pair(3, 4)
>>> print('p is {0}'.format(p))
p is (3, 4)
>>>

Discussion
Defining __repr__() and __str__() is often good practice, as it can simplify debugging
and instance output. For example, by merely printing or logging an instance, a pro‐
grammer will be shown more useful information about the instance contents.

It is standard practice for the output of __repr__() to produce text such that
eval(repr(x)) == x. If this is not possible or desired, then it is common to create a
useful textual representation enclosed in < and > instead. For example:

>>> f = open('file.dat')
>>> f
<_io.TextIOWrapper name='file.dat' mode='r' encoding='UTF-8'>
>>>

If no __str__() is defined, the output of __repr__() is used as a fallback.

The use of format() in the solution might look a little funny, but the format code {0.x}
specifies the x-attribute of argument 0. So, in the following function, the 0 is actually
the instance self:

def __repr__(self):
 return 'Pair({0.x!r}, {0.y!r})'.format(self)

As an alternative to this implementation, you could also use the % operator and the
following code:

def __repr__(self):
 return 'Pair(%r, %r)' % (self.x, self.y)

244 | Chapter 8: Classes and Objects

8.2. Customizing String Formatting
Problem
You want an object to support customized formatting through the format() function
and string method.

Solution
To customize string formatting, define the __format__() method on a class. For
example:

_formats = {
 'ymd' : '{d.year}-{d.month}-{d.day}',
 'mdy' : '{d.month}/{d.day}/{d.year}',
 'dmy' : '{d.day}/{d.month}/{d.year}'
 }

class Date:
 def __init__(self, year, month, day):
 self.year = year
 self.month = month
 self.day = day

 def __format__(self, code):
 if code == '':
 code = 'ymd'
 fmt = _formats[code]
 return fmt.format(d=self)

Instances of the Date class now support formatting operations such as the following:

>>> d = Date(2012, 12, 21)
>>> format(d)
'2012-12-21'
>>> format(d, 'mdy')
'12/21/2012'
>>> 'The date is {:ymd}'.format(d)
'The date is 2012-12-21'
>>> 'The date is {:mdy}'.format(d)
'The date is 12/21/2012'
>>>

Discussion
The __format__() method provides a hook into Python’s string formatting function‐
ality. It’s important to emphasize that the interpretation of format codes is entirely up
to the class itself. Thus, the codes can be almost anything at all. For example, consider
the following from the datetime module:

8.2. Customizing String Formatting | 245

>>> from datetime import date
>>> d = date(2012, 12, 21)
>>> format(d)
'2012-12-21'
>>> format(d,'%A, %B %d, %Y')
'Friday, December 21, 2012'
>>> 'The end is {:%d %b %Y}. Goodbye'.format(d)
'The end is 21 Dec 2012. Goodbye'
>>>

There are some standard conventions for the formatting of the built-in types. See the
documentation for the string module for a formal specification.

8.3. Making Objects Support the Context-Management
Protocol
Problem
You want to make your objects support the context-management protocol (the with
statement).

Solution
In order to make an object compatible with the with statement, you need to implement
__enter__() and __exit__() methods. For example, consider the following class,
which provides a network connection:

from socket import socket, AF_INET, SOCK_STREAM

class LazyConnection:
 def __init__(self, address, family=AF_INET, type=SOCK_STREAM):
 self.address = address
 self.family = AF_INET
 self.type = SOCK_STREAM
 self.sock = None

 def __enter__(self):
 if self.sock is not None:
 raise RuntimeError('Already connected')
 self.sock = socket(self.family, self.type)
 self.sock.connect(self.address)
 return self.sock

 def __exit__(self, exc_ty, exc_val, tb):
 self.sock.close()
 self.sock = None

246 | Chapter 8: Classes and Objects

http://docs.python.org/3/library/string.html

The key feature of this class is that it represents a network connection, but it doesn’t
actually do anything initially (e.g., it doesn’t establish a connection). Instead, the con‐
nection is established and closed using the with statement (essentially on demand). For
example:

from functools import partial

conn = LazyConnection(('www.python.org', 80))
Connection closed
with conn as s:
 # conn.__enter__() executes: connection open
 s.send(b'GET /index.html HTTP/1.0\r\n')
 s.send(b'Host: www.python.org\r\n')
 s.send(b'\r\n')
 resp = b''.join(iter(partial(s.recv, 8192), b''))
 # conn.__exit__() executes: connection closed

Discussion
The main principle behind writing a context manager is that you’re writing code that’s
meant to surround a block of statements as defined by the use of the with statement.
When the with statement is first encountered, the __enter__() method is triggered.
The return value of __enter__() (if any) is placed into the variable indicated with the
as qualifier. Afterward, the statements in the body of the with statement execute. Finally,
the __exit__() method is triggered to clean up.

This control flow happens regardless of what happens in the body of the with statement,
including if there are exceptions. In fact, the three arguments to the __exit__() method
contain the exception type, value, and traceback for pending exceptions (if any). The
__exit__() method can choose to use the exception information in some way or to
ignore it by doing nothing and returning None as a result. If __exit__() returns True,
the exception is cleared as if nothing happened and the program continues executing
statements immediately after the with block.

One subtle aspect of this recipe is whether or not the LazyConnection class allows nested
use of the connection with multiple with statements. As shown, only a single socket
connection at a time is allowed, and an exception is raised if a repeated with statement
is attempted when a socket is already in use. You can work around this limitation with
a slightly different implementation, as shown here:

from socket import socket, AF_INET, SOCK_STREAM

class LazyConnection:
 def __init__(self, address, family=AF_INET, type=SOCK_STREAM):
 self.address = address
 self.family = AF_INET
 self.type = SOCK_STREAM
 self.connections = []

8.3. Making Objects Support the Context-Management Protocol | 247

 def __enter__(self):
 sock = socket(self.family, self.type)
 sock.connect(self.address)
 self.connections.append(sock)
 return sock

 def __exit__(self, exc_ty, exc_val, tb):
 self.connections.pop().close()

Example use
from functools import partial

conn = LazyConnection(('www.python.org', 80))
with conn as s1:
 ...
 with conn as s2:
 ...
 # s1 and s2 are independent sockets

In this second version, the LazyConnection class serves as a kind of factory for con‐
nections. Internally, a list is used to keep a stack. Whenever __enter__() executes, it
makes a new connection and adds it to the stack. The __exit__() method simply pops
the last connection off the stack and closes it. It’s subtle, but this allows multiple con‐
nections to be created at once with nested with statements, as shown.

Context managers are most commonly used in programs that need to manage resources
such as files, network connections, and locks. A key part of such resources is they have
to be explicitly closed or released to operate correctly. For instance, if you acquire a lock,
then you have to make sure you release it, or else you risk deadlock. By implementing
__enter__(), __exit__(), and using the with statement, it is much easier to avoid such
problems, since the cleanup code in the __exit__() method is guaranteed to run no
matter what.

An alternative formulation of context managers is found in the contextmanager mod‐
ule. See Recipe 9.22. A thread-safe version of this recipe can be found in Recipe 12.6.

8.4. Saving Memory When Creating a Large Number of
Instances
Problem
Your program creates a large number (e.g., millions) of instances and uses a large
amount of memory.

248 | Chapter 8: Classes and Objects

Solution
For classes that primarily serve as simple data structures, you can often greatly reduce
the memory footprint of instances by adding the __slots__ attribute to the class defi‐
nition. For example:

class Date:
 __slots__ = ['year', 'month', 'day']
 def __init__(self, year, month, day):
 self.year = year
 self.month = month
 self.day = day

When you define __slots__, Python uses a much more compact internal representation
for instances. Instead of each instance consisting of a dictionary, instances are built
around a small fixed-sized array, much like a tuple or list. Attribute names listed in the
__slots__ specifier are internally mapped to specific indices within this array. A side
effect of using slots is that it is no longer possible to add new attributes to instances—
you are restricted to only those attribute names listed in the __slots__ specifier.

Discussion
The memory saved by using slots varies according to the number and type of attributes
stored. However, in general, the resulting memory use is comparable to that of storing
data in a tuple. To give you an idea, storing a single Date instance without slots requires
428 bytes of memory on a 64-bit version of Python. If slots is defined, it drops to 156
bytes. In a program that manipulated a large number of dates all at once, this would
make a significant reduction in overall memory use.

Although slots may seem like a feature that could be generally useful, you should resist
the urge to use it in most code. There are many parts of Python that rely on the normal
dictionary-based implementation. In addition, classes that define slots don’t support
certain features such as multiple inheritance. For the most part, you should only use
slots on classes that are going to serve as frequently used data structures in your program
(e.g., if your program created millions of instances of a particular class).

A common misperception of __slots__ is that it is an encapsulation tool that prevents
users from adding new attributes to instances. Although this is a side effect of using
slots, this was never the original purpose. Instead, __slots__ was always intended to
be an optimization tool.

8.4. Saving Memory When Creating a Large Number of Instances | 249

8.5. Encapsulating Names in a Class
Problem
You want to encapsulate “private” data on instances of a class, but are concerned about
Python’s lack of access control.

Solution
Rather than relying on language features to encapsulate data, Python programmers are
expected to observe certain naming conventions concerning the intended usage of data
and methods. The first convention is that any name that starts with a single leading
underscore (_) should always be assumed to be internal implementation. For example:

class A:
 def __init__(self):
 self._internal = 0 # An internal attribute
 self.public = 1 # A public attribute

 def public_method(self):
 '''
 A public method
 '''
 ...

 def _internal_method(self):
 ...

Python doesn’t actually prevent someone from accessing internal names. However, do‐
ing so is considered impolite, and may result in fragile code. It should be noted, too,
that the use of the leading underscore is also used for module names and module-level
functions. For example, if you ever see a module name that starts with a leading un‐
derscore (e.g., _socket), it’s internal implementation. Likewise, module-level functions
such as sys._getframe() should only be used with great caution.

You may also encounter the use of two leading underscores (__) on names within class
definitions. For example:

class B:
 def __init__(self):
 self.__private = 0
 def __private_method(self):
 ...
 def public_method(self):
 ...
 self.__private_method()
 ...

250 | Chapter 8: Classes and Objects

The use of double leading underscores causes the name to be mangled to something
else. Specifically, the private attributes in the preceding class get renamed to _B__pri
vate and _B__private_method, respectively. At this point, you might ask what purpose
such name mangling serves. The answer is inheritance—such attributes cannot be
overridden via inheritance. For example:

class C(B):
 def __init__(self):
 super().__init__()
 self.__private = 1 # Does not override B.__private
 # Does not override B.__private_method()
 def __private_method(self):
 ...

Here, the private names __private and __private_method get renamed to _C__pri
vate and _C__private_method, which are different than the mangled names in the base
class B.

Discussion
The fact that there are two different conventions (single underscore versus double un‐
derscore) for “private” attributes leads to the obvious question of which style you should
use. For most code, you should probably just make your nonpublic names start with a
single underscore. If, however, you know that your code will involve subclassing, and
there are internal attributes that should be hidden from subclasses, use the double un‐
derscore instead.

It should also be noted that sometimes you may want to define a variable that clashes
with the name of a reserved word. For this, you should use a single trailing underscore.
For example:

lambda_ = 2.0 # Trailing _ to avoid clash with lambda keyword

The reason for not using a leading underscore here is that it avoids confusion about the
intended usage (i.e., the use of a leading underscore could be interpreted as a way to
avoid a name collision rather than as an indication that the value is private). Using a
single trailing underscore solves this problem.

8.6. Creating Managed Attributes
Problem
You want to add extra processing (e.g., type checking or validation) to the getting or
setting of an instance attribute.

8.6. Creating Managed Attributes | 251

Solution
A simple way to customize access to an attribute is to define it as a “property.” For
example, this code defines a property that adds simple type checking to an attribute:

class Person:
 def __init__(self, first_name):
 self.first_name = first_name

 # Getter function
 @property
 def first_name(self):
 return self._first_name

 # Setter function
 @first_name.setter
 def first_name(self, value):
 if not isinstance(value, str):
 raise TypeError('Expected a string')
 self._first_name = value

 # Deleter function (optional)
 @first_name.deleter
 def first_name(self):
 raise AttributeError("Can't delete attribute")

In the preceding code, there are three related methods, all of which must have the same
name. The first method is a getter function, and establishes first_name as being a
property. The other two methods attach optional setter and deleter functions to the
first_name property. It’s important to stress that the @first_name.setter and
@first_name.deleter decorators won’t be defined unless first_name was already es‐
tablished as a property using @property.

A critical feature of a property is that it looks like a normal attribute, but access auto‐
matically triggers the getter, setter, and deleter methods. For example:

>>> a = Person('Guido')
>>> a.first_name # Calls the getter
'Guido'
>>> a.first_name = 42 # Calls the setter
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "prop.py", line 14, in first_name
 raise TypeError('Expected a string')
TypeError: Expected a string
>>> del a.first_name
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't delete attribute
>>>

252 | Chapter 8: Classes and Objects

When implementing a property, the underlying data (if any) still needs to be stored
somewhere. Thus, in the get and set methods, you see direct manipulation of a
_first_name attribute, which is where the actual data lives. In addition, you may ask
why the __init__() method sets self.first_name instead of self._first_name. In
this example, the entire point of the property is to apply type checking when setting an
attribute. Thus, chances are you would also want such checking to take place during
initialization. By setting self.first_name, the set operation uses the setter method (as
opposed to bypassing it by accessing self._first_name).

Properties can also be defined for existing get and set methods. For example:

class Person:
 def __init__(self, first_name):
 self.set_first_name(first_name)

 # Getter function
 def get_first_name(self):
 return self._first_name

 # Setter function
 def set_first_name(self, value):
 if not isinstance(value, str):
 raise TypeError('Expected a string')
 self._first_name = value

 # Deleter function (optional)
 def del_first_name(self):
 raise AttributeError("Can't delete attribute")

 # Make a property from existing get/set methods
 name = property(get_first_name, set_first_name, del_first_name)

Discussion
A property attribute is actually a collection of methods bundled together. If you inspect
a class with a property, you can find the raw methods in the fget, fset, and fdel
attributes of the property itself. For example:

>>> Person.first_name.fget
<function Person.first_name at 0x1006a60e0>
>>> Person.first_name.fset
<function Person.first_name at 0x1006a6170>
>>> Person.first_name.fdel
<function Person.first_name at 0x1006a62e0>
>>>

Normally, you wouldn’t call fget or fset directly, but they are triggered automatically
when the property is accessed.

8.6. Creating Managed Attributes | 253

Properties should only be used in cases where you actually need to perform extra pro‐
cessing on attribute access. Sometimes programmers coming from languages such as
Java feel that all access should be handled by getters and setters, and that they should
write code like this:

class Person:
 def __init__(self, first_name):
 self.first_name = name
 @property
 def first_name(self):
 return self._first_name
 @first_name.setter
 def first_name(self, value):
 self._first_name = value

Don’t write properties that don’t actually add anything extra like this. For one, it makes
your code more verbose and confusing to others. Second, it will make your program
run a lot slower. Lastly, it offers no real design benefit. Specifically, if you later decide
that extra processing needs to be added to the handling of an ordinary attribute, you
could promote it to a property without changing existing code. This is because the syntax
of code that accessed the attribute would remain unchanged.

Properties can also be a way to define computed attributes. These are attributes that are
not actually stored, but computed on demand. For example:

import math
class Circle:
 def __init__(self, radius):
 self.radius = radius
 @property
 def area(self):
 return math.pi * self.radius ** 2
 @property
 def perimeter(self):
 return 2 * math.pi * self.radius

Here, the use of properties results in a very uniform instance interface in that radius,
area, and perimeter are all accessed as simple attributes, as opposed to a mix of simple
attributes and method calls. For example:

>>> c = Circle(4.0)
>>> c.radius
4.0
>>> c.area # Notice lack of ()
50.26548245743669
>>> c.perimeter # Notice lack of ()
25.132741228718345
>>>

254 | Chapter 8: Classes and Objects

Although properties give you an elegant programming interface, sometimes you ac‐
tually may want to directly use getter and setter functions. For example:

>>> p = Person('Guido')
>>> p.get_first_name()
'Guido'
>>> p.set_first_name('Larry')
>>>

This often arises in situations where Python code is being integrated into a larger in‐
frastructure of systems or programs. For example, perhaps a Python class is going to be
plugged into a large distributed system based on remote procedure calls or distributed
objects. In such a setting, it may be much easier to work with an explicit get/set method
(as a normal method call) rather than a property that implicitly makes such calls.

Last, but not least, don’t write Python code that features a lot of repetitive property
definitions. For example:

class Person:
 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

 @property
 def first_name(self):
 return self._first_name

 @first_name.setter
 def first_name(self, value):
 if not isinstance(value, str):
 raise TypeError('Expected a string')
 self._first_name = value

 # Repeated property code, but for a different name (bad!)
 @property
 def last_name(self):
 return self._last_name

 @last_name.setter
 def last_name(self, value):
 if not isinstance(value, str):
 raise TypeError('Expected a string')
 self._last_name = value

Code repetition leads to bloated, error prone, and ugly code. As it turns out, there are
much better ways to achieve the same thing using descriptors or closures. See Recipes
8.9 and 9.21.

8.6. Creating Managed Attributes | 255

8.7. Calling a Method on a Parent Class
Problem
You want to invoke a method in a parent class in place of a method that has been
overridden in a subclass.

Solution
To call a method in a parent (or superclass), use the super() function. For example:

class A:
 def spam(self):
 print('A.spam')

class B(A):
 def spam(self):
 print('B.spam')
 super().spam() # Call parent spam()

A very common use of super() is in the handling of the __init__() method to make
sure that parents are properly initialized:

class A:
 def __init__(self):
 self.x = 0

class B(A):
 def __init__(self):
 super().__init__()
 self.y = 1

Another common use of super() is in code that overrides any of Python’s special meth‐
ods. For example:

class Proxy:
 def __init__(self, obj):
 self._obj = obj

 # Delegate attribute lookup to internal obj
 def __getattr__(self, name):
 return getattr(self._obj, name)

 # Delegate attribute assignment
 def __setattr__(self, name, value):
 if name.startswith('_'):
 super().__setattr__(name, value) # Call original __setattr__
 else:
 setattr(self._obj, name, value)

256 | Chapter 8: Classes and Objects

In this code, the implementation of __setattr__() includes a name check. If the
name starts with an underscore (_), it invokes the original implementation of
__setattr__() using super(). Otherwise, it delegates to the internally held object
self._obj. It looks a little funny, but super() works even though there is no explicit
base class listed.

Discussion
Correct use of the super() function is actually one of the most poorly understood
aspects of Python. Occasionally, you will see code written that directly calls a method
in a parent like this:

class Base:
 def __init__(self):
 print('Base.__init__')

class A(Base):
 def __init__(self):
 Base.__init__(self)
 print('A.__init__')

Although this “works” for most code, it can lead to bizarre trouble in advanced code
involving multiple inheritance. For example, consider the following:

class Base:
 def __init__(self):
 print('Base.__init__')

class A(Base):
 def __init__(self):
 Base.__init__(self)
 print('A.__init__')

class B(Base):
 def __init__(self):
 Base.__init__(self)
 print('B.__init__')

class C(A,B):
 def __init__(self):
 A.__init__(self)
 B.__init__(self)
 print('C.__init__')

If you run this code, you’ll see that the Base.__init__() method gets invoked twice, as
shown here:

>>> c = C()
Base.__init__
A.__init__
Base.__init__

8.7. Calling a Method on a Parent Class | 257

B.__init__
C.__init__
>>>

Perhaps double-invocation of Base.__init__() is harmless, but perhaps not. If, on the
other hand, you change the code to use super(), it all works:

class Base:
 def __init__(self):
 print('Base.__init__')

class A(Base):
 def __init__(self):
 super().__init__()
 print('A.__init__')

class B(Base):
 def __init__(self):
 super().__init__()
 print('B.__init__')

class C(A,B):
 def __init__(self):
 super().__init__() # Only one call to super() here
 print('C.__init__')

When you use this new version, you’ll find that each __init__() method only gets
called once:

>>> c = C()
Base.__init__
B.__init__
A.__init__
C.__init__
>>>

To understand why it works, we need to step back for a minute and discuss how Python
implements inheritance. For every class that you define, Python computes what’s known
as a method resolution order (MRO) list. The MRO list is simply a linear ordering of
all the base classes. For example:

>>> C.__mro__
(<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>,
<class '__main__.Base'>, <class 'object'>)
>>>

To implement inheritance, Python starts with the leftmost class and works its way left-
to-right through classes on the MRO list until it finds the first attribute match.

The actual determination of the MRO list itself is made using a technique known as C3
Linearization. Without getting too bogged down in the mathematics of it, it is actually
a merge sort of the MROs from the parent classes subject to three constraints:

258 | Chapter 8: Classes and Objects

• Child classes get checked before parents
• Multiple parents get checked in the order listed.
• If there are two valid choices for the next class, pick the one from the first parent.

Honestly, all you really need to know is that the order of classes in the MRO list “makes
sense” for almost any class hierarchy you are going to define.

When you use the super() function, Python continues its search starting with the next
class on the MRO. As long as every redefined method consistently uses super() and
only calls it once, control will ultimately work its way through the entire MRO list and
each method will only be called once. This is why you don’t get double calls to
Base.__init__() in the second example.

A somewhat surprising aspect of super() is that it doesn’t necessarily go to the direct
parent of a class next in the MRO and that you can even use it in a class with no direct
parent at all. For example, consider this class:

class A:
 def spam(self):
 print('A.spam')
 super().spam()

If you try to use this class, you’ll find that it’s completely broken:

>>> a = A()
>>> a.spam()
A.spam
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 4, in spam
AttributeError: 'super' object has no attribute 'spam'
>>>

Yet, watch what happens if you start using the class with multiple inheritance:

>>> class B:
... def spam(self):
... print('B.spam')
...
>>> class C(A,B):
... pass
...
>>> c = C()
>>> c.spam()
A.spam
B.spam
>>>

8.7. Calling a Method on a Parent Class | 259

Here you see that the use of super().spam() in class A has, in fact, called the spam()
method in class B—a class that is completely unrelated to A! This is all explained by the
MRO of class C:

>>> C.__mro__
(<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>,
<class 'object'>)
>>>

Using super() in this manner is most common when defining mixin classes. See Recipes
8.13 and 8.18.

However, because super() might invoke a method that you’re not expecting, there are
a few general rules of thumb you should try to follow. First, make sure that all methods
with the same name in an inheritance hierarchy have a compatible calling signature (i.e.,
same number of arguments, argument names). This ensures that super() won’t get
tripped up if it tries to invoke a method on a class that’s not a direct parent. Second, it’s
usually a good idea to make sure that the topmost class provides an implementation of
the method so that the chain of lookups that occur along the MRO get terminated by
an actual method of some sort.

Use of super() is sometimes a source of debate in the Python community. However, all
things being equal, you should probably use it in modern code. Raymond Hettinger has
written an excellent blog post “Python’s super() Considered Super!” that has even more
examples and reasons why super() might be super-awesome.

8.8. Extending a Property in a Subclass
Problem
Within a subclass, you want to extend the functionality of a property defined in a parent
class.

Solution
Consider the following code, which defines a property:

class Person:
 def __init__(self, name):
 self.name = name

 # Getter function
 @property
 def name(self):
 return self._name

 # Setter function
 @name.setter

260 | Chapter 8: Classes and Objects

http://rhettinger.wordpress.com/2011/05/26/super-considered-super

 def name(self, value):
 if not isinstance(value, str):
 raise TypeError('Expected a string')
 self._name = value

 # Deleter function
 @name.deleter
 def name(self):
 raise AttributeError("Can't delete attribute")

Here is an example of a class that inherits from Person and extends the name property
with new functionality:

class SubPerson(Person):
 @property
 def name(self):
 print('Getting name')
 return super().name

 @name.setter
 def name(self, value):
 print('Setting name to', value)
 super(SubPerson, SubPerson).name.__set__(self, value)

 @name.deleter
 def name(self):
 print('Deleting name')
 super(SubPerson, SubPerson).name.__delete__(self)

Here is an example of the new class in use:

>>> s = SubPerson('Guido')
Setting name to Guido
>>> s.name
Getting name
'Guido'
>>> s.name = 'Larry'
Setting name to Larry
>>> s.name = 42
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "example.py", line 16, in name
 raise TypeError('Expected a string')
TypeError: Expected a string
>>>

If you only want to extend one of the methods of a property, use code such as the
following:

class SubPerson(Person):
 @Person.name.getter
 def name(self):
 print('Getting name')
 return super().name

8.8. Extending a Property in a Subclass | 261

Or, alternatively, for just the setter, use this code:

class SubPerson(Person):
 @Person.name.setter
 def name(self, value):
 print('Setting name to', value)
 super(SubPerson, SubPerson).name.__set__(self, value)

Discussion
Extending a property in a subclass introduces a number of very subtle problems related
to the fact that a property is defined as a collection of getter, setter, and deleter methods,
as opposed to just a single method. Thus, when extending a property, you need to figure
out if you will redefine all of the methods together or just one of the methods.

In the first example, all of the property methods are redefined together. Within each
method, super() is used to call the previous implementation. The use of super(Sub
Person, SubPerson).name.__set__(self, value) in the setter function is no mis‐
take. To delegate to the previous implementation of the setter, control needs to pass
through the __set__() method of the previously defined name property. However, the
only way to get to this method is to access it as a class variable instead of an instance
variable. This is what happens with the super(SubPerson, SubPerson) operation.

If you only want to redefine one of the methods, it’s not enough to use @property by
itself. For example, code like this doesn’t work:

class SubPerson(Person):
 @property # Doesn't work
 def name(self):
 print('Getting name')
 return super().name

If you try the resulting code, you’ll find that the setter function disappears entirely:

>>> s = SubPerson('Guido')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "example.py", line 5, in __init__
 self.name = name
AttributeError: can't set attribute
>>>

Instead, you should change the code to that shown in the solution:

class SubPerson(Person):
 @Person.getter
 def name(self):
 print('Getting name')
 return super().name

262 | Chapter 8: Classes and Objects

When you do this, all of the previously defined methods of the property are copied, and
the getter function is replaced. It now works as expected:

>>> s = SubPerson('Guido')
>>> s.name
Getting name
'Guido'
>>> s.name = 'Larry'
>>> s.name
Getting name
'Larry'
>>> s.name = 42
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "example.py", line 16, in name
 raise TypeError('Expected a string')
TypeError: Expected a string
>>>

In this particular solution, there is no way to replace the hardcoded class name Per
son with something more generic. If you don’t know which base class defined a property,
you should use the solution where all of the property methods are redefined and su
per() is used to pass control to the previous implementation.

It’s worth noting that the first technique shown in this recipe can also be used to extend
a descriptor, as described in Recipe 8.9. For example:

A descriptor
class String:
 def __init__(self, name):
 self.name = name

 def __get__(self, instance, cls):
 if instance is None:
 return self
 return instance.__dict__[self.name]

 def __set__(self, instance, value):
 if not isinstance(value, str):
 raise TypeError('Expected a string')
 instance.__dict__[self.name] = value

A class with a descriptor
class Person:
 name = String('name')
 def __init__(self, name):
 self.name = name

Extending a descriptor with a property
class SubPerson(Person):
 @property
 def name(self):

8.8. Extending a Property in a Subclass | 263

 print('Getting name')
 return super().name

 @name.setter
 def name(self, value):
 print('Setting name to', value)
 super(SubPerson, SubPerson).name.__set__(self, value)

 @name.deleter
 def name(self):
 print('Deleting name')
 super(SubPerson, SubPerson).name.__delete__(self)

Finally, it’s worth noting that by the time you read this, subclassing of setter and deleter
methods might be somewhat simplified. The solution shown will still work, but the bug
reported at Python’s issues page might resolve into a cleaner approach in a future Python
version.

8.9. Creating a New Kind of Class or Instance Attribute
Problem
You want to create a new kind of instance attribute type with some extra functionality,
such as type checking.

Solution
If you want to create an entirely new kind of instance attribute, define its functionality
in the form of a descriptor class. Here is an example:

Descriptor attribute for an integer type-checked attribute
class Integer:
 def __init__(self, name):
 self.name = name

 def __get__(self, instance, cls):
 if instance is None:
 return self
 else:
 return instance.__dict__[self.name]

 def __set__(self, instance, value):
 if not isinstance(value, int):
 raise TypeError('Expected an int')
 instance.__dict__[self.name] = value

 def __delete__(self, instance):
 del instance.__dict__[self.name]

264 | Chapter 8: Classes and Objects

http://bugs.python.org/issue14965

A descriptor is a class that implements the three core attribute access operations (get,
set, and delete) in the form of __get__(), __set__(), and __delete__() special meth‐
ods. These methods work by receiving an instance as input. The underlying dictionary
of the instance is then manipulated as appropriate.

To use a descriptor, instances of the descriptor are placed into a class definition as class
variables. For example:

class Point:
 x = Integer('x')
 y = Integer('y')
 def __init__(self, x, y):
 self.x = x
 self.y = y

When you do this, all access to the descriptor attributes (e.g., x or y) is captured by the
__get__(), __set__(), and __delete__() methods. For example:

>>> p = Point(2, 3)
>>> p.x # Calls Point.x.__get__(p,Point)
2
>>> p.y = 5 # Calls Point.y.__set__(p, 5)
>>> p.x = 2.3 # Calls Point.x.__set__(p, 2.3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "descrip.py", line 12, in __set__
 raise TypeError('Expected an int')
TypeError: Expected an int
>>>

As input, each method of a descriptor receives the instance being manipulated. To carry
out the requested operation, the underlying instance dictionary (the __dict__ attribute)
is manipulated as appropriate. The self.name attribute of the descriptor holds the dic‐
tionary key being used to store the actual data in the instance dictionary.

Discussion
Descriptors provide the underlying magic for most of Python’s class features, including
@classmethod, @staticmethod, @property, and even the __slots__ specification.

By defining a descriptor, you can capture the core instance operations (get, set, delete)
at a very low level and completely customize what they do. This gives you great power,
and is one of the most important tools employed by the writers of advanced libraries
and frameworks.

One confusion with descriptors is that they can only be defined at the class level, not
on a per-instance basis. Thus, code like this will not work:

Does NOT work
class Point:

8.9. Creating a New Kind of Class or Instance Attribute | 265

 def __init__(self, x, y):
 self.x = Integer('x') # No! Must be a class variable
 self.y = Integer('y')
 self.x = x
 self.y = y

Also, the implementation of the __get__() method is trickier than it seems:

Descriptor attribute for an integer type-checked attribute
class Integer:
 ...
 def __get__(self, instance, cls):
 if instance is None:
 return self
 else:
 return instance.__dict__[self.name]
 ...

The reason __get__() looks somewhat complicated is to account for the distinction
between instance variables and class variables. If a descriptor is accessed as a class vari‐
able, the instance argument is set to None. In this case, it is standard practice to simply
return the descriptor instance itself (although any kind of custom processing is also
allowed). For example:

>>> p = Point(2,3)
>>> p.x # Calls Point.x.__get__(p, Point)
2
>>> Point.x # Calls Point.x.__get__(None, Point)
<__main__.Integer object at 0x100671890>
>>>

Descriptors are often just one component of a larger programming framework involving
decorators or metaclasses. As such, their use may be hidden just barely out of sight. As
an example, here is some more advanced descriptor-based code involving a class
decorator:

Descriptor for a type-checked attribute
class Typed:
 def __init__(self, name, expected_type):
 self.name = name
 self.expected_type = expected_type

 def __get__(self, instance, cls):
 if instance is None:
 return self
 else:
 return instance.__dict__[self.name]

 def __set__(self, instance, value):
 if not isinstance(value, self.expected_type):
 raise TypeError('Expected ' + str(self.expected_type))
 instance.__dict__[self.name] = value

266 | Chapter 8: Classes and Objects

 def __delete__(self, instance):
 del instance.__dict__[self.name]

Class decorator that applies it to selected attributes
def typeassert(**kwargs):
 def decorate(cls):
 for name, expected_type in kwargs.items():
 # Attach a Typed descriptor to the class
 setattr(cls, name, Typed(name, expected_type))
 return cls
 return decorate

Example use
@typeassert(name=str, shares=int, price=float)
class Stock:
 def __init__(self, name, shares, price):
 self.name = name
 self.shares = shares
 self.price = price

Finally, it should be stressed that you would probably not write a descriptor if you simply
want to customize the access of a single attribute of a specific class. For that, it’s easier
to use a property instead, as described in Recipe 8.6. Descriptors are more useful in
situations where there will be a lot of code reuse (i.e., you want to use the functionality
provided by the descriptor in hundreds of places in your code or provide it as a library
feature).

8.10. Using Lazily Computed Properties
Problem
You’d like to define a read-only attribute as a property that only gets computed on access.
However, once accessed, you’d like the value to be cached and not recomputed on each
access.

Solution
An efficient way to define a lazy attribute is through the use of a descriptor class, such
as the following:

class lazyproperty:
 def __init__(self, func):
 self.func = func

 def __get__(self, instance, cls):
 if instance is None:
 return self
 else:

8.10. Using Lazily Computed Properties | 267

 value = self.func(instance)
 setattr(instance, self.func.__name__, value)
 return value

To utilize this code, you would use it in a class such as the following:

import math

class Circle:
 def __init__(self, radius):
 self.radius = radius

 @lazyproperty
 def area(self):
 print('Computing area')
 return math.pi * self.radius ** 2

 @lazyproperty
 def perimeter(self):
 print('Computing perimeter')
 return 2 * math.pi * self.radius

Here is an interactive session that illustrates how it works:

>>> c = Circle(4.0)
>>> c.radius
4.0
>>> c.area
Computing area
50.26548245743669
>>> c.area
50.26548245743669
>>> c.perimeter
Computing perimeter
25.132741228718345
>>> c.perimeter
25.132741228718345
>>>

Carefully observe that the messages “Computing area” and “Computing perimeter” only
appear once.

Discussion
In many cases, the whole point of having a lazily computed attribute is to improve
performance. For example, you avoid computing values unless you actually need them
somewhere. The solution shown does just this, but it exploits a subtle feature of de‐
scriptors to do it in a highly efficient way.

As shown in other recipes (e.g., Recipe 8.9), when a descriptor is placed into a class
definition, its __get__(), __set__(), and __delete__() methods get triggered on at‐
tribute access. However, if a descriptor only defines a __get__() method, it has a much

268 | Chapter 8: Classes and Objects

weaker binding than usual. In particular, the __get__() method only fires if the attribute
being accessed is not in the underlying instance dictionary.

The lazyproperty class exploits this by having the __get__() method store the com‐
puted value on the instance using the same name as the property itself. By doing this,
the value gets stored in the instance dictionary and disables further computation of the
property. You can observe this by digging a little deeper into the example:

>>> c = Circle(4.0)
>>> # Get instance variables
>>> vars(c)
{'radius': 4.0}

>>> # Compute area and observe variables afterward
>>> c.area
Computing area
50.26548245743669
>>> vars(c)
{'area': 50.26548245743669, 'radius': 4.0}

>>> # Notice access doesn't invoke property anymore
>>> c.area
50.26548245743669

>>> # Delete the variable and see property trigger again
>>> del c.area
>>> vars(c)
{'radius': 4.0}
>>> c.area
Computing area
50.26548245743669
>>>

One possible downside to this recipe is that the computed value becomes mutable after
it’s created. For example:

>>> c.area
Computing area
50.26548245743669
>>> c.area = 25
>>> c.area
25
>>>

If that’s a concern, you can use a slightly less efficient implementation, like this:

def lazyproperty(func):
 name = '_lazy_' + func.__name__
 @property
 def lazy(self):
 if hasattr(self, name):
 return getattr(self, name)
 else:

8.10. Using Lazily Computed Properties | 269

 value = func(self)
 setattr(self, name, value)
 return value
 return lazy

If you use this version, you’ll find that set operations are not allowed. For example:

>>> c = Circle(4.0)
>>> c.area
Computing area
50.26548245743669
>>> c.area
50.26548245743669
>>> c.area = 25
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>>

However, a disadvantage is that all get operations have to be routed through the prop‐
erty’s getter function. This is less efficient than simply looking up the value in the in‐
stance dictionary, as was done in the original solution.

For more information on properties and managed attributes, see Recipe 8.6. Descriptors
are described in Recipe 8.9.

8.11. Simplifying the Initialization of Data Structures
Problem
You are writing a lot of classes that serve as data structures, but you are getting tired of
writing highly repetitive and boilerplate __init__() functions.

Solution
You can often generalize the initialization of data structures into a single __init__()
function defined in a common base class. For example:

class Structure:
 # Class variable that specifies expected fields
 _fields= []
 def __init__(self, *args):
 if len(args) != len(self._fields):
 raise TypeError('Expected {} arguments'.format(len(self._fields)))

 # Set the arguments
 for name, value in zip(self._fields, args):
 setattr(self, name, value)

270 | Chapter 8: Classes and Objects

Example class definitions
if __name__ == '__main__':
 class Stock(Structure):
 _fields = ['name', 'shares', 'price']

 class Point(Structure):
 _fields = ['x','y']

 class Circle(Structure):
 _fields = ['radius']
 def area(self):
 return math.pi * self.radius ** 2

If you use the resulting classes, you’ll find that they are easy to construct. For example:

>>> s = Stock('ACME', 50, 91.1)
>>> p = Point(2, 3)
>>> c = Circle(4.5)
>>> s2 = Stock('ACME', 50)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "structure.py", line 6, in __init__
 raise TypeError('Expected {} arguments'.format(len(self._fields)))
TypeError: Expected 3 arguments

Should you decide to support keyword arguments, there are several design options. One
choice is to map the keyword arguments so that they only correspond to the attribute
names specified in _fields. For example:

class Structure:
 _fields= []
 def __init__(self, *args, **kwargs):
 if len(args) > len(self._fields):
 raise TypeError('Expected {} arguments'.format(len(self._fields)))

 # Set all of the positional arguments
 for name, value in zip(self._fields, args):
 setattr(self, name, value)

 # Set the remaining keyword arguments
 for name in self._fields[len(args):]:
 setattr(self, name, kwargs.pop(name))

 # Check for any remaining unknown arguments
 if kwargs:
 raise TypeError('Invalid argument(s): {}'.format(','.join(kwargs)))

Example use
if __name__ == '__main__':
 class Stock(Structure):
 _fields = ['name', 'shares', 'price']

 s1 = Stock('ACME', 50, 91.1)

8.11. Simplifying the Initialization of Data Structures | 271

 s2 = Stock('ACME', 50, price=91.1)
 s3 = Stock('ACME', shares=50, price=91.1)

Another possible choice is to use keyword arguments as a means for adding additional
attributes to the structure not specified in _fields. For example:

class Structure:
 # Class variable that specifies expected fields
 _fields= []
 def __init__(self, *args, **kwargs):
 if len(args) != len(self._fields):
 raise TypeError('Expected {} arguments'.format(len(self._fields)))

 # Set the arguments
 for name, value in zip(self._fields, args):
 setattr(self, name, value)

 # Set the additional arguments (if any)
 extra_args = kwargs.keys() - self._fields
 for name in extra_args:
 setattr(self, name, kwargs.pop(name))
 if kwargs:
 raise TypeError('Duplicate values for {}'.format(','.join(kwargs)))

Example use
if __name__ == '__main__':
 class Stock(Structure):
 _fields = ['name', 'shares', 'price']

 s1 = Stock('ACME', 50, 91.1)
 s2 = Stock('ACME', 50, 91.1, date='8/2/2012')

Discussion
This technique of defining a general purpose __init__() method can be extremely
useful if you’re ever writing a program built around a large number of small data struc‐
tures. It leads to much less code than manually writing __init__() methods like this:

class Stock:
 def __init__(self, name, shares, price):
 self.name = name
 self.shares = shares
 self.price = price

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

class Circle:
 def __init__(self, radius):
 self.radius = radius

272 | Chapter 8: Classes and Objects

 def area(self):
 return math.pi * self.radius ** 2

One subtle aspect of the implementation concerns the mechanism used to set value
using the setattr() function. Instead of doing that, you might be inclined to directly
access the instance dictionary. For example:

class Structure:
 # Class variable that specifies expected fields
 _fields= []
 def __init__(self, *args):
 if len(args) != len(self._fields):
 raise TypeError('Expected {} arguments'.format(len(self._fields)))

 # Set the arguments (alternate)
 self.__dict__.update(zip(self._fields,args))

Although this works, it’s often not safe to make assumptions about the implementation
of a subclass. If a subclass decided to use __slots__ or wrap a specific attribute with a
property (or descriptor), directly acccessing the instance dictionary would break. The
solution has been written to be as general purpose as possible and not to make any
assumptions about subclasses.

A potential downside of this technique is that it impacts documentation and help fea‐
tures of IDEs. If a user asks for help on a specific class, the required arguments aren’t
described in the usual way. For example:

>>> help(Stock)
Help on class Stock in module __main__:

class Stock(Structure)
...
 | Methods inherited from Structure:
 |
 | __init__(self, *args, **kwargs)
 |
...
>>>

Many of these problems can be fixed by either attaching or enforcing a type signature
in the __init__() function. See Recipe 9.16.

It should be noted that it is also possible to automatically initialize instance variables
using a utility function and a so-called “frame hack.” For example:

def init_fromlocals(self):
 import sys
 locs = sys._getframe(1).f_locals
 for k, v in locs.items():
 if k != 'self':
 setattr(self, k, v)

8.11. Simplifying the Initialization of Data Structures | 273

class Stock:
 def __init__(self, name, shares, price):
 init_fromlocals(self)

In this variation, the init_fromlocals() function uses sys._getframe() to peek at the
local variables of the calling method. If used as the first step of an __init__() method,
the local variables will be the same as the passed arguments and can be easily used to
set attributes with the same names. Although this approach avoids the problem of get‐
ting the right calling signature in IDEs, it runs more than 50% slower than the solution
provided in the recipe, requires more typing, and involves more sophisticated magic
behind the scenes. If your code doesn’t need this extra power, often times the simpler
solution will work just fine.

8.12. Defining an Interface or Abstract Base Class
Problem
You want to define a class that serves as an interface or abstract base class from which
you can perform type checking and ensure that certain methods are implemented in
subclasses.

Solution
To define an abstract base class, use the abc module. For example:

from abc import ABCMeta, abstractmethod

class IStream(metaclass=ABCMeta):
 @abstractmethod
 def read(self, maxbytes=-1):
 pass
 @abstractmethod
 def write(self, data):
 pass

A central feature of an abstract base class is that it cannot be instantiated directly. For
example, if you try to do it, you’ll get an error:

a = IStream() # TypeError: Can't instantiate abstract class
 # IStream with abstract methods read, write

Instead, an abstract base class is meant to be used as a base class for other classes that
are expected to implement the required methods. For example:

class SocketStream(IStream):
 def read(self, maxbytes=-1):
 ...
 def write(self, data):
 ...

274 | Chapter 8: Classes and Objects

A major use of abstract base classes is in code that wants to enforce an expected pro‐
gramming interface. For example, one way to view the IStream base class is as a high-
level specification for an interface that allows reading and writing of data. Code that
explicitly checks for this interface could be written as follows:

def serialize(obj, stream):
 if not isinstance(stream, IStream):
 raise TypeError('Expected an IStream')
 ...

You might think that this kind of type checking only works by subclassing the abstract
base class (ABC), but ABCs allow other classes to be registered as implementing the
required interface. For example, you can do this:

import io

Register the built-in I/O classes as supporting our interface
IStream.register(io.IOBase)

Open a normal file and type check
f = open('foo.txt')
isinstance(f, IStream) # Returns True

It should be noted that @abstractmethod can also be applied to static methods, class
methods, and properties. You just need to make sure you apply it in the proper sequence
where @abstractmethod appears immediately before the function definition, as shown
here:

from abc import ABCMeta, abstractmethod

class A(metaclass=ABCMeta):
 @property
 @abstractmethod
 def name(self):
 pass

 @name.setter
 @abstractmethod
 def name(self, value):
 pass

 @classmethod
 @abstractmethod
 def method1(cls):
 pass

 @staticmethod
 @abstractmethod
 def method2():
 pass

8.12. Defining an Interface or Abstract Base Class | 275

Discussion
Predefined abstract base classes are found in various places in the standard library. The
collections module defines a variety of ABCs related to containers and iterators (se‐
quences, mappings, sets, etc.), the numbers library defines ABCs related to numeric
objects (integers, floats, rationals, etc.), and the io library defines ABCs related to I/O
handling.

You can use the predefined ABCs to perform more generalized kinds of type checking.
Here are some examples:

import collections

Check if x is a sequence
if isinstance(x, collections.Sequence):
 ...

Check if x is iterable
if isinstance(x, collections.Iterable):
 ...

Check if x has a size
if isinstance(x, collections.Sized):
 ...

Check if x is a mapping
if isinstance(x, collections.Mapping):
 ...

It should be noted that, as of this writing, certain library modules don’t make use of
these predefined ABCs as you might expect. For example:

from decimal import Decimal
import numbers

x = Decimal('3.4')
isinstance(x, numbers.Real) # Returns False

Even though the value 3.4 is technically a real number, it doesn’t type check that way
to help avoid inadvertent mixing of floating-point numbers and decimals. Thus, if you
use the ABC functionality, it is wise to carefully write tests that verify that the behavior
is as you intended.

Although ABCs facilitate type checking, it’s not something that you should overuse in
a program. At its heart, Python is a dynamic language that gives you great flexibility.
Trying to enforce type constraints everywhere tends to result in code that is more com‐
plicated than it needs to be. You should embrace Python’s flexibility.

276 | Chapter 8: Classes and Objects

8.13. Implementing a Data Model or Type System
Problem
You want to define various kinds of data structures, but want to enforce constraints on
the values that are allowed to be assigned to certain attributes.

Solution
In this problem, you are basically faced with the task of placing checks or assertions on
the setting of certain instance attributes. To do this, you need to customize the setting
of attributes on a per-attribute basis. To do this, you should use descriptors.

The following code illustrates the use of descriptors to implement a system type and
value checking framework:

Base class. Uses a descriptor to set a value
class Descriptor:
 def __init__(self, name=None, **opts):
 self.name = name
 for key, value in opts.items():
 setattr(self, key, value)

 def __set__(self, instance, value):
 instance.__dict__[self.name] = value

Descriptor for enforcing types
class Typed(Descriptor):
 expected_type = type(None)

 def __set__(self, instance, value):
 if not isinstance(value, self.expected_type):
 raise TypeError('expected ' + str(self.expected_type))
 super().__set__(instance, value)

Descriptor for enforcing values
class Unsigned(Descriptor):
 def __set__(self, instance, value):
 if value < 0:
 raise ValueError('Expected >= 0')
 super().__set__(instance, value)

class MaxSized(Descriptor):
 def __init__(self, name=None, **opts):
 if 'size' not in opts:
 raise TypeError('missing size option')
 super().__init__(name, **opts)

 def __set__(self, instance, value):
 if len(value) >= self.size:

8.13. Implementing a Data Model or Type System | 277

 raise ValueError('size must be < ' + str(self.size))
 super().__set__(instance, value)

These classes should be viewed as basic building blocks from which you construct a data
model or type system. Continuing, here is some code that implements some different
kinds of data:

class Integer(Typed):
 expected_type = int

class UnsignedInteger(Integer, Unsigned):
 pass

class Float(Typed):
 expected_type = float

class UnsignedFloat(Float, Unsigned):
 pass

class String(Typed):
 expected_type = str

class SizedString(String, MaxSized):
 pass

Using these type objects, it is now possible to define a class such as this:

class Stock:
 # Specify constraints
 name = SizedString('name',size=8)
 shares = UnsignedInteger('shares')
 price = UnsignedFloat('price')
 def __init__(self, name, shares, price):
 self.name = name
 self.shares = shares
 self.price = price

With the constraints in place, you’ll find that assigning of attributes is now validated.
For example:

>>> s = Stock('ACME', 50, 91.1)
>>> s.name
'ACME'
>>> s.shares = 75
>>> s.shares = -10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "example.py", line 17, in __set__
 super().__set__(instance, value)
 File "example.py", line 23, in __set__
 raise ValueError('Expected >= 0')
ValueError: Expected >= 0
>>> s.price = 'a lot'

278 | Chapter 8: Classes and Objects

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "example.py", line 16, in __set__
 raise TypeError('expected ' + str(self.expected_type))
TypeError: expected <class 'float'>
>>> s.name = 'ABRACADABRA'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "example.py", line 17, in __set__
 super().__set__(instance, value)
 File "example.py", line 35, in __set__
 raise ValueError('size must be < ' + str(self.size))
ValueError: size must be < 8
>>>

There are some techniques that can be used to simplify the specification of constraints
in classes. One approach is to use a class decorator, like this:

Class decorator to apply constraints
def check_attributes(**kwargs):
 def decorate(cls):
 for key, value in kwargs.items():
 if isinstance(value, Descriptor):
 value.name = key
 setattr(cls, key, value)
 else:
 setattr(cls, key, value(key))
 return cls
 return decorate

Example
@check_attributes(name=SizedString(size=8),
 shares=UnsignedInteger,
 price=UnsignedFloat)
class Stock:
 def __init__(self, name, shares, price):
 self.name = name
 self.shares = shares
 self.price = price

Another approach to simplify the specification of constraints is to use a metaclass. For
example:

A metaclass that applies checking
class checkedmeta(type):
 def __new__(cls, clsname, bases, methods):
 # Attach attribute names to the descriptors
 for key, value in methods.items():
 if isinstance(value, Descriptor):
 value.name = key
 return type.__new__(cls, clsname, bases, methods)

8.13. Implementing a Data Model or Type System | 279

Example
class Stock(metaclass=checkedmeta):
 name = SizedString(size=8)
 shares = UnsignedInteger()
 price = UnsignedFloat()
 def __init__(self, name, shares, price):
 self.name = name
 self.shares = shares
 self.price = price

Discussion
This recipe involves a number of advanced techniques, including descriptors, mixin
classes, the use of super(), class decorators, and metaclasses. Covering the basics of all
those topics is beyond what can be covered here, but examples can be found in other
recipes (see Recipes 8.9, 8.18, 9.12, and 9.19). However, there are a number of subtle
points worth noting.

First, in the Descriptor base class, you will notice that there is a __set__() method,
but no corresponding __get__(). If a descriptor will do nothing more than extract an
identically named value from the underlying instance dictionary, defining __get__()
is unnecessary. In fact, defining __get__() will just make it run slower. Thus, this recipe
only focuses on the implementation of __set__().

The overall design of the various descriptor classes is based on mixin classes. For ex‐
ample, the Unsigned and MaxSized classes are meant to be mixed with the other de‐
scriptor classes derived from Typed. To handle a specific kind of data type, multiple
inheritance is used to combine the desired functionality.

You will also notice that all __init__() methods of the various descriptors have been
programmed to have an identical signature involving keyword arguments **opts. The
class for MaxSized looks for its required attribute in opts, but simply passes it along to
the Descriptor base class, which actually sets it. One tricky part about composing
classes like this (especially mixins), is that you don’t always know how the classes are
going to be chained together or what super() will invoke. For this reason, you need to
make it work with any possible combination of classes.

The definitions of the various type classes such as Integer, Float, and String illustrate
a useful technique of using class variables to customize an implementation. The Ty
ped descriptor merely looks for an expected_type attribute that is provided by each of
those subclasses.

The use of a class decorator or metaclass is often useful for simplifying the specification
by the user. You will notice that in those examples, the user no longer has to type the
name of the attribute more than once. For example:

280 | Chapter 8: Classes and Objects

Normal
class Point:
 x = Integer('x')
 y = Integer('y')

Metaclass
class Point(metaclass=checkedmeta):
 x = Integer()
 y = Integer()

The code for the class decorator and metaclass simply scan the class dictionary looking
for descriptors. When found, they simply fill in the descriptor name based on the key
value.

Of all the approaches, the class decorator solution may provide the most flexibility and
sanity. For one, it does not rely on any advanced machinery, such as metaclasses. Second,
decoration is something that can easily be added or removed from a class definition as
desired. For example, within the decorator, there could be an option to simply omit the
added checking altogether. These might allow the checking to be something that could
be turned on or off depending on demand (maybe for debugging versus production).

As a final twist, a class decorator approach can also be used as a replacement for mixin
classes, multiple inheritance, and tricky use of the super() function. Here is an alter‐
native formulation of this recipe that uses class decorators:

Base class. Uses a descriptor to set a value
class Descriptor:
 def __init__(self, name=None, **opts):
 self.name = name
 for key, value in opts.items():
 setattr(self, key, value)

 def __set__(self, instance, value):
 instance.__dict__[self.name] = value

Decorator for applying type checking
def Typed(expected_type, cls=None):
 if cls is None:
 return lambda cls: Typed(expected_type, cls)

 super_set = cls.__set__
 def __set__(self, instance, value):
 if not isinstance(value, expected_type):
 raise TypeError('expected ' + str(expected_type))
 super_set(self, instance, value)
 cls.__set__ = __set__
 return cls

Decorator for unsigned values
def Unsigned(cls):
 super_set = cls.__set__

8.13. Implementing a Data Model or Type System | 281

 def __set__(self, instance, value):
 if value < 0:
 raise ValueError('Expected >= 0')
 super_set(self, instance, value)
 cls.__set__ = __set__
 return cls

Decorator for allowing sized values
def MaxSized(cls):
 super_init = cls.__init__
 def __init__(self, name=None, **opts):
 if 'size' not in opts:
 raise TypeError('missing size option')
 super_init(self, name, **opts)
 cls.__init__ = __init__

 super_set = cls.__set__
 def __set__(self, instance, value):
 if len(value) >= self.size:
 raise ValueError('size must be < ' + str(self.size))
 super_set(self, instance, value)
 cls.__set__ = __set__
 return cls

Specialized descriptors
@Typed(int)
class Integer(Descriptor):
 pass

@Unsigned
class UnsignedInteger(Integer):
 pass

@Typed(float)
class Float(Descriptor):
 pass

@Unsigned
class UnsignedFloat(Float):
 pass

@Typed(str)
class String(Descriptor):
 pass

@MaxSized
class SizedString(String):
 pass

The classes defined in this alternative formulation work in exactly the same manner as
before (none of the earlier example code changes) except that everything runs much
faster. For example, a simple timing test of setting a typed attribute reveals that the class

282 | Chapter 8: Classes and Objects

decorator approach runs almost 100% faster than the approach using mixins. Now aren’t
you glad you read all the way to the end?

8.14. Implementing Custom Containers
Problem
You want to implement a custom class that mimics the behavior of a common built-in
container type, such as a list or dictionary. However, you’re not entirely sure what
methods need to be implemented to do it.

Solution
The collections library defines a variety of abstract base classes that are extremely
useful when implementing custom container classes. To illustrate, suppose you want
your class to support iteration. To do that, simply start by having it inherit from col
lections.Iterable, as follows:

import collections

class A(collections.Iterable):
 pass

The special feature about inheriting from collections.Iterable is that it ensures you
implement all of the required special methods. If you don’t, you’ll get an error upon
instantiation:

>>> a = A()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class A with abstract methods __iter__
>>>

To fix this error, simply give the class the required __iter__() method and implement
it as desired (see Recipes 4.2 and 4.7).

Other notable classes defined in collections include Sequence, MutableSequence,
Mapping, MutableMapping, Set, and MutableSet. Many of these classes form hierarchies
with increasing levels of functionality (e.g., one such hierarchy is Container, Itera
ble, Sized, Sequence, and MutableSequence). Again, simply instantiate any of these
classes to see what methods need to be implemented to make a custom container with
that behavior:

>>> import collections
>>> collections.Sequence()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Sequence with abstract methods \

8.14. Implementing Custom Containers | 283

__getitem__, __len__
>>>

Here is a simple example of a class that implements the preceding methods to create a
sequence where items are always stored in sorted order (it’s not a particularly efficient
implementation, but it illustrates the general idea):

import collections
import bisect

class SortedItems(collections.Sequence):
 def __init__(self, initial=None):
 self._items = sorted(initial) if initial is None else []

 # Required sequence methods
 def __getitem__(self, index):
 return self._items[index]

 def __len__(self):
 return len(self._items)

 # Method for adding an item in the right location
 def add(self, item):
 bisect.insort(self._items, item)

Here’s an example of using this class:

>>> items = SortedItems([5, 1, 3])
>>> list(items)
[1, 3, 5]
>>> items[0]
1
>>> items[-1]
5
>>> items.add(2)
>>> list(items)
[1, 2, 3, 5]
>>> items.add(-10)
>>> list(items)
[-10, 1, 2, 3, 5]
>>> items[1:4]
[1, 2, 3]
>>> 3 in items
True
>>> len(items)
5
>>> for n in items:
... print(n)
...
-10
1
2
3

284 | Chapter 8: Classes and Objects

5
>>>

As you can see, instances of SortedItems behave exactly like a normal sequence and
support all of the usual operations, including indexing, iteration, len(), containment
(the in operator), and even slicing.

As an aside, the bisect module used in this recipe is a convenient way to keep items in
a list sorted. The bisect.insort() inserts an item into a list so that the list remains in
order.

Discussion
Inheriting from one of the abstract base classes in collections ensures that your cus‐
tom container implements all of the required methods expected of the container. How‐
ever, this inheritance also facilitates type checking.

For example, your custom container will satisfy various type checks like this:

>>> items = SortedItems()
>>> import collections
>>> isinstance(items, collections.Iterable)
True
>>> isinstance(items, collections.Sequence)
True
>>> isinstance(items, collections.Container)
True
>>> isinstance(items, collections.Sized)
True
>>> isinstance(items, collections.Mapping)
False
>>>

Many of the abstract base classes in collections also provide default implementations
of common container methods. To illustrate, suppose you have a class that inherits from
collections.MutableSequence, like this:

class Items(collections.MutableSequence):
 def __init__(self, initial=None):
 self._items = list(initial) if initial is None else []

 # Required sequence methods
 def __getitem__(self, index):
 print('Getting:', index)
 return self._items[index]

 def __setitem__(self, index, value):
 print('Setting:', index, value)
 self._items[index] = value

 def __delitem__(self, index):

8.14. Implementing Custom Containers | 285

 print('Deleting:', index)
 del self._items[index]

 def insert(self, index, value):
 print('Inserting:', index, value)
 self._items.insert(index, value)

 def __len__(self):
 print('Len')
 return len(self._items)

If you create an instance of Items, you’ll find that it supports almost all of the core list
methods (e.g., append(), remove(), count(), etc.). These methods are implemented in
such a way that they only use the required ones. Here’s an interactive session that illus‐
trates this:

>>> a = Items([1, 2, 3])
>>> len(a)
Len
3
>>> a.append(4)
Len
Inserting: 3 4
>>> a.append(2)
Len
Inserting: 4 2
>>> a.count(2)
Getting: 0
Getting: 1
Getting: 2
Getting: 3
Getting: 4
Getting: 5
2
>>> a.remove(3)
Getting: 0
Getting: 1
Getting: 2
Deleting: 2
>>>

This recipe only provides a brief glimpse into Python’s abstract class functionality. The
numbers module provides a similar collection of abstract classes related to numeric data
types. See Recipe 8.12 for more information about making your own abstract base
classes.

286 | Chapter 8: Classes and Objects

8.15. Delegating Attribute Access
Problem
You want an instance to delegate attribute access to an internally held instance possibly
as an alternative to inheritance or in order to implement a proxy.

Solution
Simply stated, delegation is a programming pattern where the responsibility for imple‐
menting a particular operation is handed off (i.e., delegated) to a different object. In its
simplest form, it often looks something like this:

class A:
 def spam(self, x):
 pass

 def foo(self):
 pass

class B:
 def __init__(self):
 self._a = A()

 def spam(self, x):
 # Delegate to the internal self._a instance
 return self._a.spam(x)

 def foo(self):
 # Delegate to the internal self._a instance
 return self._a.foo()

 def bar(self):
 pass

If there are only a couple of methods to delegate, writing code such as that just given is
easy enough. However, if there are many methods to delegate, an alternative approach
is to define the __getattr__() method, like this:

class A:
 def spam(self, x):
 pass

 def foo(self):
 pass

class B:
 def __init__(self):
 self._a = A()

8.15. Delegating Attribute Access | 287

 def bar(self):
 pass

 # Expose all of the methods defined on class A
 def __getattr__(self, name):
 return getattr(self._a, name)

The __getattr__() method is kind of like a catch-all for attribute lookup. It’s a method
that gets called if code tries to access an attribute that doesn’t exist. In the preceding
code, it would catch access to undefined methods on B and simply delegate them to A.
For example:

b = B()
b.bar() # Calls B.bar() (exists on B)
b.spam(42) # Calls B.__getattr__('spam') and delegates to A.spam

Another example of delegation is in the implementation of proxies. For example:

A proxy class that wraps around another object, but
exposes its public attributes

class Proxy:
 def __init__(self, obj):
 self._obj = obj

 # Delegate attribute lookup to internal obj
 def __getattr__(self, name):
 print('getattr:', name)
 return getattr(self._obj, name)

 # Delegate attribute assignment
 def __setattr__(self, name, value):
 if name.startswith('_'):
 super().__setattr__(name, value)
 else:
 print('setattr:', name, value)
 setattr(self._obj, name, value)

 # Delegate attribute deletion
 def __delattr__(self, name):
 if name.startswith('_'):
 super().__delattr__(name)
 else:
 print('delattr:', name)
 delattr(self._obj, name)

To use this proxy class, you simply wrap it around another instance. For example:

class Spam:
 def __init__(self, x):
 self.x = x
 def bar(self, y):
 print('Spam.bar:', self.x, y)

288 | Chapter 8: Classes and Objects

Create an instance
s = Spam(2)

Create a proxy around it
p = Proxy(s)

Access the proxy
print(p.x) # Outputs 2
p.bar(3) # Outputs "Spam.bar: 2 3"
p.x = 37 # Changes s.x to 37

By customizing the implementation of the attribute access methods, you could cus‐
tomize the proxy to behave in different ways (e.g., logging access, only allowing read-
only access, etc.).

Discussion
Delegation is sometimes used as an alternative to inheritance. For example, instead of
writing code like this:

class A:
 def spam(self, x):
 print('A.spam', x)

 def foo(self):
 print('A.foo')

class B(A):
 def spam(self, x):
 print('B.spam')
 super().spam(x)

 def bar(self):
 print('B.bar')

A solution involving delegation would be written as follows:

class A:
 def spam(self, x):
 print('A.spam', x)

 def foo(self):
 print('A.foo')

class B:
 def __init__(self):
 self._a = A()

 def spam(self, x):
 print('B.spam', x)
 self._a.spam(x)

8.15. Delegating Attribute Access | 289

 def bar(self):
 print('B.bar')

 def __getattr__(self, name):
 return getattr(self._a, name)

This use of delegation is often useful in situations where direct inheritance might not
make much sense or where you want to have more control of the relationship between
objects (e.g., only exposing certain methods, implementing interfaces, etc.).

When using delegation to implement proxies, there are a few additional details to note.
First, the __getattr__() method is actually a fallback method that only gets called when
an attribute is not found. Thus, when attributes of the proxy instance itself are accessed
(e.g., the _obj attribute), this method would not be triggered. Second, the __se
tattr__() and __delattr__() methods need a bit of extra logic added to separate
attributes from the proxy instance inself and attributes on the internal object _obj. A
common convention is for proxies to only delegate to attributes that don’t start with a
leading underscore (i.e., proxies only expose the “public” attributes of the held instance).

It is also important to emphasize that the __getattr__() method usually does not apply
to most special methods that start and end with double underscores. For example, con‐
sider this class:

class ListLike:
 def __init__(self):
 self._items = []
 def __getattr__(self, name):
 return getattr(self._items, name)

If you try to make a ListLike object, you’ll find that it supports the common list meth‐
ods, such as append() and insert(). However, it does not support any of the operators
like len(), item lookup, and so forth. For example:

>>> a = ListLike()
>>> a.append(2)
>>> a.insert(0, 1)
>>> a.sort()
>>> len(a)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: object of type 'ListLike' has no len()
>>> a[0]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'ListLike' object does not support indexing
>>>

To support the different operators, you have to manually delegate the associated special
methods yourself. For example:

290 | Chapter 8: Classes and Objects

class ListLike:
 def __init__(self):
 self._items = []
 def __getattr__(self, name):
 return getattr(self._items, name)

 # Added special methods to support certain list operations
 def __len__(self):
 return len(self._items)
 def __getitem__(self, index):
 return self._items[index]
 def __setitem__(self, index, value):
 self._items[index] = value
 def __delitem__(self, index):
 del self._items[index]

See Recipe 11.8 for another example of using delegation in the context of creating proxy
classes for remote procedure call.

8.16. Defining More Than One Constructor in a Class
Problem
You’re writing a class, but you want users to be able to create instances in more than the
one way provided by __init__().

Solution
To define a class with more than one constructor, you should use a class method. Here
is a simple example:

import time

class Date:
 # Primary constructor
 def __init__(self, year, month, day):
 self.year = year
 self.month = month
 self.day = day

 # Alternate constructor
 @classmethod
 def today(cls):
 t = time.localtime()
 return cls(t.tm_year, t.tm_mon, t.tm_mday)

To use the alternate constructor, you simply call it as a function, such as Date.to
day(). Here is an example:

8.16. Defining More Than One Constructor in a Class | 291

a = Date(2012, 12, 21) # Primary
b = Date.today() # Alternate

Discussion
One of the primary uses of class methods is to define alternate constructors, as shown
in this recipe. A critical feature of a class method is that it receives the class as the first
argument (cls). You will notice that this class is used within the method to create and
return the final instance. It is extremely subtle, but this aspect of class methods makes
them work correctly with features such as inheritance. For example:

class NewDate(Date):
 pass

c = Date.today() # Creates an instance of Date (cls=Date)
d = NewDate.today() # Creates an instance of NewDate (cls=NewDate)

When defining a class with multiple constructors, you should make the __init__()
function as simple as possible—doing nothing more than assigning attributes from
given values. Alternate constructors can then choose to perform advanced operations
if needed.

Instead of defining a separate class method, you might be inclined to implement the
__init__() method in a way that allows for different calling conventions. For example:

class Date:
 def __init__(self, *args):
 if len(args) == 0:
 t = time.localtime()
 args = (t.tm_year, t.tm_mon, t.tm_mday)
 self.year, self.month, self.day = args

Although this technique works in certain cases, it often leads to code that is hard to
understand and difficult to maintain. For example, this implementation won’t show
useful help strings (with argument names). In addition, code that creates Date instances
will be less clear. Compare and contrast the following:

a = Date(2012, 12, 21) # Clear. A specific date.
b = Date() # ??? What does this do?

Class method version
c = Date.today() # Clear. Today's date.

As shown, the Date.today() invokes the regular Date.__init__() method by instan‐
tiating a Date() with suitable year, month, and day arguments. If necessary, instances
can be created without ever invoking the __init__() method. This is described in the
next recipe.

292 | Chapter 8: Classes and Objects

8.17. Creating an Instance Without Invoking init
Problem
You need to create an instance, but want to bypass the execution of the __init__()
method for some reason.

Solution
A bare uninitialized instance can be created by directly calling the __new__() method
of a class. For example, consider this class:

class Date:
 def __init__(self, year, month, day):
 self.year = year
 self.month = month
 self.day = day

Here’s how you can create a Date instance without invoking __init__():

>>> d = Date.__new__(Date)
>>> d
<__main__.Date object at 0x1006716d0>
>>> d.year
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Date' object has no attribute 'year'
>>>

As you can see, the resulting instance is uninitialized. Thus, it is now your responsibility
to set the appropriate instance variables. For example:

>>> data = {'year':2012, 'month':8, 'day':29}
>>> for key, value in data.items():
... setattr(d, key, value)
...
>>> d.year
2012
>>> d.month
8
>>>

Discussion
The problem of bypassing __init__() sometimes arises when instances are being cre‐
ated in a nonstandard way such as when deserializing data or in the implementation of
a class method that’s been defined as an alternate constructor. For example, on the Date
class shown, someone might define an alternate constructor today() as follows:

8.17. Creating an Instance Without Invoking init | 293

from time import localtime

class Date:
 def __init__(self, year, month, day):
 self.year = year
 self.month = month
 self.day = day

 @classmethod
 def today(cls):
 d = cls.__new__(cls)
 t = localtime()
 d.year = t.tm_year
 d.month = t.tm_mon
 d.day = t.tm_mday
 return d

Similarly, suppose you are deserializing JSON data and, as a result, produce a dictionary
like this:

data = { 'year': 2012, 'month': 8, 'day': 29 }

If you want to turn this into a Date instance, simply use the technique shown in the
solution.

When creating instances in a nonstandard way, it’s usually best to not make too many
assumptions about their implementation. As such, you generally don’t want to write
code that directly manipulates the underlying instance dictionary __dict__ unless you
know it’s guaranteed to be defined. Otherwise, the code will break if the class uses
__slots__, properties, descriptors, or other advanced techniques. By using se
tattr() to set the values, your code will be as general purpose as possible.

8.18. Extending Classes with Mixins
Problem
You have a collection of generally useful methods that you would like to make available
for extending the functionality of other class definitions. However, the classes where
the methods might be added aren’t necessarily related to one another via inheritance.
Thus, you can’t just attach the methods to a common base class.

Solution
The problem addressed by this recipe often arises in code where one is interested in the
issue of class customization. For example, maybe a library provides a basic set of classes
along with a set of optional customizations that can be applied if desired by the user.

294 | Chapter 8: Classes and Objects

To illustrate, suppose you have an interest in adding various customizations (e.g., log‐
ging, set-once, type checking, etc.) to mapping objects. Here are a set of mixin classes
that do that:

class LoggedMappingMixin:
 '''
 Add logging to get/set/delete operations for debugging.
 '''
 __slots__ = ()

 def __getitem__(self, key):
 print('Getting ' + str(key))
 return super().__getitem__(key)

 def __setitem__(self, key, value):
 print('Setting {} = {!r}'.format(key, value))
 return super().__setitem__(key, value)

 def __delitem__(self, key):
 print('Deleting ' + str(key))
 return super().__delitem__(key)

class SetOnceMappingMixin:
 '''
 Only allow a key to be set once.
 '''
 __slots__ = ()
 def __setitem__(self, key, value):
 if key in self:
 raise KeyError(str(key) + ' already set')
 return super().__setitem__(key, value)

class StringKeysMappingMixin:
 '''
 Restrict keys to strings only
 '''
 __slots__ = ()
 def __setitem__(self, key, value):
 if not isinstance(key, str):
 raise TypeError('keys must be strings')
 return super().__setitem__(key, value)

These classes, by themselves, are useless. In fact, if you instantiate any one of them, it
does nothing useful at all (other than generate exceptions). Instead, they are supposed
to be mixed with other mapping classes through multiple inheritance. For example:

>>> class LoggedDict(LoggedMappingMixin, dict):
... pass
...
>>> d = LoggedDict()
>>> d['x'] = 23
Setting x = 23

8.18. Extending Classes with Mixins | 295

>>> d['x']
Getting x
23
>>> del d['x']
Deleting x

>>> from collections import defaultdict
>>> class SetOnceDefaultDict(SetOnceMappingMixin, defaultdict):
... pass
...
>>> d = SetOnceDefaultDict(list)
>>> d['x'].append(2)
>>> d['y'].append(3)
>>> d['x'].append(10)
>>> d['x'] = 23
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "mixin.py", line 24, in __setitem__
 raise KeyError(str(key) + ' already set')
KeyError: 'x already set'

>>> from collections import OrderedDict
>>> class StringOrderedDict(StringKeysMappingMixin,
... SetOnceMappingMixin,
... OrderedDict):
... pass
...
>>> d = StringOrderedDict()
>>> d['x'] = 23
>>> d[42] = 10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "mixin.py", line 45, in __setitem__
 '''
TypeError: keys must be strings
>>> d['x'] = 42
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "mixin.py", line 46, in __setitem__
 __slots__ = ()
 File "mixin.py", line 24, in __setitem__
 if key in self:
KeyError: 'x already set'
>>>

In the example, you will notice that the mixins are combined with other existing classes
(e.g., dict, defaultdict, OrderedDict), and even one another. When combined, the
classes all work together to provide the desired functionality.

296 | Chapter 8: Classes and Objects

Discussion
Mixin classes appear in various places in the standard library, mostly as a means for
extending the functionality of other classes similar to as shown. They are also one of
the main uses of multiple inheritance. For instance, if you are writing network code,
you can often use the ThreadingMixIn from the socketserver module to add thread
support to other network-related classes. For example, here is a multithreaded XML-
RPC server:

from xmlrpc.server import SimpleXMLRPCServer
from socketserver import ThreadingMixIn
class ThreadedXMLRPCServer(ThreadingMixIn, SimpleXMLRPCServer):
 pass

It is also common to find mixins defined in large libraries and frameworks—again,
typically to enhance the functionality of existing classes with optional features in some
way.

There is a rich history surrounding the theory of mixin classes. However, rather than
getting into all of the details, there are a few important implementation details to keep
in mind.

First, mixin classes are never meant to be instantiated directly. For example, none of the
classes in this recipe work by themselves. They have to be mixed with another class that
implements the required mapping functionality. Similarly, the ThreadingMixIn from
the socketserver library has to be mixed with an appropriate server class—it can’t be
used all by itself.

Second, mixin classes typically have no state of their own. This means there is no
__init__() method and no instance variables. In this recipe, the specification of
__slots__ = () is meant to serve as a strong hint that the mixin classes do not have
their own instance data.

If you are thinking about defining a mixin class that has an __init__() method and
instance variables, be aware that there is significant peril associated with the fact that
the class doesn’t know anything about the other classes it’s going to be mixed with. Thus,
any instance variables created would have to be named in a way that avoids name clashes.
In addition, the __init__() method would have to be programmed in a way that prop‐
erly invokes the __init__() method of other classes that are mixed in. In general, this
is difficult to implement since you know nothing about the argument signatures of the
other classes. At the very least, you would have to implement something very general
using *arg, **kwargs. If the __init__() of the mixin class took any arguments of its
own, those arguments should be specified by keyword only and named in such a way
to avoid name collisions with other arguments. Here is one possible implementation of
a mixin defining an __init__() and accepting a keyword argument:

8.18. Extending Classes with Mixins | 297

class RestrictKeysMixin:
 def __init__(self, *args, _restrict_key_type, **kwargs):
 self.__restrict_key_type = _restrict_key_type
 super().__init__(*args, **kwargs)

 def __setitem__(self, key, value):
 if not isinstance(key, self.__restrict_key_type):
 raise TypeError('Keys must be ' + str(self.__restrict_key_type))
 super().__setitem__(key, value)

Here is an example that shows how this class might be used:

>>> class RDict(RestrictKeysMixin, dict):
... pass
...
>>> d = RDict(_restrict_key_type=str)
>>> e = RDict([('name','Dave'), ('n',37)], _restrict_key_type=str)
>>> f = RDict(name='Dave', n=37, _restrict_key_type=str)
>>> f
{'n': 37, 'name': 'Dave'}
>>> f[42] = 10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "mixin.py", line 83, in __setitem__
 raise TypeError('Keys must be ' + str(self.__restrict_key_type))
TypeError: Keys must be <class 'str'>
>>>

In this example, you’ll notice that initializing an RDict() still takes the arguments
understood by dict(). However, there is an extra keyword argument
restrict_key_type that is provided to the mixin class.

Finally, use of the super() function is an essential and critical part of writing mixin
classes. In the solution, the classes redefine certain critical methods, such as
__getitem__() and __setitem__(). However, they also need to call the original im‐
plementation of those methods. Using super() delegates to the next class on the method
resolution order (MRO). This aspect of the recipe, however, is not obvious to novices,
because super() is being used in classes that have no parent (at first glance, it might
look like an error). However, in a class definition such as this:

class LoggedDict(LoggedMappingMixin, dict):
 pass

the use of super() in LoggedMappingMixin delegates to the next class over in the mul‐
tiple inheritance list. That is, a call such as super().__getitem__() in LoggedMapping
Mixin actually steps over and invokes dict.__getitem__(). Without this behavior, the
mixin class wouldn’t work at all.

An alternative implementation of mixins involves the use of class decorators. For ex‐
ample, consider this code:

298 | Chapter 8: Classes and Objects

def LoggedMapping(cls):
 cls_getitem = cls.__getitem__
 cls_setitem = cls.__setitem__
 cls_delitem = cls.__delitem__

 def __getitem__(self, key):
 print('Getting ' + str(key))
 return cls_getitem(self, key)

 def __setitem__(self, key, value):
 print('Setting {} = {!r}'.format(key, value))
 return cls_setitem(self, key, value)

 def __delitem__(self, key):
 print('Deleting ' + str(key))
 return cls_delitem(self, key)

 cls.__getitem__ = __getitem__
 cls.__setitem__ = __setitem__
 cls.__delitem__ = __delitem__
 return cls

This function is applied as a decorator to a class definition. For example:

@LoggedMapping
class LoggedDict(dict):
 pass

If you try it, you’ll find that you get the same behavior, but multiple inheritance is no
longer involved. Instead, the decorator has simply performed a bit of surgery on the
class definition to replace certain methods. Further details about class decorators can
be found in Recipe 9.12.

See Recipe 8.13 for an advanced recipe involving both mixins and class decorators.

8.19. Implementing Stateful Objects or State Machines
Problem
You want to implement a state machine or an object that operates in a number of dif‐
ferent states, but don’t want to litter your code with a lot of conditionals.

Solution
In certain applications, you might have objects that operate differently according to
some kind of internal state. For example, consider a simple class representing a
connection:

class Connection:
 def __init__(self):

8.19. Implementing Stateful Objects or State Machines | 299

 self.state = 'CLOSED'

 def read(self):
 if self.state != 'OPEN':
 raise RuntimeError('Not open')
 print('reading')

 def write(self, data):
 if self.state != 'OPEN':
 raise RuntimeError('Not open')
 print('writing')

 def open(self):
 if self.state == 'OPEN':
 raise RuntimeError('Already open')
 self.state = 'OPEN'

 def close(self):
 if self.state == 'CLOSED':
 raise RuntimeError('Already closed')
 self.state = 'CLOSED'

This implementation presents a couple of difficulties. First, the code is complicated by
the introduction of many conditional checks for the state. Second, the performance is
degraded because common operations (e.g., read() and write()) always check the state
before proceeding.

A more elegant approach is to encode each operational state as a separate class and
arrange for the Connection class to delegate to the state class. For example:

class Connection:
 def __init__(self):
 self.new_state(ClosedConnectionState)

 def new_state(self, newstate):
 self._state = newstate

 # Delegate to the state class
 def read(self):
 return self._state.read(self)

 def write(self, data):
 return self._state.write(self, data)

 def open(self):
 return self._state.open(self)

 def close(self):
 return self._state.close(self)

Connection state base class
class ConnectionState:

300 | Chapter 8: Classes and Objects

 @staticmethod
 def read(conn):
 raise NotImplementedError()

 @staticmethod
 def write(conn, data):
 raise NotImplementedError()

 @staticmethod
 def open(conn):
 raise NotImplementedError()

 @staticmethod
 def close(conn):
 raise NotImplementedError()

Implementation of different states
class ClosedConnectionState(ConnectionState):
 @staticmethod
 def read(conn):
 raise RuntimeError('Not open')

 @staticmethod
 def write(conn, data):
 raise RuntimeError('Not open')

 @staticmethod
 def open(conn):
 conn.new_state(OpenConnectionState)

 @staticmethod
 def close(conn):
 raise RuntimeError('Already closed')

class OpenConnectionState(ConnectionState):
 @staticmethod
 def read(conn):
 print('reading')

 @staticmethod
 def write(conn, data):
 print('writing')

 @staticmethod
 def open(conn):
 raise RuntimeError('Already open')

 @staticmethod
 def close(conn):
 conn.new_state(ClosedConnectionState)

Here is an interactive session that illustrates the use of these classes:

8.19. Implementing Stateful Objects or State Machines | 301

>>> c = Connection()
>>> c._state
<class '__main__.ClosedConnectionState'>
>>> c.read()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "example.py", line 10, in read
 return self._state.read(self)
 File "example.py", line 43, in read
 raise RuntimeError('Not open')
RuntimeError: Not open
>>> c.open()
>>> c._state
<class '__main__.OpenConnectionState'>
>>> c.read()
reading
>>> c.write('hello')
writing
>>> c.close()
>>> c._state
<class '__main__.ClosedConnectionState'>
>>>

Discussion
Writing code that features a large set of complicated conditionals and intertwined states
is hard to maintain and explain. The solution presented here avoids that by splitting the
individual states into their own classes.

It might look a little weird, but each state is implemented by a class with static methods,
each of which take an instance of Connection as the first argument. This design is based
on a decision to not store any instance data in the different state classes themselves.
Instead, all instance data should be stored on the Connection instance. The grouping
of states under a common base class is mostly there to help organize the code and to
ensure that the proper methods get implemented. The NotImplementedError exception
raised in base class methods is just there to make sure that subclasses provide an im‐
plementation of the required methods. As an alternative, you might consider the use of
an abstract base class, as described in Recipe 8.12.

An alternative implementation technique concerns direct manipulation of the
__class__ attribute of instances. Consider this code:

class Connection:
 def __init__(self):
 self.new_state(ClosedConnection)

 def new_state(self, newstate):
 self.__class__ = newstate

 def read(self):

302 | Chapter 8: Classes and Objects

 raise NotImplementedError()

 def write(self, data):
 raise NotImplementedError()

 def open(self):
 raise NotImplementedError()

 def close(self):
 raise NotImplementedError()

class ClosedConnection(Connection):
 def read(self):
 raise RuntimeError('Not open')

 def write(self, data):
 raise RuntimeError('Not open')

 def open(self):
 self.new_state(OpenConnection)

 def close(self):
 raise RuntimeError('Already closed')

class OpenConnection(Connection):
 def read(self):
 print('reading')

 def write(self, data):
 print('writing')

 def open(self):
 raise RuntimeError('Already open')

 def close(self):
 self.new_state(ClosedConnection)

The main feature of this implementation is that it eliminates an extra level of indirection.
Instead of having separate Connection and ConnectionState classes, the two classes
are merged together into one. As the state changes, the instance will change its type, as
shown here:

>>> c = Connection()
>>> c
<__main__.ClosedConnection object at 0x1006718d0>
>>> c.read()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "state.py", line 15, in read
 raise RuntimeError('Not open')
RuntimeError: Not open
>>> c.open()

8.19. Implementing Stateful Objects or State Machines | 303

>>> c
<__main__.OpenConnection object at 0x1006718d0>
>>> c.read()
reading
>>> c.close()
>>> c
<__main__.ClosedConnection object at 0x1006718d0>
>>>

Object-oriented purists might be offended by the idea of simply changing the instance
__class__ attribute. However, it’s technically allowed. Also, it might result in slightly
faster code since all of the methods on the connection no longer involve an extra dele‐
gation step.)

Finally, either technique is useful in implementing more complicated state machines—
especially in code that might otherwise feature large if-elif-else blocks. For example:

Original implementation
class State:
 def __init__(self):
 self.state = 'A'
 def action(self, x):
 if state == 'A':
 # Action for A
 ...
 state = 'B'
 elif state == 'B':
 # Action for B
 ...
 state = 'C'
 elif state == 'C':
 # Action for C
 ...
 state = 'A'

Alternative implementation
class State:
 def __init__(self):
 self.new_state(State_A)

 def new_state(self, state):
 self.__class__ = state

 def action(self, x):
 raise NotImplementedError()

class State_A(State):
 def action(self, x):
 # Action for A
 ...
 self.new_state(State_B)

304 | Chapter 8: Classes and Objects

class State_B(State):
 def action(self, x):
 # Action for B
 ...
 self.new_state(State_C)

class State_C(State):
 def action(self, x):
 # Action for C
 ...
 self.new_state(State_A)

This recipe is loosely based on the state design pattern found in Design Patterns: Ele‐
ments of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Addison-Wesley, 1995).

8.20. Calling a Method on an Object Given the Name As a
String
Problem
You have the name of a method that you want to call on an object stored in a string and
you want to execute the method.

Solution
For simple cases, you might use getattr(), like this:

import math

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __repr__(self):
 return 'Point({!r:},{!r:})'.format(self.x, self.y)

 def distance(self, x, y):
 return math.hypot(self.x - x, self.y - y)

p = Point(2, 3)
d = getattr(p, 'distance')(0, 0) # Calls p.distance(0, 0)

An alternative approach is to use operator.methodcaller(). For example:

import operator
operator.methodcaller('distance', 0, 0)(p)

8.20. Calling a Method on an Object Given the Name As a String | 305

operator.methodcaller() may be useful if you want to look up a method by name and
supply the same arguments over and over again. For instance, if you need to sort an
entire list of points:

points = [
 Point(1, 2),
 Point(3, 0),
 Point(10, -3),
 Point(-5, -7),
 Point(-1, 8),
 Point(3, 2)
]

Sort by distance from origin (0, 0)
points.sort(key=operator.methodcaller('distance', 0, 0))

Discussion
Calling a method is actually two separate steps involving an attribute lookup and a
function call. Therefore, to call a method, you simply look up the attribute using get
attr(), as for any other attribute. To invoke the result as a method, simply treat the
result of the lookup as a function.

operator.methodcaller() creates a callable object, but also fixes any arguments that
are going to be supplied to the method. All that you need to do is provide the appropriate
self argument. For example:

>>> p = Point(3, 4)
>>> d = operator.methodcaller('distance', 0, 0)
>>> d(p)
5.0
>>>

Invoking methods using names contained in strings is somewhat common in code that
emulates case statements or variants of the visitor pattern. See the next recipe for a more
advanced example.

8.21. Implementing the Visitor Pattern
Problem
You need to write code that processes or navigates through a complicated data structure
consisting of many different kinds of objects, each of which needs to be handled in a
different way. For example, walking through a tree structure and performing different
actions depending on what kind of tree nodes are encountered.

306 | Chapter 8: Classes and Objects

Solution
The problem addressed by this recipe is one that often arises in programs that build
data structures consisting of a large number of different kinds of objects. To illustrate,
suppose you are trying to write a program that represents mathematical expressions.
To do that, the program might employ a number of classes, like this:

class Node:
 pass

class UnaryOperator(Node):
 def __init__(self, operand):
 self.operand = operand

class BinaryOperator(Node):
 def __init__(self, left, right):
 self.left = left
 self.right = right

class Add(BinaryOperator):
 pass

class Sub(BinaryOperator):
 pass

class Mul(BinaryOperator):
 pass

class Div(BinaryOperator):
 pass

class Negate(UnaryOperator):
 pass

class Number(Node):
 def __init__(self, value):
 self.value = value

These classes would then be used to build up nested data structures, like this:

Representation of 1 + 2 * (3 - 4) / 5
t1 = Sub(Number(3), Number(4))
t2 = Mul(Number(2), t1)
t3 = Div(t2, Number(5))
t4 = Add(Number(1), t3)

The problem is not the creation of such structures, but in writing code that processes
them later. For example, given such an expression, a program might want to do any
number of things (e.g., produce output, generate instructions, perform translation, etc.).

To enable general-purpose processing, a common solution is to implement the so-called
“visitor pattern” using a class similar to this:

8.21. Implementing the Visitor Pattern | 307

class NodeVisitor:
 def visit(self, node):
 methname = 'visit_' + type(node).__name__
 meth = getattr(self, methname, None)
 if meth is None:
 meth = self.generic_visit
 return meth(node)

 def generic_visit(self, node):
 raise RuntimeError('No {} method'.format('visit_' + type(node).__name__))

To use this class, a programmer inherits from it and implements various methods of the
form visit_Name(), where Name is substituted with the node type. For example, if you
want to evaluate the expression, you could write this:

class Evaluator(NodeVisitor):
 def visit_Number(self, node):
 return node.value

 def visit_Add(self, node):
 return self.visit(node.left) + self.visit(node.right)

 def visit_Sub(self, node):
 return self.visit(node.left) - self.visit(node.right)

 def visit_Mul(self, node):
 return self.visit(node.left) * self.visit(node.right)

 def visit_Div(self, node):
 return self.visit(node.left) / self.visit(node.right)

 def visit_Negate(self, node):
 return -node.operand

Here is an example of how you would use this class using the previously generated
expression:

>>> e = Evaluator()
>>> e.visit(t4)
0.6
>>>

As a completely different example, here is a class that translates an expression into
operations on a simple stack machine:

class StackCode(NodeVisitor):
 def generate_code(self, node):
 self.instructions = []
 self.visit(node)
 return self.instructions

 def visit_Number(self, node):
 self.instructions.append(('PUSH', node.value))

308 | Chapter 8: Classes and Objects

 def binop(self, node, instruction):
 self.visit(node.left)
 self.visit(node.right)
 self.instructions.append((instruction,))

 def visit_Add(self, node):
 self.binop(node, 'ADD')

 def visit_Sub(self, node):
 self.binop(node, 'SUB')

 def visit_Mul(self, node):
 self.binop(node, 'MUL')

 def visit_Div(self, node):
 self.binop(node, 'DIV')

 def unaryop(self, node, instruction):
 self.visit(node.operand)
 self.instructions.append((instruction,))

 def visit_Negate(self, node):
 self.unaryop(node, 'NEG')

Here is an example of this class in action:

>>> s = StackCode()
>>> s.generate_code(t4)
[('PUSH', 1), ('PUSH', 2), ('PUSH', 3), ('PUSH', 4), ('SUB',),
 ('MUL',), ('PUSH', 5), ('DIV',), ('ADD',)]
>>>

Discussion
There are really two key ideas in this recipe. The first is a design strategy where code
that manipulates a complicated data structure is decoupled from the data structure itself.
That is, in this recipe, none of the various Node classes provide any implementation that
does anything with the data. Instead, all of the data manipulation is carried out by
specific implementations of the separate NodeVisitor class. This separation makes the
code extremely general purpose.

The second major idea of this recipe is in the implementation of the visitor class itself.
In the visitor, you want to dispatch to a different handling method based on some value
such as the node type. In a naive implementation, you might be inclined to write a huge
if statement, like this:

class NodeVisitor:
 def visit(self, node):
 nodetype = type(node).__name__
 if nodetype == 'Number':

8.21. Implementing the Visitor Pattern | 309

 return self.visit_Number(node)
 elif nodetype == 'Add':
 return self.visit_Add(node)
 elif nodetype == 'Sub':
 return self.visit_Sub(node)
 ...

However, it quickly becomes apparent that you don’t really want to take that approach.
Aside from being incredibly verbose, it runs slowly, and it’s hard to maintain if you ever
add or change the kind of nodes being handled. Instead, it’s much better to play a little
trick where you form the name of a method and go fetch it with the getattr() function,
as shown. The generic_visit() method in the solution is a fallback should no matching
handler method be found. In this recipe, it raises an exception to alert the programmer
that an unexpected node type was encountered.

Within each visitor class, it is common for calculations to be driven by recursive calls
to the visit() method. For example:

class Evaluator(NodeVisitor):
 ...
 def visit_Add(self, node):
 return self.visit(node.left) + self.visit(node.right)

This recursion is what makes the visitor class traverse the entire data structure. Essen‐
tially, you keep calling visit() until you reach some sort of terminal node, such as
Number in the example. The exact order of the recursion and other operations depend
entirely on the application.

It should be noted that this particular technique of dispatching to a method is also a
common way to emulate the behavior of switch or case statements from other languages.
For example, if you are writing an HTTP framework, you might have classes that do a
similar kind of dispatch:

class HTTPHandler:
 def handle(self, request):
 methname = 'do_' + request.request_method
 getattr(self, methname)(request)

 def do_GET(self, request):
 ...
 def do_POST(self, request):
 ...
 def do_HEAD(self, request):
 ...

One weakness of the visitor pattern is its heavy reliance on recursion. If you try to apply
it to a deeply nested structure, it’s possible that you will hit Python’s recursion depth
limit (see sys.getrecursionlimit()). To avoid this problem, you can make certain
choices in your data structures. For example, you can use normal Python lists instead
of linked lists or try to aggregate more data in each node to make the data more shallow.

310 | Chapter 8: Classes and Objects

You can also try to employ nonrecursive traversal algorithms using generators or iter‐
ators as discussed in Recipe 8.22.

Use of the visitor pattern is extremely common in programs related to parsing and
compiling. One notable implementation can be found in Python’s own ast module. In
addition to allowing traversal of tree structures, it provides a variation that allows a data
structure to be rewritten or transformed as it is traversed (e.g., nodes added or removed).
Look at the source for ast for more details. Recipe 9.24 shows an example of using the
ast module to process Python source code.

8.22. Implementing the Visitor Pattern Without Recursion
Problem
You’re writing code that navigates through a deeply nested tree structure using the visitor
pattern, but it blows up due to exceeding the recursion limit. You’d like to eliminate the
recursion, but keep the programming style of the visitor pattern.

Solution
Clever use of generators can sometimes be used to eliminate recursion from algorithms
involving tree traversal or searching. In Recipe 8.21, a visitor class was presented. Here
is an alternative implementation of that class that drives the computation in an entirely
different way using a stack and generators:

import types

class Node:
 pass

import types
class NodeVisitor:
 def visit(self, node):
 stack = [node]
 last_result = None
 while stack:
 try:
 last = stack[-1]
 if isinstance(last, types.GeneratorType):
 stack.append(last.send(last_result))
 last_result = None
 elif isinstance(last, Node):
 stack.append(self._visit(stack.pop()))
 else:
 last_result = stack.pop()
 except StopIteration:
 stack.pop()
 return last_result

8.22. Implementing the Visitor Pattern Without Recursion | 311

 def _visit(self, node):
 methname = 'visit_' + type(node).__name__
 meth = getattr(self, methname, None)
 if meth is None:
 meth = self.generic_visit
 return meth(node)

 def generic_visit(self, node):
 raise RuntimeError('No {} method'.format('visit_' + type(node).__name__))

If you use this class, you’ll find that it still works with existing code that might have used
recursion. In fact, you can use it as a drop-in replacement for the visitor implementation
in the prior recipe. For example, consider the following code, which involves expression
trees:

class UnaryOperator(Node):
 def __init__(self, operand):
 self.operand = operand

class BinaryOperator(Node):
 def __init__(self, left, right):
 self.left = left
 self.right = right

class Add(BinaryOperator):
 pass

class Sub(BinaryOperator):
 pass

class Mul(BinaryOperator):
 pass

class Div(BinaryOperator):
 pass

class Negate(UnaryOperator):
 pass

class Number(Node):
 def __init__(self, value):
 self.value = value

A sample visitor class that evaluates expressions
class Evaluator(NodeVisitor):
 def visit_Number(self, node):
 return node.value

 def visit_Add(self, node):
 return self.visit(node.left) + self.visit(node.right)

312 | Chapter 8: Classes and Objects

 def visit_Sub(self, node):
 return self.visit(node.left) - self.visit(node.right)

 def visit_Mul(self, node):
 return self.visit(node.left) * self.visit(node.right)

 def visit_Div(self, node):
 return self.visit(node.left) / self.visit(node.right)

 def visit_Negate(self, node):
 return -self.visit(node.operand)

if __name__ == '__main__':
 # 1 + 2*(3-4) / 5
 t1 = Sub(Number(3), Number(4))
 t2 = Mul(Number(2), t1)
 t3 = Div(t2, Number(5))
 t4 = Add(Number(1), t3)

 # Evaluate it
 e = Evaluator()
 print(e.visit(t4)) # Outputs 0.6

The preceding code works for simple expressions. However, the implementation of
Evaluator uses recursion and crashes if things get too nested. For example:

>>> a = Number(0)
>>> for n in range(1, 100000):
... a = Add(a, Number(n))
...
>>> e = Evaluator()
>>> e.visit(a)
Traceback (most recent call last):
...
 File "visitor.py", line 29, in _visit
 return meth(node)
 File "visitor.py", line 67, in visit_Add
 return self.visit(node.left) + self.visit(node.right)
RuntimeError: maximum recursion depth exceeded
>>>

Now let’s change the Evaluator class ever so slightly to the following:

class Evaluator(NodeVisitor):
 def visit_Number(self, node):
 return node.value

 def visit_Add(self, node):
 yield (yield node.left) + (yield node.right)

 def visit_Sub(self, node):
 yield (yield node.left) - (yield node.right)

8.22. Implementing the Visitor Pattern Without Recursion | 313

 def visit_Mul(self, node):
 yield (yield node.left) * (yield node.right)

 def visit_Div(self, node):
 yield (yield node.left) / (yield node.right)

 def visit_Negate(self, node):
 yield -(yield node.operand)

If you try the same recursive experiment, you’ll find that it suddenly works. It’s magic!

>>> a = Number(0)
>>> for n in range(1,100000):
... a = Add(a, Number(n))
...
>>> e = Evaluator()
>>> e.visit(a)
4999950000
>>>

If you want to add custom processing into any of the methods, it still works. For example:

class Evaluator(NodeVisitor):
 ...
 def visit_Add(self, node):
 print('Add:', node)
 lhs = yield node.left
 print('left=', lhs)
 rhs = yield node.right
 print('right=', rhs)
 yield lhs + rhs
 ...

Here is some sample output:

>>> e = Evaluator()
>>> e.visit(t4)
Add: <__main__.Add object at 0x1006a8d90>
left= 1
right= -0.4
0.6
>>>

Discussion
This recipe nicely illustrates how generators and coroutines can perform mind-bending
tricks involving program control flow, often to great advantage. To understand this
recipe, a few key insights are required.

First, in problems related to tree traversal, a common implementation strategy for
avoiding recursion is to write algorithms involving a stack or queue. For example, depth-
first traversal can be implemented entirely by pushing nodes onto a stack when first
encountered and then popping them off once processing has finished. The central core

314 | Chapter 8: Classes and Objects

of the visit() method in the solution is built around this idea. The algorithm starts by
pushing the initial node onto the stack list and runs until the stack is empty. During
execution, the stack will grow according to the depth of the underlying tree structure.

The second insight concerns the behavior of the yield statement in generators. When
yield is encountered, the behavior of a generator is to emit a value and to suspend. This
recipe uses this as a replacement for recursion. For example, instead of writing a recur‐
sive expression like this:

value = self.visit(node.left)

you replace it with the following:

value = yield node.left

Behind the scenes, this sends the node in question (node.left) back to the visit()
method. The visit() method then carries out the execution of the appropriate vis
it_Name() method for that node. In some sense, this is almost the opposite of recursion.
That is, instead of calling visit() recursively to move the algorithm forward, the yield
statement is being used to temporarily back out of the computation in progress. Thus,
the yield is essentially a signal that tells the algorithm that the yielded node needs to
be processed first before further progress can be made.

The final part of this recipe concerns propagation of results. When generator functions
are used, you can no longer use return statements to emit values (doing so will cause
a SyntaxError exception). Thus, the yield statement has to do double duty to cover
the case. In this recipe, if the value produced by a yield statement is a non-Node type,
it is assumed to be a value that will be propagated to the next step of the calculation.
This is the purpose of the last_return variable in the code. Typically, this would hold
the last value yielded by a visit method. That value would then be sent into the previously
executing method, where it would show up as the return value from a yield statement.
For example, in this code:

value = yield node.left

The value variable gets the value of last_return, which is the result returned by the
visitor method invoked for node.left.

All of these aspects of the recipe are found in this fragment of code:

try:
 last = stack[-1]
 if isinstance(last, types.GeneratorType):
 stack.append(last.send(last_result))
 last_result = None
 elif isinstance(last, Node):
 stack.append(self._visit(stack.pop()))
 else:
 last_result = stack.pop()

8.22. Implementing the Visitor Pattern Without Recursion | 315

except StopIteration:
 stack.pop()

The code works by simply looking at the top of the stack and deciding what to do next.
If it’s a generator, then its send() method is invoked with the last result (if any) and the
result appended onto the stack for further processing. The value returned by send() is
the same value that was given to the yield statement. Thus, in a statement such as yield
node.left, the Node instance node.left is returned by send() and placed on the top
of the stack.

If the top of the stack is a Node instance, then it is replaced by the result of calling the
appropriate visit method for that node. This is where the underlying recursion is being
eliminated. Instead of the various visit methods directly calling visit() recursively, it
takes place here. As long as the methods use yield, it all works out.

Finally, if the top of the stack is anything else, it’s assumed to be a return value of some
kind. It just gets popped off the stack and placed into last_result. If the next item on
the stack is a generator, then it gets sent in as a return value for the yield. It should be
noted that the final return value of visit() is also set to last_result. This is what
makes this recipe work with a traditional recursive implementation. If no generators
are being used, this value simply holds the value given to any return statements used
in the code.

One potential danger of this recipe concerns the distinction between yielding Node and
non-Node values. In the implementation, all Node instances are automatically traversed.
This means that you can’t use a Node as a return value to be propagated. In practice, this
may not matter. However, if it does, you might need to adapt the algorithm slightly. For
example, possibly by introducing another class into the mix, like this:

class Visit:
 def __init__(self, node):
 self.node = node

class NodeVisitor:
 def visit(self, node):
 stack = [Visit(node)]
 last_result = None
 while stack:
 try:
 last = stack[-1]
 if isinstance(last, types.GeneratorType):
 stack.append(last.send(last_result))
 last_result = None
 elif isinstance(last, Visit):
 stack.append(self._visit(stack.pop().node))
 else:
 last_result = stack.pop()
 except StopIteration:

316 | Chapter 8: Classes and Objects

 stack.pop()
 return last_result

 def _visit(self, node):
 methname = 'visit_' + type(node).__name__
 meth = getattr(self, methname, None)
 if meth is None:
 meth = self.generic_visit
 return meth(node)

 def generic_visit(self, node):
 raise RuntimeError('No {} method'.format('visit_' + type(node).__name__))

With this implementation, the various visitor methods would now look like this:

class Evaluator(NodeVisitor):
 ...
 def visit_Add(self, node):
 yield (yield Visit(node.left)) + (yield Visit(node.right))

 def visit_Sub(self, node):
 yield (yield Visit(node.left)) - (yield Visit(node.right))
 ...

Having seen this recipe, you might be inclined to investigate a solution that doesn’t
involve yield. However, doing so will lead to code that has to deal with many of the
same issues presented here. For example, to eliminate recursion, you’ll need to maintain
a stack. You’ll also need to come up with some scheme for managing the traversal and
invoking various visitor-related logic. Without generators, this code ends up being a
very messy mix of stack manipulation, callback functions, and other constructs. Frankly,
the main benefit of using yield is that you can write nonrecursive code in an elegant
style that looks almost exactly like the recursive implementation.

8.23. Managing Memory in Cyclic Data Structures
Problem
Your program creates data structures with cycles (e.g., trees, graphs, observer patterns,
etc.), but you are experiencing problems with memory management.

Solution
A simple example of a cyclic data structure is a tree structure where a parent points to
its children and the children point back to their parent. For code like this, you should
consider making one of the links a weak reference using the weakref library. For
example:

8.23. Managing Memory in Cyclic Data Structures | 317

import weakref

class Node:
 def __init__(self, value):
 self.value = value
 self._parent = None
 self.children = []

 def __repr__(self):
 return 'Node({!r:})'.format(self.value)

 # property that manages the parent as a weak-reference
 @property
 def parent(self):
 return self._parent if self._parent is None else self._parent()

 @parent.setter
 def parent(self, node):
 self._parent = weakref.ref(node)

 def add_child(self, child):
 self.children.append(child)
 child.parent = self

This implementation allows the parent to quietly die. For example:

>>> root = Node('parent')
>>> c1 = Node('child')
>>> root.add_child(c1)
>>> print(c1.parent)
Node('parent')
>>> del root
>>> print(c1.parent)
None
>>>

Discussion
Cyclic data structures are a somewhat tricky aspect of Python that require careful study
because the usual rules of garbage collection often don’t apply. For example, consider
this code:

Class just to illustrate when deletion occurs
class Data:
 def __del__(self):
 print('Data.__del__')

Node class involving a cycle
class Node:
 def __init__(self):
 self.data = Data()
 self.parent = None

318 | Chapter 8: Classes and Objects

 self.children = []
 def add_child(self, child):
 self.children.append(child)
 child.parent = self

Now, using this code, try some experiments to see some subtle issues with garbage
collection:

>>> a = Data()
>>> del a # Immediately deleted
Data.__del__
>>> a = Node()
>>> del a # Immediately deleted
Data.__del__
>>> a = Node()
>>> a.add_child(Node())
>>> del a # Not deleted (no message)
>>>

As you can see, objects are deleted immediately all except for the last case involving a
cycle. The reason is that Python’s garbage collection is based on simple reference count‐
ing. When the reference count of an object reaches 0, it is immediately deleted. For
cyclic data structures, however, this never happens. Thus, in the last part of the example,
the parent and child nodes refer to each other, keeping the reference count nonzero.

To deal with cycles, there is a separate garbage collector that runs periodically. However,
as a general rule, you never know when it might run. Consequently, you never really
know when cyclic data structures might get collected. If necessary, you can force garbage
collection, but doing so is a bit clunky:

>>> import gc
>>> gc.collect() # Force collection
Data.__del__
Data.__del__
>>>

An even worse problem occurs if the objects involved in a cycle define their own
__del__() method. For example, suppose the code looked like this:

Class just to illustrate when deletion occurs
class Data:
 def __del__(self):
 print('Data.__del__')

Node class involving a cycle
class Node:
 def __init__(self):
 self.data = Data()
 self.parent = None
 self.children = []

 # NEVER DEFINE LIKE THIS.

8.23. Managing Memory in Cyclic Data Structures | 319

 # Only here to illustrate pathological behavior
 def __del__(self):
 del self.data
 del.parent
 del.children

 def add_child(self, child):
 self.children.append(child)
 child.parent = self

In this case, the data structures will never be garbage collected at all and your program
will leak memory! If you try it, you’ll see that the Data.__del__ message never appears
at all—even after a forced garbage collection:

>>> a = Node()
>>> a.add_child(Node()
>>> del a # No message (not collected)
>>> import gc
>>> gc.collect() # No message (not collected)
>>>

Weak references solve this problem by eliminating reference cycles. Essentially, a weak
reference is a pointer to an object that does not increase its reference count. You create
weak references using the weakref library. For example:

>>> import weakref
>>> a = Node()
>>> a_ref = weakref.ref(a)
>>> a_ref
<weakref at 0x100581f70; to 'Node' at 0x1005c5410>
>>>

To dereference a weak reference, you call it like a function. If the referenced object still
exists, it is returned. Otherwise, None is returned. Since the reference count of the orig‐
inal object wasn’t increased, it can be deleted normally. For example:

>>> print(a_ref())
<__main__.Node object at 0x1005c5410>
>>> del a
Data.__del__
>>> print(a_ref())
None
>>>

By using weak references, as shown in the solution, you’ll find that there are no longer
any reference cycles and that garbage collection occurs immediately once a node is no
longer being used. See Recipe 8.25 for another example involving weak references.

320 | Chapter 8: Classes and Objects

8.24. Making Classes Support Comparison Operations
Problem
You’d like to be able to compare instances of your class using the standard comparison
operators (e.g., >=, !=, <=, etc.), but without having to write a lot of special methods.

Solution
Python classes can support comparison by implementing a special method for each
comparison operator. For example, to support the >= operator, you define a __ge__()
method in the classes. Although defining a single method is usually no problem, it
quickly gets tedious to create implementations of every possible comparison operator.

The functools.total_ordering decorator can be used to simplify this process. To use
it, you decorate a class with it, and define __eq__() and one other comparison method
(__lt__, __le__, __gt__, or __ge__). The decorator then fills in the other comparison
methods for you.

As an example, let’s build some houses and add some rooms to them, and then perform
comparisons based on the size of the houses:

from functools import total_ordering
class Room:
 def __init__(self, name, length, width):
 self.name = name
 self.length = length
 self.width = width
 self.square_feet = self.length * self.width

@total_ordering
class House:
 def __init__(self, name, style):
 self.name = name
 self.style = style
 self.rooms = list()

 @property
 def living_space_footage(self):
 return sum(r.square_feet for r in self.rooms)

 def add_room(self, room):
 self.rooms.append(room)

 def __str__(self):
 return '{}: {} square foot {}'.format(self.name,
 self.living_space_footage,
 self.style)

8.24. Making Classes Support Comparison Operations | 321

 def __eq__(self, other):
 return self.living_space_footage == other.living_space_footage

 def __lt__(self, other):
 return self.living_space_footage < other.living_space_footage

Here, the House class has been decorated with @total_ordering. Definitions of
__eq__() and __lt__() are provided to compare houses based on the total square
footage of their rooms. This minimum definition is all that is required to make all of
the other comparison operations work. For example:

Build a few houses, and add rooms to them
h1 = House('h1', 'Cape')
h1.add_room(Room('Master Bedroom', 14, 21))
h1.add_room(Room('Living Room', 18, 20))
h1.add_room(Room('Kitchen', 12, 16))
h1.add_room(Room('Office', 12, 12))

h2 = House('h2', 'Ranch')
h2.add_room(Room('Master Bedroom', 14, 21))
h2.add_room(Room('Living Room', 18, 20))
h2.add_room(Room('Kitchen', 12, 16))

h3 = House('h3', 'Split')
h3.add_room(Room('Master Bedroom', 14, 21))
h3.add_room(Room('Living Room', 18, 20))
h3.add_room(Room('Office', 12, 16))
h3.add_room(Room('Kitchen', 15, 17))
houses = [h1, h2, h3]

print('Is h1 bigger than h2?', h1 > h2) # prints True
print('Is h2 smaller than h3?', h2 < h3) # prints True
print('Is h2 greater than or equal to h1?', h2 >= h1) # Prints False
print('Which one is biggest?', max(houses)) # Prints 'h3: 1101-square-foot Split'
print('Which is smallest?', min(houses)) # Prints 'h2: 846-square-foot Ranch'

Discussion
If you’ve written the code to make a class support all of the basic comparison operators,
then total_ordering probably doesn’t seem all that magical: it literally defines a map‐
ping from each of the comparison-supporting methods to all of the other ones that
would be required. So, if you defined __lt__() in your class as in the solution, it is used
to build all of the other comparison operators. It’s really just filling in the class with
methods like this:

class House:
 def __eq__(self, other):
 ...
 def __lt__(self, other):
 ...

322 | Chapter 8: Classes and Objects

 # Methods created by @total_ordering
 __le__ = lambda self, other: self < other or self == other
 __gt__ = lambda self, other: not (self < other or self == other)
 __ge__ = lambda self, other: not (self < other)
 __ne__ = lambda self, other: not self == other

Sure, it’s not hard to write these methods yourself, but @total_ordering simply takes
the guesswork out of it.

8.25. Creating Cached Instances
Problem
When creating instances of a class, you want to return a cached reference to a previous
instance created with the same arguments (if any).

Solution
The problem being addressed in this recipe sometimes arises when you want to ensure
that there is only one instance of a class created for a set of input arguments. Practical
examples include the behavior of libraries, such as the logging module, that only want
to associate a single logger instance with a given name. For example:

>>> import logging
>>> a = logging.getLogger('foo')
>>> b = logging.getLogger('bar')
>>> a is b
False
>>> c = logging.getLogger('foo')
>>> a is c
True
>>>

To implement this behavior, you should make use of a factory function that’s separate
from the class itself. For example:

The class in question
class Spam:
 def __init__(self, name):
 self.name = name

Caching support
import weakref
_spam_cache = weakref.WeakValueDictionary()

def get_spam(name):
 if name not in _spam_cache:
 s = Spam(name)
 _spam_cache[name] = s
 else:

8.25. Creating Cached Instances | 323

 s = _spam_cache[name]
 return s

If you use this implementation, you’ll find that it behaves in the manner shown earlier:

>>> a = get_spam('foo')
>>> b = get_spam('bar')
>>> a is b
False
>>> c = get_spam('foo')
>>> a is c
True
>>>

Discussion
Writing a special factory function is often a simple approach for altering the normal
rules of instance creation. One question that often arises at this point is whether or not
a more elegant approach could be taken.

For example, you might consider a solution that redefines the __new__() method of a
class as follows:

Note: This code doesn't quite work
import weakref

class Spam:
 _spam_cache = weakref.WeakValueDictionary()
 def __new__(cls, name):
 if name in cls._spam_cache:
 return cls._spam_cache[name]
 else:
 self = super().__new__(cls)
 cls._spam_cache[name] = self
 return self

 def __init__(self, name):
 print('Initializing Spam')
 self.name = name

At first glance, it seems like this code might do the job. However, a major problem is
that the __init__() method always gets called, regardless of whether the instance was
cached or not. For example:

>>> s = Spam('Dave')
Initializing Spam
>>> t = Spam('Dave')
Initializing Spam
>>> s is t
True
>>>

324 | Chapter 8: Classes and Objects

That behavior is probably not what you want. So, to solve the problem of caching without
reinitialization, you need to take a slightly different approach.

The use of weak references in this recipe serves an important purpose related to garbage
collection, as described in Recipe 8.23. When maintaining a cache of instances, you
often only want to keep items in the cache as long as they’re actually being used some‐
where in the program. A WeakValueDictionary instance only holds onto the referenced
items as long as they exist somewhere else. Otherwise, the dictionary keys disappear
when instances are no longer being used. Observe:

>>> a = get_spam('foo')
>>> b = get_spam('bar')
>>> c = get_spam('foo')
>>> list(_spam_cache)
['foo', 'bar']
>>> del a
>>> del c
>>> list(_spam_cache)
['bar']
>>> del b
>>> list(_spam_cache)
[]
>>>

For many programs, the bare-bones code shown in this recipe will often suffice. How‐
ever, there are a number of more advanced implementation techniques that can be
considered.

One immediate concern with this recipe might be its reliance on global variables and a
factory function that’s decoupled from the original class definition. One way to clean
this up is to put the caching code into a separate manager class and glue things together
like this:

import weakref

class CachedSpamManager:
 def __init__(self):
 self._cache = weakref.WeakValueDictionary()
 def get_spam(self, name):
 if name not in self._cache:
 s = Spam(name)
 self._cache[name] = s
 else:
 s = self._cache[name]
 return s

 def clear(self):
 self._cache.clear()

class Spam:
 manager = CachedSpamManager()

8.25. Creating Cached Instances | 325

 def __init__(self, name):
 self.name = name

def get_spam(name):
 return Spam.manager.get_spam(name)

One feature of this approach is that it affords a greater degree of potential flexibility. For
example, different kinds of management schemes could be be implemented (as separate
classes) and attached to the Spam class as a replacement for the default caching imple‐
mentation. None of the other code (e.g., get_spam) would need to be changed to make
it work.

Another design consideration is whether or not you want to leave the class definition
exposed to the user. If you do nothing, a user can easily make instances, bypassing the
caching mechanism:

>>> a = Spam('foo')
>>> b = Spam('foo')
>>> a is b
False
>>>

If preventing this is important, you can take certain steps to avoid it. For example, you
might give the class a name starting with an underscore, such as _Spam, which at least
gives the user a clue that they shouldn’t access it directly.

Alternatively, if you want to give users a stronger hint that they shouldn’t instantiate
Spam instances directly, you can make __init__() raise an exception and use a class
method to make an alternate constructor like this:

class Spam:
 def __init__(self, *args, **kwargs):
 raise RuntimeError("Can't instantiate directly")

 # Alternate constructor
 @classmethod
 def _new(cls, name):
 self = cls.__new__(cls)
 self.name = name

To use this, you modify the caching code to use Spam._new() to create instances instead
of the usual call to Spam(). For example:

import weakref

class CachedSpamManager:
 def __init__(self):
 self._cache = weakref.WeakValueDictionary()
 def get_spam(self, name):
 if name not in self._cache:
 s = Spam._new(name) # Modified creation

326 | Chapter 8: Classes and Objects

 self._cache[name] = s
 else:
 s = self._cache[name]
 return s

Although there are more extreme measures that can be taken to hide the visibility of
the Spam class, it’s probably best to not overthink the problem. Using an underscore on
the name or defining a class method constructor is usually enough for programmers to
get a hint.

Caching and other creational patterns can often be solved in a more elegant (albeit
advanced) manner through the use of metaclasses. See Recipe 9.13.

8.25. Creating Cached Instances | 327

CHAPTER 9

Metaprogramming

One of the most important mantras of software development is “don’t repeat yourself.”
That is, any time you are faced with a problem of creating highly repetitive code (or
cutting or pasting source code), it often pays to look for a more elegant solution. In
Python, such problems are often solved under the category of “metaprogramming.” In
a nutshell, metaprogramming is about creating functions and classes whose main goal
is to manipulate code (e.g., modifying, generating, or wrapping existing code). The main
features for this include decorators, class decorators, and metaclasses. However, a variety
of other useful topics—including signature objects, execution of code with exec(), and
inspecting the internals of functions and classes—enter the picture. The main purpose
of this chapter is to explore various metaprogramming techniques and to give examples
of how they can be used to customize the behavior of Python to your own whims.

9.1. Putting a Wrapper Around a Function
Problem
You want to put a wrapper layer around a function that adds extra processing (e.g.,
logging, timing, etc.).

Solution
If you ever need to wrap a function with extra code, define a decorator function. For
example:

import time
from functools import wraps

def timethis(func):
 '''
 Decorator that reports the execution time.

329

 '''
 @wraps(func)
 def wrapper(*args, **kwargs):
 start = time.time()
 result = func(*args, **kwargs)
 end = time.time()
 print(func.__name__, end-start)
 return result
 return wrapper

Here is an example of using the decorator:

>>> @timethis
... def countdown(n):
... '''
... Counts down
... '''
... while n > 0:
... n -= 1
...
>>> countdown(100000)
countdown 0.008917808532714844
>>> countdown(10000000)
countdown 0.87188299392912
>>>

Discussion
A decorator is a function that accepts a function as input and returns a new function as
output. Whenever you write code like this:

@timethis
def countdown(n):
 ...

it’s the same as if you had performed these separate steps:

def countdown(n):
 ...
countdown = timethis(countdown)

As an aside, built-in decorators such as @staticmethod, @classmethod, and @proper
ty work in the same way. For example, these two code fragments are equivalent:

class A:
 @classmethod
 def method(cls):
 pass

class B:
 # Equivalent definition of a class method
 def method(cls):

330 | Chapter 9: Metaprogramming

 pass
 method = classmethod(method)

The code inside a decorator typically involves creating a new function that accepts any
arguments using *args and **kwargs, as shown with the wrapper() function in this
recipe. Inside this function, you place a call to the original input function and return its
result. However, you also place whatever extra code you want to add (e.g., timing). The
newly created function wrapper is returned as a result and takes the place of the original
function.

It’s critical to emphasize that decorators generally do not alter the calling signature or
return value of the function being wrapped. The use of *args and **kwargs is there to
make sure that any input arguments can be accepted. The return value of a decorator is
almost always the result of calling func(*args, **kwargs), where func is the original
unwrapped function.

When first learning about decorators, it is usually very easy to get started with some
simple examples, such as the one shown. However, if you are going to write decorators
for real, there are some subtle details to consider. For example, the use of the decorator
@wraps(func) in the solution is an easy to forget but important technicality related to
preserving function metadata, which is described in the next recipe. The next few recipes
that follow fill in some details that will be important if you wish to write decorator
functions of your own.

9.2. Preserving Function Metadata When Writing
Decorators
Problem
You’ve written a decorator, but when you apply it to a function, important metadata
such as the name, doc string, annotations, and calling signature are lost.

Solution
Whenever you define a decorator, you should always remember to apply the @wraps
decorator from the functools library to the underlying wrapper function. For example:

import time
from functools import wraps

def timethis(func):
 '''
 Decorator that reports the execution time.
 '''
 @wraps(func)
 def wrapper(*args, **kwargs):

9.2. Preserving Function Metadata When Writing Decorators | 331

 start = time.time()
 result = func(*args, **kwargs)
 end = time.time()
 print(func.__name__, end-start)
 return result
 return wrapper

Here is an example of using the decorator and examining the resulting function meta‐
data:

>>> @timethis
... def countdown(n:int):
... '''
... Counts down
... '''
... while n > 0:
... n -= 1
...
>>> countdown(100000)
countdown 0.008917808532714844
>>> countdown.__name__
'countdown'
>>> countdown.__doc__
'\n\tCounts down\n\t'
>>> countdown.__annotations__
{'n': <class 'int'>}
>>>

Discussion
Copying decorator metadata is an important part of writing decorators. If you forget to
use @wraps, you’ll find that the decorated function loses all sorts of useful information.
For instance, if omitted, the metadata in the last example would look like this:

>>> countdown.__name__
'wrapper'
>>> countdown.__doc__
>>> countdown.__annotations__
{}
>>>

An important feature of the @wraps decorator is that it makes the wrapped function
available to you in the __wrapped__ attribute. For example, if you want to access the
wrapped function directly, you could do this:

>>> countdown.__wrapped__(100000)
>>>

The presence of the __wrapped__ attribute also makes decorated functions properly
expose the underlying signature of the wrapped function. For example:

332 | Chapter 9: Metaprogramming

>>> from inspect import signature
>>> print(signature(countdown))
(n:int)
>>>

One common question that sometimes arises is how to make a decorator that directly
copies the calling signature of the original function being wrapped (as opposed to using
*args and **kwargs). In general, this is difficult to implement without resorting to some
trick involving the generator of code strings and exec(). Frankly, you’re usually best off
using @wraps and relying on the fact that the underlying function signature can be
propagated by access to the underlying __wrapped__ attribute. See Recipe 9.16 for more
information about signatures.

9.3. Unwrapping a Decorator
Problem
A decorator has been applied to a function, but you want to “undo” it, gaining access to
the original unwrapped function.

Solution
Assuming that the decorator has been implemented properly using @wraps (see
Recipe 9.2), you can usually gain access to the original function by accessing the __wrap
ped__ attribute. For example:

>>> @somedecorator
>>> def add(x, y):
... return x + y
...
>>> orig_add = add.__wrapped__
>>> orig_add(3, 4)
7
>>>

Discussion
Gaining direct access to the unwrapped function behind a decorator can be useful for
debugging, introspection, and other operations involving functions. However, this
recipe only works if the implementation of a decorator properly copies metadata using
@wraps from the functools module or sets the __wrapped__ attribute directly.

If multiple decorators have been applied to a function, the behavior of accessing __wrap
ped__ is currently undefined and should probably be avoided. In Python 3.3, it bypasses
all of the layers. For example, suppose you have code like this:

9.3. Unwrapping a Decorator | 333

from functools import wraps

def decorator1(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 print('Decorator 1')
 return func(*args, **kwargs)
 return wrapper

def decorator2(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 print('Decorator 2')
 return func(*args, **kwargs)
 return wrapper

@decorator1
@decorator2
def add(x, y):
 return x + y

Here is what happens when you call the decorated function and the original function
through __wrapped__:

>>> add(2, 3)
Decorator 1
Decorator 2
5
>>> add.__wrapped__(2, 3)
5
>>>

However, this behavior has been reported as a bug (see http://bugs.python.org/
issue17482) and may be changed to explose the proper decorator chain in a future re‐
lease.

Last, but not least, be aware that not all decorators utilize @wraps, and thus, they may
not work as described. In particular, the built-in decorators @staticmethod and @class
method create descriptor objects that don’t follow this convention (instead, they store
the original function in a __func__ attribute). Your mileage may vary.

9.4. Defining a Decorator That Takes Arguments
Problem
You want to write a decorator function that takes arguments.

334 | Chapter 9: Metaprogramming

http://bugs.python.org/issue17482
http://bugs.python.org/issue17482

Solution
Let’s illustrate the process of accepting arguments with an example. Suppose you want
to write a decorator that adds logging to a function, but allows the user to specify the
logging level and other details as arguments. Here is how you might define the decorator:

from functools import wraps
import logging

def logged(level, name=None, message=None):
 '''
 Add logging to a function. level is the logging
 level, name is the logger name, and message is the
 log message. If name and message aren't specified,
 they default to the function's module and name.
 '''
 def decorate(func):
 logname = name if name else func.__module__
 log = logging.getLogger(logname)
 logmsg = message if message else func.__name__

 @wraps(func)
 def wrapper(*args, **kwargs):
 log.log(level, logmsg)
 return func(*args, **kwargs)
 return wrapper
 return decorate

Example use
@logged(logging.DEBUG)
def add(x, y):
 return x + y

@logged(logging.CRITICAL, 'example')
def spam():
 print('Spam!')

On first glance, the implementation looks tricky, but the idea is relatively simple. The
outermost function logged() accepts the desired arguments and simply makes them
available to the inner functions of the decorator. The inner function decorate() accepts
a function and puts a wrapper around it as normal. The key part is that the wrapper is
allowed to use the arguments passed to logged().

Discussion
Writing a decorator that takes arguments is tricky because of the underlying calling
sequence involved. Specifically, if you have code like this:

@decorator(x, y, z)
def func(a, b):
 pass

9.4. Defining a Decorator That Takes Arguments | 335

The decoration process evaluates as follows:

def func(a, b):
 pass

func = decorator(x, y, z)(func)

Carefully observe that the result of decorator(x, y, z) must be a callable which, in
turn, takes a function as input and wraps it. See Recipe 9.7 for another example of a
decorator taking arguments.

9.5. Defining a Decorator with User Adjustable Attributes
Problem
You want to write a decorator function that wraps a function, but has user adjustable
attributes that can be used to control the behavior of the decorator at runtime.

Solution
Here is a solution that expands on the last recipe by introducing accessor functions that
change internal variables through the use of nonlocal variable declarations. The ac‐
cessor functions are then attached to the wrapper function as function attributes.

from functools import wraps, partial
import logging

Utility decorator to attach a function as an attribute of obj
def attach_wrapper(obj, func=None):
 if func is None:
 return partial(attach_wrapper, obj)
 setattr(obj, func.__name__, func)
 return func

def logged(level, name=None, message=None):
 '''
 Add logging to a function. level is the logging
 level, name is the logger name, and message is the
 log message. If name and message aren't specified,
 they default to the function's module and name.
 '''
 def decorate(func):
 logname = name if name else func.__module__
 log = logging.getLogger(logname)
 logmsg = message if message else func.__name__

 @wraps(func)
 def wrapper(*args, **kwargs):
 log.log(level, logmsg)
 return func(*args, **kwargs)

336 | Chapter 9: Metaprogramming

 # Attach setter functions
 @attach_wrapper(wrapper)
 def set_level(newlevel):
 nonlocal level
 level = newlevel

 @attach_wrapper(wrapper)
 def set_message(newmsg):
 nonlocal logmsg
 logmsg = newmsg

 return wrapper
 return decorate

Example use
@logged(logging.DEBUG)
def add(x, y):
 return x + y

@logged(logging.CRITICAL, 'example')
def spam():
 print('Spam!')

Here is an interactive session that shows the various attributes being changed after
definition:

>>> import logging
>>> logging.basicConfig(level=logging.DEBUG)
>>> add(2, 3)
DEBUG:__main__:add
5

>>> # Change the log message
>>> add.set_message('Add called')
>>> add(2, 3)
DEBUG:__main__:Add called
5

>>> # Change the log level
>>> add.set_level(logging.WARNING)
>>> add(2, 3)
WARNING:__main__:Add called
5
>>>

9.5. Defining a Decorator with User Adjustable Attributes | 337

Discussion
The key to this recipe lies in the accessor functions [e.g., set_message() and set_lev
el()] that get attached to the wrapper as attributes. Each of these accessors allows in‐
ternal parameters to be adjusted through the use of nonlocal assignments.

An amazing feature of this recipe is that the accessor functions will propagate through
multiple levels of decoration (if all of your decorators utilize @functools.wraps). For
example, suppose you introduced an additional decorator, such as the @timethis dec‐
orator from Recipe 9.2, and wrote code like this:

@timethis
@logged(logging.DEBUG)
def countdown(n):
 while n > 0:
 n -= 1

You’ll find that the accessor methods still work:

>>> countdown(10000000)
DEBUG:__main__:countdown
countdown 0.8198461532592773
>>> countdown.set_level(logging.WARNING)
>>> countdown.set_message("Counting down to zero")
>>> countdown(10000000)
WARNING:__main__:Counting down to zero
countdown 0.8225970268249512
>>>

You’ll also find that it all still works exactly the same way if the decorators are composed
in the opposite order, like this:

@logged(logging.DEBUG)
@timethis
def countdown(n):
 while n > 0:
 n -= 1

Although it’s not shown, accessor functions to return the value of various settings could
also be written just as easily by adding extra code such as this:

...
@attach_wrapper(wrapper)
def get_level():
 return level

Alternative
wrapper.get_level = lambda: level
...

338 | Chapter 9: Metaprogramming

One extremely subtle facet of this recipe is the choice to use accessor functions in the
first place. For example, you might consider an alternative formulation solely based on
direct access to function attributes like this:

...
@wraps(func)
def wrapper(*args, **kwargs):
 wrapper.log.log(wrapper.level, wrapper.logmsg)
 return func(*args, **kwargs)

Attach adjustable attributes
wrapper.level = level
wrapper.logmsg = logmsg
wrapper.log = log
...

This approach would work to a point, but only if it was the topmost decorator. If you
had another decorator applied on top (such as the @timethis example), it would shadow
the underlying attributes and make them unavailable for modification. The use of ac‐
cessor functions avoids this limitation.

Last, but not least, the solution shown in this recipe might be a possible alternative for
decorators defined as classes, as shown in Recipe 9.9.

9.6. Defining a Decorator That Takes an Optional
Argument
Problem
You would like to write a single decorator that can be used without arguments, such as
@decorator, or with optional arguments, such as @decorator(x,y,z). However, there
seems to be no straightforward way to do it due to differences in calling conventions
between simple decorators and decorators taking arguments.

Solution
Here is a variant of the logging code shown in Recipe 9.5 that defines such a decorator:

from functools import wraps, partial
import logging

def logged(func=None, *, level=logging.DEBUG, name=None, message=None):
 if func is None:
 return partial(logged, level=level, name=name, message=message)

 logname = name if name else func.__module__
 log = logging.getLogger(logname)
 logmsg = message if message else func.__name__

9.6. Defining a Decorator That Takes an Optional Argument | 339

 @wraps(func)
 def wrapper(*args, **kwargs):
 log.log(level, logmsg)
 return func(*args, **kwargs)
 return wrapper

Example use
@logged
def add(x, y):
 return x + y

@logged(level=logging.CRITICAL, name='example')
def spam():
 print('Spam!')

As you can see from the example, the decorator can be used in both a simple form (i.e.,
@logged) or with optional arguments supplied (i.e., @logged(level=logging.CRITI
CAL, name='example')).

Discussion
The problem addressed by this recipe is really one of programming consistency. When
using decorators, most programmers are used to applying them without any arguments
at all or with arguments, as shown in the example. Technically speaking, a decorator
where all arguments are optional could be applied, like this:

@logged()
def add(x, y):
 return x+y

However, this is not a form that’s especially common, and might lead to common usage
errors if programmers forget to add the extra parentheses. The recipe simply makes the
decorator work with or without parentheses in a consistent way.

To understand how the code works, you need to have a firm understanding of how
decorators get applied to functions and their calling conventions. For a simple decorator
such as this:

Example use
@logged
def add(x, y):
 return x + y

The calling sequence is as follows:

def add(x, y):
 return x + y
add = logged(add)

340 | Chapter 9: Metaprogramming

In this case, the function to be wrapped is simply passed to logged as the first argument.
Thus, in the solution, the first argument of logged() is the function being wrapped. All
of the other arguments must have default values.

For a decorator taking arguments such as this:

@logged(level=logging.CRITICAL, name='example')
def spam():
 print('Spam!')

The calling sequence is as follows:

def spam():
 print('Spam!')
spam = logged(level=logging.CRITICAL, name='example')(spam)

On the initial invocation of logged(), the function to be wrapped is not passed. Thus,
in the decorator, it has to be optional. This, in turn, forces the other arguments to be
specified by keyword. Furthermore, when arguments are passed, a decorator is supposed
to return a function that accepts the function and wraps it (see Recipe 9.5). To do this,
the solution uses a clever trick involving functools.partial. Specifically, it simply
returns a partially applied version of itself where all arguments are fixed except for the
function to be wrapped. See Recipe 7.8 for more details about using partial().

9.7. Enforcing Type Checking on a Function Using a
Decorator
Problem
You want to optionally enforce type checking of function arguments as a kind of asser‐
tion or contract.

Solution
Before showing the solution code, the aim of this recipe is to have a means of enforcing
type contracts on the input arguments to a function. Here is a short example that illus‐
trates the idea:

>>> @typeassert(int, int)
... def add(x, y):
... return x + y
...
>>>
>>> add(2, 3)
5
>>> add(2, 'hello')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

9.7. Enforcing Type Checking on a Function Using a Decorator | 341

 File "contract.py", line 33, in wrapper
TypeError: Argument y must be <class 'int'>
>>>

Now, here is an implementation of the @typeassert decorator:

from inspect import signature
from functools import wraps

def typeassert(*ty_args, **ty_kwargs):
 def decorate(func):
 # If in optimized mode, disable type checking
 if not __debug__:
 return func

 # Map function argument names to supplied types
 sig = signature(func)
 bound_types = sig.bind_partial(*ty_args, **ty_kwargs).arguments

 @wraps(func)
 def wrapper(*args, **kwargs):
 bound_values = sig.bind(*args, **kwargs)
 # Enforce type assertions across supplied arguments
 for name, value in bound_values.arguments.items():
 if name in bound_types:
 if not isinstance(value, bound_types[name]):
 raise TypeError(
 'Argument {} must be {}'.format(name, bound_types[name])
)
 return func(*args, **kwargs)
 return wrapper
 return decorate

You will find that this decorator is rather flexible, allowing types to be specified for all
or a subset of a function’s arguments. Moreover, types can be specified by position or
by keyword. Here is an example:

>>> @typeassert(int, z=int)
... def spam(x, y, z=42):
... print(x, y, z)
...
>>> spam(1, 2, 3)
1 2 3
>>> spam(1, 'hello', 3)
1 hello 3
>>> spam(1, 'hello', 'world')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "contract.py", line 33, in wrapper
TypeError: Argument z must be <class 'int'>
>>>

342 | Chapter 9: Metaprogramming

Discussion
This recipe is an advanced decorator example that introduces a number of important
and useful concepts.

First, one aspect of decorators is that they only get applied once, at the time of function
definition. In certain cases, you may want to disable the functionality added by a dec‐
orator. To do this, simply have your decorator function return the function unwrapped.
In the solution, the following code fragment returns the function unmodified if the
value of the global __debug__ variable is set to False (as is the case when Python executes
in optimized mode with the -O or -OO options to the interpreter):

...
def decorate(func):
 # If in optimized mode, disable type checking
 if not __debug__:
 return func
 ...

Next, a tricky part of writing this decorator is that it involves examining and working
with the argument signature of the function being wrapped. Your tool of choice here
should be the inspect.signature() function. Simply stated, it allows you to extract
signature information from a callable. For example:

>>> from inspect import signature
>>> def spam(x, y, z=42):
... pass
...
>>> sig = signature(spam)
>>> print(sig)
(x, y, z=42)
>>> sig.parameters
mappingproxy(OrderedDict([('x', <Parameter at 0x10077a050 'x'>),
('y', <Parameter at 0x10077a158 'y'>), ('z', <Parameter at 0x10077a1b0 'z'>)]))
>>> sig.parameters['z'].name
'z'
>>> sig.parameters['z'].default
42
>>> sig.parameters['z'].kind
<_ParameterKind: 'POSITIONAL_OR_KEYWORD'>
>>>

In the first part of our decorator, we use the bind_partial() method of signatures to
perform a partial binding of the supplied types to argument names. Here is an example
of what happens:

>>> bound_types = sig.bind_partial(int,z=int)
>>> bound_types
<inspect.BoundArguments object at 0x10069bb50>
>>> bound_types.arguments

9.7. Enforcing Type Checking on a Function Using a Decorator | 343

OrderedDict([('x', <class 'int'>), ('z', <class 'int'>)])
>>>

In this partial binding, you will notice that missing arguments are simply ignored (i.e.,
there is no binding for argument y). However, the most important part of the binding
is the creation of the ordered dictionary bound_types.arguments. This dictionary maps
the argument names to the supplied values in the same order as the function signature.
In the case of our decorator, this mapping contains the type assertions that we’re going
to enforce.

In the actual wrapper function made by the decorator, the sig.bind() method is used.
bind() is like bind_partial() except that it does not allow for missing arguments. So,
here is what happens:

>>> bound_values = sig.bind(1, 2, 3)
>>> bound_values.arguments
OrderedDict([('x', 1), ('y', 2), ('z', 3)])
>>>

Using this mapping, it is relatively easy to enforce the required assertions.

>>> for name, value in bound_values.arguments.items():
... if name in bound_types.arguments:
... if not isinstance(value, bound_types.arguments[name]):
... raise TypeError()
...
>>>

A somewhat subtle aspect of the solution is that the assertions do not get applied to
unsupplied arguments with default values. For example, this code works, even though
the default value of items is of the “wrong” type:

>>> @typeassert(int, list)
... def bar(x, items=None):
... if items is None:
... items = []
... items.append(x)
... return items
>>> bar(2)
[2]
>>> bar(2,3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "contract.py", line 33, in wrapper
TypeError: Argument items must be <class 'list'>
>>> bar(4, [1, 2, 3])
[1, 2, 3, 4]
>>>

A final point of design discussion might be the use of decorator arguments versus func‐
tion annotations. For example, why not write the decorator to look at annotations like
this?

344 | Chapter 9: Metaprogramming

@typeassert
def spam(x:int, y, z:int = 42):
 print(x,y,z)

One possible reason for not using annotations is that each argument to a function can
only have a single annotation assigned. Thus, if the annotations are used for type as‐
sertions, they can’t really be used for anything else. Likewise, the @typeassert decorator
won’t work with functions that use annotations for a different purpose. By using deco‐
rator arguments, as shown in the solution, the decorator becomes a lot more general
purpose and can be used with any function whatsoever—even functions that use
annotations.

More information about function signature objects can be found in PEP 362, as well as
the documentation for the inspect module. Recipe 9.16 also has an additional example.

9.8. Defining Decorators As Part of a Class
Problem
You want to define a decorator inside a class definition and apply it to other functions
or methods.

Solution
Defining a decorator inside a class is straightforward, but you first need to sort out the
manner in which the decorator will be applied. Specifically, whether it is applied as an
instance or a class method. Here is an example that illustrates the difference:

from functools import wraps

class A:
 # Decorator as an instance method
 def decorator1(self, func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 print('Decorator 1')
 return func(*args, **kwargs)
 return wrapper

 # Decorator as a class method
 @classmethod
 def decorator2(cls, func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 print('Decorator 2')
 return func(*args, **kwargs)
 return wrapper

Here is an example of how the two decorators would be applied:

9.8. Defining Decorators As Part of a Class | 345

http://www.python.org/dev/peps/pep-0362
http://docs.python.org/3/library/inspect.html

As an instance method
a = A()

@a.decorator1
def spam():
 pass

As a class method
@A.decorator2
def grok():
 pass

If you look carefully, you’ll notice that one is applied from an instance a and the other
is applied from the class A.

Discussion
Defining decorators in a class might look odd at first glance, but there are examples of
this in the standard library. In particular, the built-in @property decorator is actually a
class with getter(), setter(), and deleter() methods that each act as a decorator.
For example:

class Person:
 # Create a property instance
 first_name = property()

 # Apply decorator methods
 @first_name.getter
 def first_name(self):
 return self._first_name

 @first_name.setter
 def first_name(self, value):
 if not isinstance(value, str):
 raise TypeError('Expected a string')
 self._first_name = value

The key reason why it’s defined in this way is that the various decorator methods are
manipulating state on the associated property instance. So, if you ever had a problem
where decorators needed to record or combine information behind the scenes, it’s a
sensible approach.

A common confusion when writing decorators in classes is getting tripped up by the
proper use of the extra self or cls arguments in the decorator code itself. Although
the outermost decorator function, such as decorator1() or decorator2(), needs to
provide a self or cls argument (since they’re part of a class), the wrapper function
created inside doesn’t generally need to include an extra argument. This is why the
wrapper() function created in both decorators doesn’t include a self argument. The
only time you would ever need this argument is in situations where you actually needed

346 | Chapter 9: Metaprogramming

to access parts of an instance in the wrapper. Otherwise, you just don’t have to worry
about it.

A final subtle facet of having decorators defined in a class concerns their potential use
with inheritance. For example, suppose you want to apply one of the decorators defined
in class A to methods defined in a subclass B. To do that, you would need to write code
like this:

class B(A):
 @A.decorator2
 def bar(self):
 pass

In particular, the decorator in question has to be defined as a class method and you have
to explicitly use the name of the superclass A when applying it. You can’t use a name
such as @B.decorator2, because at the time of method definition, class B has not yet
been created.

9.9. Defining Decorators As Classes
Problem
You want to wrap functions with a decorator, but the result is going to be a callable
instance. You need your decorator to work both inside and outside class definitions.

Solution
To define a decorator as an instance, you need to make sure it implements the
__call__() and __get__() methods. For example, this code defines a class that puts a
simple profiling layer around another function:

import types
from functools import wraps

class Profiled:
 def __init__(self, func):
 wraps(func)(self)
 self.ncalls = 0

 def __call__(self, *args, **kwargs):
 self.ncalls += 1
 return self.__wrapped__(*args, **kwargs)

 def __get__(self, instance, cls):
 if instance is None:
 return self
 else:
 return types.MethodType(self, instance)

9.9. Defining Decorators As Classes | 347

To use this class, you use it like a normal decorator, either inside or outside of a class:

@Profiled
def add(x, y):
 return x + y

class Spam:
 @Profiled
 def bar(self, x):
 print(self, x)

Here is an interactive session that shows how these functions work:

>>> add(2, 3)
5
>>> add(4, 5)
9
>>> add.ncalls
2
>>> s = Spam()
>>> s.bar(1)
<__main__.Spam object at 0x10069e9d0> 1
>>> s.bar(2)
<__main__.Spam object at 0x10069e9d0> 2
>>> s.bar(3)
<__main__.Spam object at 0x10069e9d0> 3
>>> Spam.bar.ncalls
3

Discussion
Defining a decorator as a class is usually straightforward. However, there are some rather
subtle details that deserve more explanation, especially if you plan to apply the decorator
to instance methods.

First, the use of the functools.wraps() function serves the same purpose here as it
does in normal decorators—namely to copy important metadata from the wrapped
function to the callable instance.

Second, it is common to overlook the __get__() method shown in the solution. If you
omit the __get__() and keep all of the other code the same, you’ll find that bizarre
things happen when you try to invoke decorated instance methods. For example:

>>> s = Spam()
>>> s.bar(3)
Traceback (most recent call last):
...
TypeError: spam() missing 1 required positional argument: 'x'

The reason it breaks is that whenever functions implementing methods are looked up
in a class, their __get__() method is invoked as part of the descriptor protocol, which

348 | Chapter 9: Metaprogramming

is described in Recipe 8.9. In this case, the purpose of __get__() is to create a bound
method object (which ultimately supplies the self argument to the method). Here is
an example that illustrates the underlying mechanics:

>>> s = Spam()
>>> def grok(self, x):
... pass
...
>>> grok.__get__(s, Spam)
<bound method Spam.grok of <__main__.Spam object at 0x100671e90>>
>>>

In this recipe, the __get__() method is there to make sure bound method objects get
created properly. type.MethodType() creates a bound method manually for use here.
Bound methods only get created if an instance is being used. If the method is accessed
on a class, the instance argument to __get__() is set to None and the Profiled instance
itself is just returned. This makes it possible for someone to extract its ncalls attribute,
as shown.

If you want to avoid some of this of this mess, you might consider an alternative for‐
mulation of the decorator using closures and nonlocal variables, as described in
Recipe 9.5. For example:

import types
from functools import wraps

def profiled(func):
 ncalls = 0
 @wraps(func)
 def wrapper(*args, **kwargs):
 nonlocal ncalls
 ncalls += 1
 return func(*args, **kwargs)
 wrapper.ncalls = lambda: ncalls
 return wrapper

Example
@profiled
def add(x, y):
 return x + y

This example almost works in exactly the same way except that access to ncalls is now
provided through a function attached as a function attribute. For example:

>>> add(2, 3)
5
>>> add(4, 5)
9
>>> add.ncalls()
2
>>>

9.9. Defining Decorators As Classes | 349

9.10. Applying Decorators to Class and Static Methods
Problem
You want to apply a decorator to a class or static method.

Solution
Applying decorators to class and static methods is straightforward, but make sure that
your decorators are applied before @classmethod or @staticmethod. For example:

import time
from functools import wraps

A simple decorator
def timethis(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 start = time.time()
 r = func(*args, **kwargs)
 end = time.time()
 print(end-start)
 return r
 return wrapper

Class illustrating application of the decorator to different kinds of methods
class Spam:
 @timethis
 def instance_method(self, n):
 print(self, n)
 while n > 0:
 n -= 1

 @classmethod
 @timethis
 def class_method(cls, n):
 print(cls, n)
 while n > 0:
 n -= 1

 @staticmethod
 @timethis
 def static_method(n):
 print(n)
 while n > 0:
 n -= 1

The resulting class and static methods should operate normally, but have the extra
timing:

350 | Chapter 9: Metaprogramming

>>> s = Spam()
>>> s.instance_method(1000000)
<__main__.Spam object at 0x1006a6050> 1000000
0.11817407608032227
>>> Spam.class_method(1000000)
<class '__main__.Spam'> 1000000
0.11334395408630371
>>> Spam.static_method(1000000)
1000000
0.11740279197692871
>>>

Discussion
If you get the order of decorators wrong, you’ll get an error. For example, if you use the
following:

class Spam:
 ...
 @timethis
 @staticmethod
 def static_method(n):
 print(n)
 while n > 0:
 n -= 1

Then the static method will crash:

>>> Spam.static_method(1000000)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "timethis.py", line 6, in wrapper
 start = time.time()
TypeError: 'staticmethod' object is not callable
>>>

The problem here is that @classmethod and @staticmethod don’t actually create objects
that are directly callable. Instead, they create special descriptor objects, as described in
Recipe 8.9. Thus, if you try to use them like functions in another decorator, the decorator
will crash. Making sure that these decorators appear first in the decorator list fixes the
problem.

One situation where this recipe is of critical importance is in defining class and static
methods in abstract base classes, as described in Recipe 8.12. For example, if you want
to define an abstract class method, you can use this code:

from abc import ABCMeta, abstractmethod

class A(metaclass=ABCMeta):
 @classmethod
 @abstractmethod

9.10. Applying Decorators to Class and Static Methods | 351

 def method(cls):
 pass

In this code, the order of @classmethod and @abstractmethod matters. If you flip the
two decorators around, everything breaks.

9.11. Writing Decorators That Add Arguments to Wrapped
Functions
Problem
You want to write a decorator that adds an extra argument to the calling signature of
the wrapped function. However, the added argument can’t interfere with the existing
calling conventions of the function.

Solution
Extra arguments can be injected into the calling signature using keyword-only argu‐
ments. Consider the following decorator:

from functools import wraps

def optional_debug(func):
 @wraps(func)
 def wrapper(*args, debug=False, **kwargs):
 if debug:
 print('Calling', func.__name__)
 return func(*args, **kwargs)
 return wrapper

Here is an example of how the decorator works:

>>> @optional_debug
... def spam(a,b,c):
... print(a,b,c)
...
>>> spam(1,2,3)
1 2 3
>>> spam(1,2,3, debug=True)
Calling spam
1 2 3
>>>

Discussion
Adding arguments to the signature of wrapped functions is not the most common ex‐
ample of using decorators. However, it might be a useful technique in avoiding certain
kinds of code replication patterns. For example, if you have code like this:

352 | Chapter 9: Metaprogramming

def a(x, debug=False):
 if debug:
 print('Calling a')
 ...

def b(x, y, z, debug=False):
 if debug:
 print('Calling b')
 ...

def c(x, y, debug=False):
 if debug:
 print('Calling c')
 ...

You can refactor it into the following:

@optional_debug
def a(x):
 ...

@optional_debug
def b(x, y, z):
 ...

@optional_debug
def c(x, y):
 ...

The implementation of this recipe relies on the fact that keyword-only arguments are
easy to add to functions that also accept *args and **kwargs parameters. By using a
keyword-only argument, it gets singled out as a special case and removed from subse‐
quent calls that only use the remaining positional and keyword arguments.

One tricky part here concerns a potential name clash between the added argument and
the arguments of the function being wrapped. For example, if the @optional_debug
decorator was applied to a function that already had a debug argument, then it would
break. If that’s a concern, an extra check could be added:

from functools import wraps
import inspect

def optional_debug(func):
 if 'debug' in inspect.getargspec(func).args:
 raise TypeError('debug argument already defined')

 @wraps(func)
 def wrapper(*args, debug=False, **kwargs):
 if debug:
 print('Calling', func.__name__)
 return func(*args, **kwargs)
 return wrapper

9.11. Writing Decorators That Add Arguments to Wrapped Functions | 353

A final refinement to this recipe concerns the proper management of function signa‐
tures. An astute programmer will realize that the signature of wrapped functions is
wrong. For example:

>>> @optional_debug
... def add(x,y):
... return x+y
...
>>> import inspect
>>> print(inspect.signature(add))
(x, y)
>>>

This can be fixed by making the following modification:

from functools import wraps
import inspect

def optional_debug(func):
 if 'debug' in inspect.getargspec(func).args:
 raise TypeError('debug argument already defined')

 @wraps(func)
 def wrapper(*args, debug=False, **kwargs):
 if debug:
 print('Calling', func.__name__)
 return func(*args, **kwargs)

 sig = inspect.signature(func)
 parms = list(sig.parameters.values())
 parms.append(inspect.Parameter('debug',
 inspect.Parameter.KEYWORD_ONLY,
 default=False))
 wrapper.__signature__ = sig.replace(parameters=parms)
 return wrapper

With this change, the signature of the wrapper will now correctly reflect the presence
of the debug argument. For example:

>>> @optional_debug
... def add(x,y):
... return x+y
...
>>> print(inspect.signature(add))
(x, y, *, debug=False)
>>> add(2,3)
5
>>>

See Recipe 9.16 for more information about function signatures.

354 | Chapter 9: Metaprogramming

9.12. Using Decorators to Patch Class Definitions
Problem
You want to inspect or rewrite portions of a class definition to alter its behavior, but
without using inheritance or metaclasses.

Solution
This might be a perfect use for a class decorator. For example, here is a class decorator
that rewrites the __getattribute__ special method to perform logging.

def log_getattribute(cls):
 # Get the original implementation
 orig_getattribute = cls.__getattribute__

 # Make a new definition
 def new_getattribute(self, name):
 print('getting:', name)
 return orig_getattribute(self, name)

 # Attach to the class and return
 cls.__getattribute__ = new_getattribute
 return cls

Example use
@log_getattribute
class A:
 def __init__(self,x):
 self.x = x
 def spam(self):
 pass

Here is what happens if you try to use the class in the solution:

>>> a = A(42)
>>> a.x
getting: x
42
>>> a.spam()
getting: spam
>>>

Discussion
Class decorators can often be used as a straightforward alternative to other more ad‐
vanced techniques involving mixins or metaclasses. For example, an alternative imple‐
mentation of the solution might involve inheritance, as in the following:

9.12. Using Decorators to Patch Class Definitions | 355

class LoggedGetattribute:
 def __getattribute__(self, name):
 print('getting:', name)
 return super().__getattribute__(name)

Example:
class A(LoggedGetattribute):
 def __init__(self,x):
 self.x = x
 def spam(self):
 pass

This works, but to understand it, you have to have some awareness of the method res‐
olution order, super(), and other aspects of inheritance, as described in Recipe 8.7. In
some sense, the class decorator solution is much more direct in how it operates, and it
doesn’t introduce new dependencies into the inheritance hierarchy. As it turns out, it’s
also just a bit faster, due to not relying on the super() function.

If you are applying multiple class decorators to a class, the application order might
matter. For example, a decorator that replaces a method with an entirely new imple‐
mentation would probably need to be applied before a decorator that simply wraps an
existing method with some extra logic.

See Recipe 8.13 for another example of class decorators in action.

9.13. Using a Metaclass to Control Instance Creation
Problem
You want to change the way in which instances are created in order to implement sin‐
gletons, caching, or other similar features.

Solution
As Python programmers know, if you define a class, you call it like a function to create
instances. For example:

class Spam:
 def __init__(self, name):
 self.name = name

a = Spam('Guido')
b = Spam('Diana')

If you want to customize this step, you can do it by defining a metaclass and reimple‐
menting its __call__() method in some way. To illustrate, suppose that you didn’t want
anyone creating instances at all:

356 | Chapter 9: Metaprogramming

class NoInstances(type):
 def __call__(self, *args, **kwargs):
 raise TypeError("Can't instantiate directly")

Example
class Spam(metaclass=NoInstances):
 @staticmethod
 def grok(x):
 print('Spam.grok')

In this case, users can call the defined static method, but it’s impossible to create an
instance in the normal way. For example:

>>> Spam.grok(42)
Spam.grok
>>> s = Spam()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "example1.py", line 7, in __call__
 raise TypeError("Can't instantiate directly")
TypeError: Can't instantiate directly
>>>

Now, suppose you want to implement the singleton pattern (i.e., a class where only one
instance is ever created). That is also relatively straightforward, as shown here:

class Singleton(type):
 def __init__(self, *args, **kwargs):
 self.__instance = None
 super().__init__(*args, **kwargs)

 def __call__(self, *args, **kwargs):
 if self.__instance is None:
 self.__instance = super().__call__(*args, **kwargs)
 return self.__instance
 else:
 return self.__instance

Example
class Spam(metaclass=Singleton):
 def __init__(self):
 print('Creating Spam')

In this case, only one instance ever gets created. For example:

>>> a = Spam()
Creating Spam
>>> b = Spam()
>>> a is b
True
>>> c = Spam()
>>> a is c
True
>>>

9.13. Using a Metaclass to Control Instance Creation | 357

Finally, suppose you want to create cached instances, as described in Recipe 8.25. Here’s
a metaclass that implements it:

import weakref

class Cached(type):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.__cache = weakref.WeakValueDictionary()

 def __call__(self, *args):
 if args in self.__cache:
 return self.__cache[args]
 else:
 obj = super().__call__(*args)
 self.__cache[args] = obj
 return obj

Example
class Spam(metaclass=Cached):
 def __init__(self, name):
 print('Creating Spam({!r})'.format(name))
 self.name = name

Here’s an example showing the behavior of this class:

>>> a = Spam('Guido')
Creating Spam('Guido')
>>> b = Spam('Diana')
Creating Spam('Diana')
>>> c = Spam('Guido') # Cached
>>> a is b
False
>>> a is c # Cached value returned
True
>>>

Discussion
Using a metaclass to implement various instance creation patterns can often be a much
more elegant approach than other solutions not involving metaclasses. For example, if
you didn’t use a metaclass, you might have to hide the classes behind some kind of extra
factory function. For example, to get a singleton, you might use a hack such as the
following:

class _Spam:
 def __init__(self):
 print('Creating Spam')

_spam_instance = None
def Spam():
 global _spam_instance

358 | Chapter 9: Metaprogramming

 if _spam_instance is not None:
 return _spam_instance
 else:
 _spam_instance = _Spam()
 return _spam_instance

Although the solution involving metaclasses involves a much more advanced concept,
the resulting code feels cleaner and less hacked together.

See Recipe 8.25 for more information on creating cached instances, weak references,
and other details.

9.14. Capturing Class Attribute Definition Order
Problem
You want to automatically record the order in which attributes and methods are defined
inside a class body so that you can use it in various operations (e.g., serializing, mapping
to databases, etc.).

Solution
Capturing information about the body of class definition is easily accomplished through
the use of a metaclass. Here is an example of a metaclass that uses an OrderedDict to
capture definition order of descriptors:

from collections import OrderedDict

A set of descriptors for various types
class Typed:
 _expected_type = type(None)
 def __init__(self, name=None):
 self._name = name

 def __set__(self, instance, value):
 if not isinstance(value, self._expected_type):
 raise TypeError('Expected ' + str(self._expected_type))
 instance.__dict__[self._name] = value

class Integer(Typed):
 _expected_type = int

class Float(Typed):
 _expected_type = float

class String(Typed):
 _expected_type = str

Metaclass that uses an OrderedDict for class body

9.14. Capturing Class Attribute Definition Order | 359

class OrderedMeta(type):
 def __new__(cls, clsname, bases, clsdict):
 d = dict(clsdict)
 order = []
 for name, value in clsdict.items():
 if isinstance(value, Typed):
 value._name = name
 order.append(name)
 d['_order'] = order
 return type.__new__(cls, clsname, bases, d)

 @classmethod
 def __prepare__(cls, clsname, bases):
 return OrderedDict()

In this metaclass, the definition order of descriptors is captured by using an Ordered
Dict during the execution of the class body. The resulting order of names is then ex‐
tracted from the dictionary and stored into a class attribute _order. This can then be
used by methods of the class in various ways. For example, here is a simple class that
uses the ordering to implement a method for serializing the instance data as a line of
CSV data:

class Structure(metaclass=OrderedMeta):
 def as_csv(self):
 return ','.join(str(getattr(self,name)) for name in self._order)

Example use
class Stock(Structure):
 name = String()
 shares = Integer()
 price = Float()
 def __init__(self, name, shares, price):
 self.name = name
 self.shares = shares
 self.price = price

Here is an interactive session illustrating the use of the Stock class in the example:

>>> s = Stock('GOOG',100,490.1)
>>> s.name
'GOOG'
>>> s.as_csv()
'GOOG,100,490.1'
>>> t = Stock('AAPL','a lot', 610.23)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "dupmethod.py", line 34, in __init__
TypeError: shares expects <class 'int'>
>>>

360 | Chapter 9: Metaprogramming

Discussion
The entire key to this recipe is the __prepare__() method, which is defined in the
OrderedMeta metaclass. This method is invoked immediately at the start of a class def‐
inition with the class name and base classes. It must then return a mapping object to
use when processing the class body. By returning an OrderedDict instead of a normal
dictionary, the resulting definition order is easily captured.

It is possible to extend this functionality even further if you are willing to make your
own dictionary-like objects. For example, consider this variant of the solution that re‐
jects duplicate definitions:

from collections import OrderedDict

class NoDupOrderedDict(OrderedDict):
 def __init__(self, clsname):
 self.clsname = clsname
 super().__init__()
 def __setitem__(self, name, value):
 if name in self:
 raise TypeError('{} already defined in {}'.format(name, self.clsname))
 super().__setitem__(name, value)

class OrderedMeta(type):
 def __new__(cls, clsname, bases, clsdict):
 d = dict(clsdict)
 d['_order'] = [name for name in clsdict if name[0] != '_']
 return type.__new__(cls, clsname, bases, d)

 @classmethod
 def __prepare__(cls, clsname, bases):
 return NoDupOrderedDict(clsname)

Here’s what happens if you use this metaclass and make a class with duplicate entries:

>>> class A(metaclass=OrderedMeta):
... def spam(self):
... pass
... def spam(self):
... pass
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 4, in A
 File "dupmethod2.py", line 25, in __setitem__
 (name, self.clsname))
TypeError: spam already defined in A
>>>

A final important part of this recipe concerns the treatment of the modified dictionary
in the metaclass __new__() method. Even though the class was defined using an alter‐

9.14. Capturing Class Attribute Definition Order | 361

native dictionary, you still have to convert this dictionary to a proper dict instance
when making the final class object. This is the purpose of the d = dict(clsdict)
statement.

Being able to capture definition order is a subtle but important feature for certain kinds
of applications. For instance, in an object relational mapper, classes might be written in
a manner similar to that shown in the example:

class Stock(Model):
 name = String()
 shares = Integer()
 price = Float()

Underneath the covers, the code might want to capture the definition order to map
objects to tuples or rows in a database table (e.g., similar to the functionality of the
as_csv() method in the example). The solution shown is very straightforward and often
simpler than alternative approaches (which typically involve maintaining hidden coun‐
ters within the descriptor classes).

9.15. Defining a Metaclass That Takes Optional Arguments
Problem
You want to define a metaclass that allows class definitions to supply optional argu‐
ments, possibly to control or configure aspects of processing during type creation.

Solution
When defining classes, Python allows a metaclass to be specified using the metaclass
keyword argument in the class statement. For example, with abstract base classes:

from abc import ABCMeta, abstractmethod

class IStream(metaclass=ABCMeta):
 @abstractmethod
 def read(self, maxsize=None):
 pass

 @abstractmethod
 def write(self, data):
 pass

However, in custom metaclasses, additional keyword arguments can be supplied, like
this:

class Spam(metaclass=MyMeta, debug=True, synchronize=True):
 ...

362 | Chapter 9: Metaprogramming

To support such keyword arguments in a metaclass, make sure you define them on the
__prepare__(), __new__(), and __init__() methods using keyword-only arguments,
like this:

class MyMeta(type):
 # Optional
 @classmethod
 def __prepare__(cls, name, bases, *, debug=False, synchronize=False):
 # Custom processing
 ...
 return super().__prepare__(name, bases)

 # Required
 def __new__(cls, name, bases, ns, *, debug=False, synchronize=False):
 # Custom processing
 ...
 return super().__new__(cls, name, bases, ns)

 # Required
 def __init__(self, name, bases, ns, *, debug=False, synchronize=False):
 # Custom processing
 ...
 super().__init__(name, bases, ns)

Discussion
Adding optional keyword arguments to a metaclass requires that you understand all of
the steps involved in class creation, because the extra arguments are passed to every
method involved. The __prepare__() method is called first and used to create the class
namespace prior to the body of any class definition being processed. Normally, this
method simply returns a dictionary or other mapping object. The __new__() method
is used to instantiate the resulting type object. It is called after the class body has been
fully executed. The __init__() method is called last and used to perform any additional
initialization steps.

When writing metaclasses, it is somewhat common to only define a __new__() or
__init__() method, but not both. However, if extra keyword arguments are going to
be accepted, then both methods must be provided and given compatible signatures. The
default __prepare__() method accepts any set of keyword arguments, but ignores them.
You only need to define it yourself if the extra arguments would somehow affect man‐
agement of the class namespace creation.

The use of keyword-only arguments in this recipe reflects the fact that such arguments
will only be supplied by keyword during class creation.

The specification of keyword arguments to configure a metaclass might be viewed as
an alternative to using class variables for a similar purpose. For example:

9.15. Defining a Metaclass That Takes Optional Arguments | 363

class Spam(metaclass=MyMeta):
 debug = True
 synchronize = True
 ...

The advantage to supplying such parameters as an argument is that they don’t pollute
the class namespace with extra names that only pertain to class creation and not the
subsequent execution of statements in the class. In addition, they are available to the
__prepare__() method, which runs prior to processing any statements in the class body.
Class variables, on the other hand, would only be accessible in the __new__() and
__init__() methods of a metaclass.

9.16. Enforcing an Argument Signature on *args and
**kwargs
Problem
You’ve written a function or method that uses *args and **kwargs, so that it can be
general purpose, but you would also like to check the passed arguments to see if they
match a specific function calling signature.

Solution
For any problem where you want to manipulate function calling signatures, you should
use the signature features found in the inspect module. Two classes, Signature and
Parameter, are of particular interest here. Here is an interactive example of creating a
function signature:

>>> from inspect import Signature, Parameter
>>> # Make a signature for a func(x, y=42, *, z=None)
>>> parms = [Parameter('x', Parameter.POSITIONAL_OR_KEYWORD),
... Parameter('y', Parameter.POSITIONAL_OR_KEYWORD, default=42),
... Parameter('z', Parameter.KEYWORD_ONLY, default=None)]
>>> sig = Signature(parms)
>>> print(sig)
(x, y=42, *, z=None)
>>>

Once you have a signature object, you can easily bind it to *args and **kwargs using
the signature’s bind() method, as shown in this simple example:

>>> def func(*args, **kwargs):
... bound_values = sig.bind(*args, **kwargs)
... for name, value in bound_values.arguments.items():
... print(name,value)
...
>>> # Try various examples
>>> func(1, 2, z=3)

364 | Chapter 9: Metaprogramming

x 1
y 2
z 3
>>> func(1)
x 1
>>> func(1, z=3)
x 1
z 3
>>> func(y=2, x=1)
x 1
y 2
>>> func(1, 2, 3, 4)
Traceback (most recent call last):
...
 File "/usr/local/lib/python3.3/inspect.py", line 1972, in _bind
 raise TypeError('too many positional arguments')
TypeError: too many positional arguments
>>> func(y=2)
Traceback (most recent call last):
...
 File "/usr/local/lib/python3.3/inspect.py", line 1961, in _bind
 raise TypeError(msg) from None
TypeError: 'x' parameter lacking default value
>>> func(1, y=2, x=3)
Traceback (most recent call last):
...
 File "/usr/local/lib/python3.3/inspect.py", line 1985, in _bind
 '{arg!r}'.format(arg=param.name))
TypeError: multiple values for argument 'x'
>>>

As you can see, the binding of a signature to the passed arguments enforces all of the
usual function calling rules concerning required arguments, defaults, duplicates, and
so forth.

Here is a more concrete example of enforcing function signatures. In this code, a base
class has defined an extremely general-purpose version of __init__(), but subclasses
are expected to supply an expected signature.

from inspect import Signature, Parameter

def make_sig(*names):
 parms = [Parameter(name, Parameter.POSITIONAL_OR_KEYWORD)
 for name in names]
 return Signature(parms)

class Structure:
 __signature__ = make_sig()
 def __init__(self, *args, **kwargs):
 bound_values = self.__signature__.bind(*args, **kwargs)
 for name, value in bound_values.arguments.items():
 setattr(self, name, value)

9.16. Enforcing an Argument Signature on *args and **kwargs | 365

Example use
class Stock(Structure):
 __signature__ = make_sig('name', 'shares', 'price')

class Point(Structure):
 __signature__ = make_sig('x', 'y')

Here is an example of how the Stock class works:

>>> import inspect
>>> print(inspect.signature(Stock))
(name, shares, price)
>>> s1 = Stock('ACME', 100, 490.1)
>>> s2 = Stock('ACME', 100)
Traceback (most recent call last):
...
TypeError: 'price' parameter lacking default value
>>> s3 = Stock('ACME', 100, 490.1, shares=50)
Traceback (most recent call last):
...
TypeError: multiple values for argument 'shares'
>>>

Discussion
The use of functions involving *args and **kwargs is very common when trying to
make general-purpose libraries, write decorators or implement proxies. However, one
downside of such functions is that if you want to implement your own argument check‐
ing, it can quickly become an unwieldy mess. As an example, see Recipe 8.11. The use
of a signature object simplifies this.

In the last example of the solution, it might make sense to create signature objects
through the use of a custom metaclass. Here is an alternative implementation that shows
how to do this:

from inspect import Signature, Parameter

def make_sig(*names):
 parms = [Parameter(name, Parameter.POSITIONAL_OR_KEYWORD)
 for name in names]
 return Signature(parms)

class StructureMeta(type):
 def __new__(cls, clsname, bases, clsdict):
 clsdict['__signature__'] = make_sig(*clsdict.get('_fields',[]))
 return super().__new__(cls, clsname, bases, clsdict)

class Structure(metaclass=StructureMeta):
 _fields = []
 def __init__(self, *args, **kwargs):

366 | Chapter 9: Metaprogramming

 bound_values = self.__signature__.bind(*args, **kwargs)
 for name, value in bound_values.arguments.items():
 setattr(self, name, value)

Example
class Stock(Structure):
 _fields = ['name', 'shares', 'price']

class Point(Structure):
 _fields = ['x', 'y']

When defining custom signatures, it is often useful to store the signature in a special
attribute __signature__, as shown. If you do this, code that uses the inspect module
to perform introspection will see the signature and report it as the calling convention.
For example:

>>> import inspect
>>> print(inspect.signature(Stock))
(name, shares, price)
>>> print(inspect.signature(Point))
(x, y)
>>>

9.17. Enforcing Coding Conventions in Classes
Problem
Your program consists of a large class hierarchy and you would like to enforce certain
kinds of coding conventions (or perform diagnostics) to help maintain programmer
sanity.

Solution
If you want to monitor the definition of classes, you can often do it by defining a
metaclass. A basic metaclass is usually defined by inheriting from type and redefining
its __new__() method or __init__() method. For example:

class MyMeta(type):
 def __new__(self, clsname, bases, clsdict):
 # clsname is name of class being defined
 # bases is tuple of base classes
 # clsdict is class dictionary
 return super().__new__(cls, clsname, bases, clsdict)

Alternatively, if __init__() is defined:

class MyMeta(type):
 def __init__(self, clsname, bases, clsdict):
 super().__init__(clsname, bases, clsdict)
 # clsname is name of class being defined

9.17. Enforcing Coding Conventions in Classes | 367

 # bases is tuple of base classes
 # clsdict is class dictionary

To use a metaclass, you would generally incorporate it into a top-level base class from
which other objects inherit. For example:

class Root(metaclass=MyMeta):
 pass

class A(Root):
 pass

class B(Root):
 pass

A key feature of a metaclass is that it allows you to examine the contents of a class at the
time of definition. Inside the redefined __init__() method, you are free to inspect the
class dictionary, base classes, and more. Moreover, once a metaclass has been specified
for a class, it gets inherited by all of the subclasses. Thus, a sneaky framework builder
can specify a metaclass for one of the top-level classes in a large hierarchy and capture
the definition of all classes under it.

As a concrete albeit whimsical example, here is a metaclass that rejects any class defi‐
nition containing methods with mixed-case names (perhaps as a means for annoying
Java programmers):

class NoMixedCaseMeta(type):
 def __new__(cls, clsname, bases, clsdict):
 for name in clsdict:
 if name.lower() != name:
 raise TypeError('Bad attribute name: ' + name)
 return super().__new__(cls, clsname, bases, clsdict)

class Root(metaclass=NoMixedCaseMeta):
 pass

class A(Root):
 def foo_bar(self): # Ok
 pass

class B(Root):
 def fooBar(self): # TypeError
 pass

As a more advanced and useful example, here is a metaclass that checks the definition
of redefined methods to make sure they have the same calling signature as the original
method in the superclass.

from inspect import signature
import logging

class MatchSignaturesMeta(type):

368 | Chapter 9: Metaprogramming

 def __init__(self, clsname, bases, clsdict):
 super().__init__(clsname, bases, clsdict)
 sup = super(self, self)
 for name, value in clsdict.items():
 if name.startswith('_') or not callable(value):
 continue
 # Get the previous definition (if any) and compare the signatures
 prev_dfn = getattr(sup,name,None)
 if prev_dfn:
 prev_sig = signature(prev_dfn)
 val_sig = signature(value)
 if prev_sig != val_sig:
 logging.warning('Signature mismatch in %s. %s != %s',
 value.__qualname__, prev_sig, val_sig)

Example
class Root(metaclass=MatchSignaturesMeta):
 pass

class A(Root):
 def foo(self, x, y):
 pass

 def spam(self, x, *, z):
 pass

Class with redefined methods, but slightly different signatures
class B(A):
 def foo(self, a, b):
 pass

 def spam(self,x,z):
 pass

If you run this code, you will get output such as the following:

 WARNING:root:Signature mismatch in B.spam. (self, x, *, z) != (self, x, z)
 WARNING:root:Signature mismatch in B.foo. (self, x, y) != (self, a, b)

Such warnings might be useful in catching subtle program bugs. For example, code that
relies on keyword argument passing to a method will break if a subclass changes the
argument names.

Discussion
In large object-oriented programs, it can sometimes be useful to put class definitions
under the control of a metaclass. The metaclass can observe class definitions and be
used to alert programmers to potential problems that might go unnoticed (e.g., using
slightly incompatible method signatures).

9.17. Enforcing Coding Conventions in Classes | 369

One might argue that such errors would be better caught by program analysis tools or
IDEs. To be sure, such tools are useful. However, if you’re creating a framework or library
that’s going to be used by others, you often don’t have any control over the rigor of their
development practices. Thus, for certain kinds of applications, it might make sense to
put a bit of extra checking in a metaclass if such checking would result in a better user
experience.

The choice of redefining __new__() or __init__() in a metaclass depends on how you
want to work with the resulting class. __new__() is invoked prior to class creation and
is typically used when a metaclass wants to alter the class definition in some way (by
changing the contents of the class dictionary). The __init__() method is invoked after
a class has been created, and is useful if you want to write code that works with the fully
formed class object. In the last example, this is essential since it is using the super()
function to search for prior definitions. This only works once the class instance has been
created and the underlying method resolution order has been set.

The last example also illustrates the use of Python’s function signature objects. Essen‐
tially, the metaclass takes each callable definition in a class, searches for a prior definition
(if any), and then simply compares their calling signatures using inspect.signature().

Last, but not least, the line of code that uses super(self, self) is not a typo. When
working with a metaclass, it’s important to realize that the self is actually a class object.
So, that statement is actually being used to find definitions located further up the class
hierarchy that make up the parents of self.

9.18. Defining Classes Programmatically
Problem
You’re writing code that ultimately needs to create a new class object. You’ve thought
about emitting emit class source code to a string and using a function such as exec()
to evaluate it, but you’d prefer a more elegant solution.

Solution
You can use the function types.new_class() to instantiate new class objects. All you
need to do is provide the name of the class, tuple of parent classes, keyword arguments,
and a callback that populates the class dictionary with members. For example:

stock.py
Example of making a class manually from parts

Methods
def __init__(self, name, shares, price):
 self.name = name

370 | Chapter 9: Metaprogramming

 self.shares = shares
 self.price = price

def cost(self):
 return self.shares * self.price

cls_dict = {
 '__init__' : __init__,
 'cost' : cost,
}

Make a class
import types

Stock = types.new_class('Stock', (), {}, lambda ns: ns.update(cls_dict))
Stock.__module__ = __name__

This makes a normal class object that works just like you expect:

>>> s = Stock('ACME', 50, 91.1)
>>> s
<stock.Stock object at 0x1006a9b10>
>>> s.cost()
4555.0
>>>

A subtle facet of the solution is the assignment to Stock.__module__ after the call to
types.new_class(). Whenever a class is defined, its __module__ attribute contains the
name of the module in which it was defined. This name is used to produce the output
made by methods such as __repr__(). It’s also used by various libraries, such as pick
le. Thus, in order for the class you make to be “proper,” you need to make sure this
attribute is set accordingly.

If the class you want to create involves a different metaclass, it would be specified in the
third argument to types.new_class(). For example:

>>> import abc
>>> Stock = types.new_class('Stock', (), {'metaclass': abc.ABCMeta},
... lambda ns: ns.update(cls_dict))
...
>>> Stock.__module__ = __name__
>>> Stock
<class '__main__.Stock'>
>>> type(Stock)
<class 'abc.ABCMeta'>
>>>

The third argument may also contain other keyword arguments. For example, a class
definition like this

class Spam(Base, debug=True, typecheck=False):
 ...

9.18. Defining Classes Programmatically | 371

would translate to a new_class() call similar to this:

Spam = types.new_class('Spam', (Base,),
 {'debug': True, 'typecheck': False},
 lambda ns: ns.update(cls_dict))

The fourth argument to new_class() is the most mysterious, but it is a function that
receives the mapping object being used for the class namespace as input. This is normally
a dictionary, but it’s actually whatever object gets returned by the __prepare__() meth‐
od, as described in Recipe 9.14. This function should add new entries to the namespace
using the update() method (as shown) or other mapping operations.

Discussion
Being able to manufacture new class objects can be useful in certain contexts. One of
the more familiar examples involves the collections.namedtuple() function. For
example:

>>> Stock = collections.namedtuple('Stock', ['name', 'shares', 'price'])
>>> Stock
<class '__main__.Stock'>
>>>

namedtuple() uses exec() instead of the technique shown here. However, here is a
simple variant that creates a class directly:

import operator
import types
import sys

def named_tuple(classname, fieldnames):
 # Populate a dictionary of field property accessors
 cls_dict = { name: property(operator.itemgetter(n))
 for n, name in enumerate(fieldnames) }

 # Make a __new__ function and add to the class dict
 def __new__(cls, *args):
 if len(args) != len(fieldnames):
 raise TypeError('Expected {} arguments'.format(len(fieldnames)))
 return tuple.__new__(cls, args)

 cls_dict['__new__'] = __new__

 # Make the class
 cls = types.new_class(classname, (tuple,), {},
 lambda ns: ns.update(cls_dict))

 # Set the module to that of the caller
 cls.__module__ = sys._getframe(1).f_globals['__name__']
 return cls

372 | Chapter 9: Metaprogramming

The last part of this code uses a so-called “frame hack” involving sys._getframe() to
obtain the module name of the caller. Another example of frame hacking appears in
Recipe 2.15.

The following example shows how the preceding code works:

>>> Point = named_tuple('Point', ['x', 'y'])
>>> Point
<class '__main__.Point'>
>>> p = Point(4, 5)
>>> len(p)
2
>>> p.x
4
>>> p.y
5
>>> p.x = 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>> print('%s %s' % p)
4 5
>>>

One important aspect of the technique used in this recipe is its proper support for
metaclasses. You might be inclined to create a class directly by instantiating a metaclass
directly. For example:

Stock = type('Stock', (), cls_dict)

The problem is that this approach skips certain critical steps, such as invocation of the
metaclass __prepare__() method. By using types.new_class() instead, you ensure
that all of the necessary initialization steps get carried out. For instance, the callback
function that’s given as the fourth argument to types.new_class() receives the map‐
ping object that’s returned by the __prepare__() method.

If you only want to carry out the preparation step, use types.prepare_class(). For
example:

import types

metaclass, kwargs, ns = types.prepare_class('Stock', (), {'metaclass': type})

This finds the appropriate metaclass and invokes its __prepare__() method. The
metaclass, remaining keyword arguments, and prepared namespace are then returned.

For more information, see PEP 3115, as well as the Python documentation.

9.18. Defining Classes Programmatically | 373

http://www.python.org/dev/peps/pep-3115
http://docs.python.org/3/reference/datamodel.html#metaclasses

9.19. Initializing Class Members at Definition Time
Problem
You want to initialize parts of a class definition once at the time a class is defined, not
when instances are created.

Solution
Performing initialization or setup actions at the time of class definition is a classic use
of metaclasses. Essentially, a metaclass is triggered at the point of a definition, at which
point you can perform additional steps.

Here is an example that uses this idea to create classes similar to named tuples from the
collections module:

import operator

class StructTupleMeta(type):
 def __init__(cls, *args, **kwargs):
 super().__init__(*args, **kwargs)
 for n, name in enumerate(cls._fields):
 setattr(cls, name, property(operator.itemgetter(n)))

class StructTuple(tuple, metaclass=StructTupleMeta):
 _fields = []
 def __new__(cls, *args):
 if len(args) != len(cls._fields):
 raise ValueError('{} arguments required'.format(len(cls._fields)))
 return super().__new__(cls,args)

This code allows simple tuple-based data structures to be defined, like this:

class Stock(StructTuple):
 _fields = ['name', 'shares', 'price']

class Point(StructTuple):
 _fields = ['x', 'y']

Here’s how they work:

>>> s = Stock('ACME', 50, 91.1)
>>> s
('ACME', 50, 91.1)
>>> s[0]
'ACME'
>>> s.name
'ACME'
>>> s.shares * s.price
4555.0
>>> s.shares = 23

374 | Chapter 9: Metaprogramming

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>>

Discussion
In this recipe, the StructTupleMeta class takes the listing of attribute names in the
_fields class attribute and turns them into property methods that access a particular
tuple slot. The operator.itemgetter() function creates an accessor function and the
property() function turns it into a property.

The trickiest part of this recipe is knowing when the different initialization steps occur.
The __init__() method in StructTupleMeta is only called once for each class that is
defined. The cls argument is the class that has just been defined. Essentially, the code
is using the _fields class variable to take the newly defined class and add some new
parts to it.

The StructTuple class serves as a common base class for users to inherit from. The
__new__() method in that class is responsible for making new instances. The use of
__new__() here is a bit unusual, but is partly related to the fact that we’re modifying the
calling signature of tuples so that we can create instances with code that uses a normal-
looking calling convention like this:

s = Stock('ACME', 50, 91.1) # OK
s = Stock(('ACME', 50, 91.1)) # Error

Unlike __init__(), the __new__() method gets triggered before an instance is created.
Since tuples are immutable, it’s not possible to make any changes to them once they
have been created. An __init__() function gets triggered too late in the instance cre‐
ation process to do what we want. That’s why __new__() has been defined.

Although this is a short recipe, careful study will reward the reader with a deep insight
about how Python classes are defined, how instances are created, and the points at which
different methods of metaclasses and classes are invoked.

PEP 422 may provide an alternative means for performing the task described in this
recipe. However, as of this writing, it has not been adopted or accepted. Nevertheless,
it might be worth a look in case you’re working with a version of Python newer than
Python 3.3.

9.19. Initializing Class Members at Definition Time | 375

http://www.python.org/dev/peps/pep-0422

9.20. Implementing Multiple Dispatch with Function
Annotations
Problem
You’ve learned about function argument annotations and you have a thought that you
might be able to use them to implement multiple-dispatch (method overloading) based
on types. However, you’re not quite sure what’s involved (or if it’s even a good idea).

Solution
This recipe is based on a simple observation—namely, that since Python allows argu‐
ments to be annotated, perhaps it might be possible to write code like this:

class Spam:
 def bar(self, x:int, y:int):
 print('Bar 1:', x, y)
 def bar(self, s:str, n:int = 0):
 print('Bar 2:', s, n)

s = Spam()
s.bar(2, 3) # Prints Bar 1: 2 3
s.bar('hello') # Prints Bar 2: hello 0

Here is the start of a solution that does just that, using a combination of metaclasses and
descriptors:

multiple.py

import inspect
import types

class MultiMethod:
 '''
 Represents a single multimethod.
 '''
 def __init__(self, name):
 self._methods = {}
 self.__name__ = name

 def register(self, meth):
 '''
 Register a new method as a multimethod
 '''
 sig = inspect.signature(meth)

 # Build a type signature from the method's annotations
 types = []
 for name, parm in sig.parameters.items():
 if name == 'self':

376 | Chapter 9: Metaprogramming

 continue
 if parm.annotation is inspect.Parameter.empty:
 raise TypeError(
 'Argument {} must be annotated with a type'.format(name)
)
 if not isinstance(parm.annotation, type):
 raise TypeError(
 'Argument {} annotation must be a type'.format(name)
)
 if parm.default is not inspect.Parameter.empty:
 self._methods[tuple(types)] = meth
 types.append(parm.annotation)

 self._methods[tuple(types)] = meth

 def __call__(self, *args):
 '''
 Call a method based on type signature of the arguments
 '''
 types = tuple(type(arg) for arg in args[1:])
 meth = self._methods.get(types, None)
 if meth:
 return meth(*args)
 else:
 raise TypeError('No matching method for types {}'.format(types))

 def __get__(self, instance, cls):
 '''
 Descriptor method needed to make calls work in a class
 '''
 if instance is not None:
 return types.MethodType(self, instance)
 else:
 return self

class MultiDict(dict):
 '''
 Special dictionary to build multimethods in a metaclass
 '''
 def __setitem__(self, key, value):
 if key in self:
 # If key already exists, it must be a multimethod or callable
 current_value = self[key]
 if isinstance(current_value, MultiMethod):
 current_value.register(value)
 else:
 mvalue = MultiMethod(key)
 mvalue.register(current_value)
 mvalue.register(value)
 super().__setitem__(key, mvalue)
 else:
 super().__setitem__(key, value)

9.20. Implementing Multiple Dispatch with Function Annotations | 377

class MultipleMeta(type):
 '''
 Metaclass that allows multiple dispatch of methods
 '''
 def __new__(cls, clsname, bases, clsdict):
 return type.__new__(cls, clsname, bases, dict(clsdict))

 @classmethod
 def __prepare__(cls, clsname, bases):
 return MultiDict()

To use this class, you write code like this:

class Spam(metaclass=MultipleMeta):
 def bar(self, x:int, y:int):
 print('Bar 1:', x, y)
 def bar(self, s:str, n:int = 0):
 print('Bar 2:', s, n)

Example: overloaded __init__
import time
class Date(metaclass=MultipleMeta):
 def __init__(self, year: int, month:int, day:int):
 self.year = year
 self.month = month
 self.day = day

 def __init__(self):
 t = time.localtime()
 self.__init__(t.tm_year, t.tm_mon, t.tm_mday)

Here is an interactive session that verifies that it works:

>>> s = Spam()
>>> s.bar(2, 3)
Bar 1: 2 3
>>> s.bar('hello')
Bar 2: hello 0
>>> s.bar('hello', 5)
Bar 2: hello 5
>>> s.bar(2, 'hello')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "multiple.py", line 42, in __call__
 raise TypeError('No matching method for types {}'.format(types))
TypeError: No matching method for types (<class 'int'>, <class 'str'>)

>>> # Overloaded __init__
>>> d = Date(2012, 12, 21)
>>> # Get today's date
>>> e = Date()
>>> e.year
2012

378 | Chapter 9: Metaprogramming

>>> e.month
12
>>> e.day
3
>>>

Discussion
Honestly, there might be too much magic going on in this recipe to make it applicable
to real-world code. However, it does dive into some of the inner workings of metaclasses
and descriptors, and reinforces some of their concepts. Thus, even though you might
not apply this recipe directly, some of its underlying ideas might influence other pro‐
gramming techniques involving metaclasses, descriptors, and function annotations.

The main idea in the implementation is relatively simple. The MutipleMeta metaclass
uses its __prepare__() method to supply a custom class dictionary as an instance of
MultiDict. Unlike a normal dictionary, MultiDict checks to see whether entries already
exist when items are set. If so, the duplicate entries get merged together inside an in‐
stance of MultiMethod.

Instances of MultiMethod collect methods by building a mapping from type signatures
to functions. During construction, function annotations are used to collect these sig‐
natures and build the mapping. This takes place in the MultiMethod.register()
method. One critical part of this mapping is that for multimethods, types must be
specified on all of the arguments or else an error occurs.

To make MultiMethod instances emulate a callable, the __call__() method is imple‐
mented. This method builds a type tuple from all of the arguments except self, looks
up the method in the internal map, and invokes the appropriate method. The __get__()
is required to make MultiMethod instances operate correctly inside class definitions. In
the implementation, it’s being used to create proper bound methods. For example:

>>> b = s.bar
>>> b
<bound method Spam.bar of <__main__.Spam object at 0x1006a46d0>>
>>> b.__self__
<__main__.Spam object at 0x1006a46d0>
>>> b.__func__
<__main__.MultiMethod object at 0x1006a4d50>
>>> b(2, 3)
Bar 1: 2 3
>>> b('hello')
Bar 2: hello 0
>>>

To be sure, there are a lot of moving parts to this recipe. However, it’s all a little unfor‐
tunate considering how many limitations there are. For one, the solution doesn’t work
with keyword arguments: For example:

9.20. Implementing Multiple Dispatch with Function Annotations | 379

>>> s.bar(x=2, y=3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: __call__() got an unexpected keyword argument 'y'

>>> s.bar(s='hello')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: __call__() got an unexpected keyword argument 's'
>>>

There might be some way to add such support, but it would require a completely dif‐
ferent approach to method mapping. The problem is that the keyword arguments don’t
arrive in any kind of particular order. When mixed up with positional arguments, you
simply get a jumbled mess of arguments that you have to somehow sort out in the
__call__() method.

This recipe is also severely limited in its support for inheritance. For example, something
like this doesn’t work:

class A:
 pass

class B(A):
 pass

class C:
 pass

class Spam(metaclass=MultipleMeta):
 def foo(self, x:A):
 print('Foo 1:', x)

 def foo(self, x:C):
 print('Foo 2:', x)

The reason it fails is that the x:A annotation fails to match instances that are subclasses
(such as instances of B). For example:

>>> s = Spam()
>>> a = A()
>>> s.foo(a)
Foo 1: <__main__.A object at 0x1006a5310>
>>> c = C()
>>> s.foo(c)
Foo 2: <__main__.C object at 0x1007a1910>
>>> b = B()
>>> s.foo(b)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "multiple.py", line 44, in __call__
 raise TypeError('No matching method for types {}'.format(types))

380 | Chapter 9: Metaprogramming

TypeError: No matching method for types (<class '__main__.B'>,)
>>>

As an alternative to using metaclasses and annotations, it is possible to implement a
similar recipe using decorators. For example:

import types

class multimethod:
 def __init__(self, func):
 self._methods = {}
 self.__name__ = func.__name__
 self._default = func

 def match(self, *types):
 def register(func):
 ndefaults = len(func.__defaults__) if func.__defaults__ else 0
 for n in range(ndefaults+1):
 self._methods[types[:len(types) - n]] = func
 return self
 return register

 def __call__(self, *args):
 types = tuple(type(arg) for arg in args[1:])
 meth = self._methods.get(types, None)
 if meth:
 return meth(*args)
 else:
 return self._default(*args)

 def __get__(self, instance, cls):
 if instance is not None:
 return types.MethodType(self, instance)
 else:
 return self

To use the decorator version, you would write code like this:

class Spam:
 @multimethod
 def bar(self, *args):
 # Default method called if no match
 raise TypeError('No matching method for bar')

 @bar.match(int, int)
 def bar(self, x, y):
 print('Bar 1:', x, y)

 @bar.match(str, int)
 def bar(self, s, n = 0):
 print('Bar 2:', s, n)

9.20. Implementing Multiple Dispatch with Function Annotations | 381

The decorator solution also suffers the same limitations as the previous implementation
(namely, no support for keyword arguments and broken inheritance).

All things being equal, it’s probably best to stay away from multiple dispatch in general-
purpose code. There are special situations where it might make sense, such as in pro‐
grams that are dispatching methods based on some kind of pattern matching. For ex‐
ample, perhaps the visitor pattern described in Recipe 8.21 could be recast into a class
that used multiple dispatch in some way. However, other than that, it’s usually never a
bad idea to stick with a more simple approach (simply use methods with different
names).

Ideas concerning different ways to implement multiple dispatch have floated around
the Python community for years. As a decent starting point for that discussion, see
Guido van Rossum’s blog post “Five-Minute Multimethods in Python”.

9.21. Avoiding Repetitive Property Methods
Problem
You are writing classes where you are repeatedly having to define property methods that
perform common tasks, such as type checking. You would like to simplify the code so
there is not so much code repetition.

Solution
Consider a simple class where attributes are being wrapped by property methods:

class Person:
 def __init__(self, name ,age):
 self.name = name
 self.age = age

 @property
 def name(self):
 return self._name

 @name.setter
 def name(self, value):
 if not isinstance(value, str):
 raise TypeError('name must be a string')
 self._name = value

 @property
 def age(self):
 return self._age

 @age.setter
 def age(self, value):

382 | Chapter 9: Metaprogramming

http://www.artima.com/weblogs/viewpost.jsp?thread=101605

 if not isinstance(value, int):
 raise TypeError('age must be an int')
 self._age = value

As you can see, a lot of code is being written simply to enforce some type assertions on
attribute values. Whenever you see code like this, you should explore different ways of
simplifying it. One possible approach is to make a function that simply defines the
property for you and returns it. For example:

def typed_property(name, expected_type):
 storage_name = '_' + name

 @property
 def prop(self):
 return getattr(self, storage_name)

 @prop.setter
 def prop(self, value):
 if not isinstance(value, expected_type):
 raise TypeError('{} must be a {}'.format(name, expected_type))
 setattr(self, storage_name, value)
 return prop

Example use
class Person:
 name = typed_property('name', str)
 age = typed_property('age', int)
 def __init__(self, name, age):
 self.name = name
 self.age = age

Discussion
This recipe illustrates an important feature of inner function or closures—namely, their
use in writing code that works a lot like a macro. The typed_property() function in
this example may look a little weird, but it’s really just generating the property code for
you and returning the resulting property object. Thus, when it’s used in a class, it op‐
erates exactly as if the code appearing inside typed_property() was placed into the
class definition itself. Even though the property getter and setter methods are accessing
local variables such as name, expected_type, and storage_name, that is fine—those
values are held behind the scenes in a closure.

This recipe can be tweaked in an interesting manner using the functools.partial()
function. For example, you can do this:

from functools import partial

String = partial(typed_property, expected_type=str)
Integer = partial(typed_property, expected_type=int)

9 21. Avoiding Repetitive Property Methods | 383

Example:
class Person:
 name = String('name')
 age = Integer('age')
 def __init__(self, name, age):
 self.name = name
 self.age = age

Here the code is starting to look a lot like some of the type system descriptor code shown
in Recipe 8.13.

9.22. Defining Context Managers the Easy Way
Problem
You want to implement new kinds of context managers for use with the with statement.

Solution
One of the most straightforward ways to write a new context manager is to use the
@contextmanager decorator in the contextlib module. Here is an example of a context
manager that times the execution of a code block:

import time
from contextlib import contextmanager

@contextmanager
def timethis(label):
 start = time.time()
 try:
 yield
 finally:
 end = time.time()
 print('{}: {}'.format(label, end - start))

Example use
with timethis('counting'):
 n = 10000000
 while n > 0:
 n -= 1

In the timethis() function, all of the code prior to the yield executes as the __en
ter__() method of a context manager. All of the code after the yield executes as the
__exit__() method. If there was an exception, it is raised at the yield statement.

Here is a slightly more advanced context manager that implements a kind of transaction
on a list object:

@contextmanager
def list_transaction(orig_list):

384 | Chapter 9: Metaprogramming

 working = list(orig_list)
 yield working
 orig_list[:] = working

The idea here is that changes made to a list only take effect if an entire code block runs
to completion with no exceptions. Here is an example that illustrates:

>>> items = [1, 2, 3]
>>> with list_transaction(items) as working:
... working.append(4)
... working.append(5)
...
>>> items
[1, 2, 3, 4, 5]
>>> with list_transaction(items) as working:
... working.append(6)
... working.append(7)
... raise RuntimeError('oops')
...
Traceback (most recent call last):
 File "<stdin>", line 4, in <module>
RuntimeError: oops
>>> items
[1, 2, 3, 4, 5]
>>>

Discussion
Normally, to write a context manager, you define a class with an __enter__() and
__exit__() method, like this:

import time

class timethis:
 def __init__(self, label):
 self.label = label
 def __enter__(self):
 self.start = time.time()
 def __exit__(self, exc_ty, exc_val, exc_tb):
 end = time.time()
 print('{}: {}'.format(self.label, end - self.start))

Although this isn’t hard, it’s a lot more tedious than writing a simple function using
@contextmanager.

@contextmanager is really only used for writing self-contained context-management
functions. If you have some object (e.g., a file, network connection, or lock) that needs
to support the with statement, you still need to implement the __enter__() and
__exit__() methods separately.

9.22. Defining Context Managers the Easy Way | 385

9.23. Executing Code with Local Side Effects
Problem
You are using exec() to execute a fragment of code in the scope of the caller, but after
execution, none of its results seem to be visible.

Solution
To better understand the problem, try a little experiment. First, execute a fragment of
code in the global namespace:

>>> a = 13
>>> exec('b = a + 1')
>>> print(b)
14
>>>

Now, try the same experiment inside a function:

>>> def test():
... a = 13
... exec('b = a + 1')
... print(b)
...
>>> test()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 4, in test
NameError: global name 'b' is not defined
>>>

As you can see, it fails with a NameError almost as if the exec() statement never actually
executed. This can be a problem if you ever want to use the result of the exec() in a
later calculation.

To fix this kind of problem, you need to use the locals() function to obtain a dictionary
of the local variables prior to the call to exec(). Immediately afterward, you can extract
modified values from the locals dictionary. For example:

>>> def test():
... a = 13
... loc = locals()
... exec('b = a + 1')
... b = loc['b']
... print(b)
...
>>> test()
14
>>>

386 | Chapter 9: Metaprogramming

Discussion
Correct use of exec() is actually quite tricky in practice. In fact, in most situations where
you might be considering the use of exec(), a more elegant solution probably exists
(e.g., decorators, closures, metaclasses, etc.).

However, if you still must use exec(), this recipe outlines some subtle aspects of using
it correctly. By default, exec() executes code in the local and global scope of the caller.
However, inside functions, the local scope passed to exec() is a dictionary that is a copy
of the actual local variables. Thus, if the code in exec() makes any kind of modification,
that modification is never reflected in the actual local variables. Here is another example
that shows this effect:

>>> def test1():
... x = 0
... exec('x += 1')
... print(x)
...
>>> test1()
0
>>>

When you call locals() to obtain the local variables, as shown in the solution, you get
the copy of the locals that is passed to exec(). By inspecting the value of the dictionary
after execution, you can obtain the modified values. Here is an experiment that shows
this:

>>> def test2():
... x = 0
... loc = locals()
... print('before:', loc)
... exec('x += 1')
... print('after:', loc)
... print('x =', x)
...
>>> test2()
before: {'x': 0}
after: {'loc': {...}, 'x': 1}
x = 0
>>>

Carefully observe the output of the last step. Unless you copy the modified value from
loc back to x, the variable remains unchanged.

With any use of locals(), you need to be careful about the order of operations. Each
time it is invoked, locals() will take the current value of local variables and overwrite
the corresponding entries in the dictionary. Observe the outcome of this experiment:

>>> def test3():
... x = 0

9.23. Executing Code with Local Side Effects | 387

... loc = locals()

... print(loc)

... exec('x += 1')

... print(loc)

... locals()

... print(loc)

...
>>> test3()
{'x': 0}
{'loc': {...}, 'x': 1}
{'loc': {...}, 'x': 0}
>>>

Notice how the last call to locals() caused x to be overwritten.

As an alternative to using locals(), you might make your own dictionary and pass it
to exec(). For example:

>>> def test4():
... a = 13
... loc = { 'a' : a }
... glb = { }
... exec('b = a + 1', glb, loc)
... b = loc['b']
... print(b)
...
>>> test4()
14
>>>

For most uses of exec(), this is probably good practice. You just need to make sure that
the global and local dictionaries are properly initialized with names that the executed
code will access.

Last, but not least, before using exec(), you might ask yourself if other alternatives are
available. Many problems where you might consider the use of exec() can be replaced
by closures, decorators, metaclasses, or other metaprogramming features.

9.24. Parsing and Analyzing Python Source
Problem
You want to write programs that parse and analyze Python source code.

Solution
Most programmers know that Python can evaluate or execute source code provided in
the form of a string. For example:

388 | Chapter 9: Metaprogramming

>>> x = 42
>>> eval('2 + 3*4 + x')
56
>>> exec('for i in range(10): print(i)')
0
1
2
3
4
5
6
7
8
9
>>>

However, the ast module can be used to compile Python source code into an abstract
syntax tree (AST) that can be analyzed. For example:

>>> import ast
>>> ex = ast.parse('2 + 3*4 + x', mode='eval')
>>> ex
<_ast.Expression object at 0x1007473d0>
>>> ast.dump(ex)
"Expression(body=BinOp(left=BinOp(left=Num(n=2), op=Add(),
right=BinOp(left=Num(n=3), op=Mult(), right=Num(n=4))), op=Add(),
right=Name(id='x', ctx=Load())))"

>>> top = ast.parse('for i in range(10): print(i)', mode='exec')
>>> top
<_ast.Module object at 0x100747390>
>>> ast.dump(top)
"Module(body=[For(target=Name(id='i', ctx=Store()),
iter=Call(func=Name(id='range', ctx=Load()), args=[Num(n=10)],
keywords=[], starargs=None, kwargs=None),
body=[Expr(value=Call(func=Name(id='print', ctx=Load()),
args=[Name(id='i', ctx=Load())], keywords=[], starargs=None,
kwargs=None))], orelse=[])])"
>>>

Analyzing the source tree requires a bit of study on your part, but it consists of a col‐
lection of AST nodes. The easiest way to work with these nodes is to define a visitor
class that implements various visit_NodeName() methods where NodeName() matches
the node of interest. Here is an example of such a class that records information about
which names are loaded, stored, and deleted.

import ast

class CodeAnalyzer(ast.NodeVisitor):
 def __init__(self):
 self.loaded = set()
 self.stored = set()

9.24. Parsing and Analyzing Python Source | 389

 self.deleted = set()
 def visit_Name(self, node):
 if isinstance(node.ctx, ast.Load):
 self.loaded.add(node.id)
 elif isinstance(node.ctx, ast.Store):
 self.stored.add(node.id)
 elif isinstance(node.ctx, ast.Del):
 self.deleted.add(node.id)

Sample usage
if __name__ == '__main__':
 # Some Python code
 code = '''
for i in range(10):
 print(i)
del i
'''
 # Parse into an AST
 top = ast.parse(code, mode='exec')

 # Feed the AST to analyze name usage
 c = CodeAnalyzer()
 c.visit(top)
 print('Loaded:', c.loaded)
 print('Stored:', c.stored)
 print('Deleted:', c.deleted)

If you run this program, you’ll get output like this:

Loaded: {'i', 'range', 'print'}
Stored: {'i'}
Deleted: {'i'}

Finally, ASTs can be compiled and executed using the compile() function. For example:

>>> exec(compile(top,'<stdin>', 'exec'))
0
1
2
3
4
5
6
7
8
9
>>>

Discussion
The fact that you can analyze source code and get information from it could be the start
of writing various code analysis, optimization, or verification tools. For instance, instead

390 | Chapter 9: Metaprogramming

of just blindly passing some fragment of code into a function like exec(), you could
turn it into an AST first and look at it in some detail to see what it’s doing. You could
also write tools that look at the entire source code for a module and perform some sort
of static analysis over it.

It should be noted that it is also possible to rewrite the AST to represent new code if you
really know what you’re doing. Here is an example of a decorator that lowers globally
accessed names into the body of a function by reparsing the function body’s source code,
rewriting the AST, and recreating the function’s code object:

namelower.py
import ast
import inspect

Node visitor that lowers globally accessed names into
the function body as local variables.
class NameLower(ast.NodeVisitor):
 def __init__(self, lowered_names):
 self.lowered_names = lowered_names

 def visit_FunctionDef(self, node):
 # Compile some assignments to lower the constants
 code = '__globals = globals()\n'
 code += '\n'.join("{0} = __globals['{0}']".format(name)
 for name in self.lowered_names)

 code_ast = ast.parse(code, mode='exec')

 # Inject new statements into the function body
 node.body[:0] = code_ast.body

 # Save the function object
 self.func = node

Decorator that turns global names into locals
def lower_names(*namelist):
 def lower(func):
 srclines = inspect.getsource(func).splitlines()
 # Skip source lines prior to the @lower_names decorator
 for n, line in enumerate(srclines):
 if '@lower_names' in line:
 break

 src = '\n'.join(srclines[n+1:])
 # Hack to deal with indented code
 if src.startswith((' ','\t')):
 src = 'if 1:\n' + src
 top = ast.parse(src, mode='exec')

 # Transform the AST
 cl = NameLower(namelist)

9.24. Parsing and Analyzing Python Source | 391

 cl.visit(top)

 # Execute the modified AST
 temp = {}
 exec(compile(top,'','exec'), temp, temp)

 # Pull out the modified code object
 func.__code__ = temp[func.__name__].__code__
 return func
 return lower

To use this code, you would write code such as the following:

INCR = 1

@lower_names('INCR')
def countdown(n):
 while n > 0:
 n -= INCR

The decorator rewrites the source code of the countdown() function to look like this:

def countdown(n):
 __globals = globals()
 INCR = __globals['INCR']
 while n > 0:
 n -= INCR

In a performance test, it makes the function run about 20% faster.

Now, should you go applying this decorator to all of your functions? Probably not.
However, it’s a good illustration of some very advanced things that might be possible
through AST manipulation, source code manipulation, and other techniques.

This recipe was inspired by a similar recipe at ActiveState that worked by manipulating
Python’s byte code. Working with the AST is a higher-level approach that might be a bit
more straightforward. See the next recipe for more information about byte code.

9.25. Disassembling Python Byte Code
Problem
You want to know in detail what your code is doing under the covers by disassembling
it into lower-level byte code used by the interpreter.

Solution
The dis module can be used to output a disassembly of any Python function. For
example:

392 | Chapter 9: Metaprogramming

http://code.activestate.com/recipes/277940-decorator-for-bindingconstants-at-compile-time

>>> def countdown(n):
... while n > 0:
... print('T-minus', n)
... n -= 1
... print('Blastoff!')
...
>>> import dis
>>> dis.dis(countdown)
 2 0 SETUP_LOOP 39 (to 42)
 >> 3 LOAD_FAST 0 (n)
 6 LOAD_CONST 1 (0)
 9 COMPARE_OP 4 (>)
 12 POP_JUMP_IF_FALSE 41

 3 15 LOAD_GLOBAL 0 (print)
 18 LOAD_CONST 2 ('T-minus')
 21 LOAD_FAST 0 (n)
 24 CALL_FUNCTION 2 (2 positional, 0 keyword pair)
 27 POP_TOP

 4 28 LOAD_FAST 0 (n)
 31 LOAD_CONST 3 (1)
 34 INPLACE_SUBTRACT
 35 STORE_FAST 0 (n)
 38 JUMP_ABSOLUTE 3
 >> 41 POP_BLOCK

 5 >> 42 LOAD_GLOBAL 0 (print)
 45 LOAD_CONST 4 ('Blastoff!')
 48 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
 51 POP_TOP
 52 LOAD_CONST 0 (None)
 55 RETURN_VALUE
>>>

Discussion
The dis module can be useful if you ever need to study what’s happening in your pro‐
gram at a very low level (e.g., if you’re trying to understand performance characteristics).

The raw byte code interpreted by the dis() function is available on functions as follows:

>>> countdown.__code__.co_code
b"x'\x00|\x00\x00d\x01\x00k\x04\x00r)\x00t\x00\x00d\x02\x00|\x00\x00\x83
\x02\x00\x01|\x00\x00d\x03\x008}\x00\x00q\x03\x00Wt\x00\x00d\x04\x00\x83
\x01\x00\x01d\x00\x00S"
>>>

If you ever want to interpret this code yourself, you would need to use some of the
constants defined in the opcode module. For example:

9.25. Disassembling Python Byte Code | 393

>>> c = countdown.__code__.co_code
>>> import opcode
>>> opcode.opname[c[0]]
>>> opcode.opname[c[0]]
'SETUP_LOOP'
>>> opcode.opname[c[3]]
'LOAD_FAST'
>>>

Ironically, there is no function in the dis module that makes it easy for you to process
the byte code in a programmatic way. However, this generator function will take the raw
byte code sequence and turn it into opcodes and arguments.

import opcode

def generate_opcodes(codebytes):
 extended_arg = 0
 i = 0
 n = len(codebytes)
 while i < n:
 op = codebytes[i]
 i += 1
 if op >= opcode.HAVE_ARGUMENT:
 oparg = codebytes[i] + codebytes[i+1]*256 + extended_arg
 extended_arg = 0
 i += 2
 if op == opcode.EXTENDED_ARG:
 extended_arg = oparg * 65536
 continue
 else:
 oparg = None
 yield (op, oparg)

To use this function, you would use code like this:

>>> for op, oparg in generate_opcodes(countdown.__code__.co_code):
... print(op, opcode.opname[op], oparg)
...
120 SETUP_LOOP 39
124 LOAD_FAST 0
100 LOAD_CONST 1
107 COMPARE_OP 4
114 POP_JUMP_IF_FALSE 41
116 LOAD_GLOBAL 0
100 LOAD_CONST 2
124 LOAD_FAST 0
131 CALL_FUNCTION 2
1 POP_TOP None
124 LOAD_FAST 0
100 LOAD_CONST 3
56 INPLACE_SUBTRACT None
125 STORE_FAST 0
113 JUMP_ABSOLUTE 3

394 | Chapter 9: Metaprogramming

87 POP_BLOCK None
116 LOAD_GLOBAL 0
100 LOAD_CONST 4
131 CALL_FUNCTION 1
1 POP_TOP None
100 LOAD_CONST 0
83 RETURN_VALUE None
>>>

It’s a little-known fact, but you can replace the raw byte code of any function that you
want. It takes a bit of work to do it, but here’s an example of what’s involved:

>>> def add(x, y):
... return x + y
...
>>> c = add.__code__
>>> c
<code object add at 0x1007beed0, file "<stdin>", line 1>
>>> c.co_code
b'|\x00\x00|\x01\x00\x17S'
>>>
>>> # Make a completely new code object with bogus byte code
>>> import types
>>> newbytecode = b'xxxxxxx'
>>> nc = types.CodeType(c.co_argcount, c.co_kwonlyargcount,
... c.co_nlocals, c.co_stacksize, c.co_flags, newbytecode, c.co_consts,
... c.co_names, c.co_varnames, c.co_filename, c.co_name,
... c.co_firstlineno, c.co_lnotab)
>>> nc
<code object add at 0x10069fe40, file "<stdin>", line 1>
>>> add.__code__ = nc
>>> add(2,3)
Segmentation fault

Having the interpreter crash is a pretty likely outcome of pulling a crazy stunt like this.
However, developers working on advanced optimization and metaprogramming tools
might be inclined to rewrite byte code for real. This last part illustrates how to do it. See
this code on ActiveState for another example of such code in action.

9.25. Disassembling Python Byte Code | 395

http://code.activestate.com/recipes/277940-decorator-for-bindingconstants-at-compile-time

CHAPTER 10

Modules and Packages

Modules and packages are the core of any large project, and the Python installation
itself. This chapter focuses on common programming techniques involving modules
and packages, such as how to organize packages, splitting large modules into multiple
files, and creating namespace packages. Recipes that allow you to customize the oper‐
ation of the import statement itself are also given.

10.1. Making a Hierarchical Package of Modules
Problem
You want to organize your code into a package consisting of a hierarchical collection of
modules.

Solution
Making a package structure is simple. Just organize your code as you wish on the file-
system and make sure that every directory defines an __init__.py file. For example:

 graphics/
 __init__.py
 primitive/
 __init__.py
 line.py
 fill.py
 text.py
 formats/
 __init__.py
 png.py
 jpg.py

397

Once you have done this, you should be able to perform various import statements,
such as the following:

import graphics.primitive.line
from graphics.primitive import line
import graphics.formats.jpg as jpg

Discussion
Defining a hierarchy of modules is as easy as making a directory structure on the file‐
system. The purpose of the __init__.py files is to include optional initialization code
that runs as different levels of a package are encountered. For example, if you have the
statement import graphics, the file graphics/__init__.py will be imported and form
the contents of the graphics namespace. For an import such as import graphics.for
mats.jpg, the files graphics/__init__.py and graphics/formats/__init__.py will both be
imported prior to the final import of the graphics/formats/jpg.py file.

More often that not, it’s fine to just leave the __init__.py files empty. However, there are
certain situations where they might include code. For example, an __init__.py file can
be used to automatically load submodules like this:

graphics/formats/__init__.py

from . import jpg
from . import png

For such a file, a user merely has to use a single import graphics.formats instead of
a separate import for graphics.formats.jpg and graphics.formats.png.

Other common uses of __init__.py include consolidating definitions from multiple files
into a single logical namespace, as is sometimes done when splitting modules. This is
discussed in Recipe 10.4.

Astute programmers will notice that Python 3.3 still seems to perform package imports
even if no __init__.py files are present. If you don’t define __init__.py, you actually
create what’s known as a “namespace package,” which is described in Recipe 10.5. All
things being equal, include the __init__.py files if you’re just starting out with the cre‐
ation of a new package.

10.2. Controlling the Import of Everything
Problem
You want precise control over the symbols that are exported from a module or package
when a user uses the from module import * statement.

398 | Chapter 10: Modules and Packages

Solution
Define a variable __all__ in your module that explicitly lists the exported names. For
example:

somemodule.py

def spam():
 pass

def grok():
 pass

blah = 42

Only export 'spam' and 'grok'
__all__ = ['spam', 'grok']

Discussion
Although the use of from module import * is strongly discouraged, it still sees frequent
use in modules that define a large number of names. If you don’t do anything, this form
of import will export all names that don’t start with an underscore. On the other hand,
if __all__ is defined, then only the names explicitly listed will be exported.

If you define __all__ as an empty list, then nothing will be exported. An AttributeEr
ror is raised on import if __all__ contains undefined names.

10.3. Importing Package Submodules Using Relative
Names
Problem
You have code organized as a package and want to import a submodule from one of the
other package submodules without hardcoding the package name into the import
statement.

Solution
To import modules of a package from other modules in the same package, use a package-
relative import. For example, suppose you have a package mypackage organized as fol‐
lows on the filesystem:

 mypackage/
 __init__.py
 A/
 __init__.py

10.3. Importing Package Submodules Using Relative Names | 399

 spam.py
 grok.py
 B/
 __init__.py
 bar.py

If the module mypackage.A.spam wants to import the module grok located in the same
directory, it should include an import statement like this:

mypackage/A/spam.py

from . import grok

If the same module wants to import the module B.bar located in a different directory,
it can use an import statement like this:

mypackage/A/spam.py

from ..B import bar

Both of the import statements shown operate relative to the location of the spam.py file
and do not include the top-level package name.

Discussion
Inside packages, imports involving modules in the same package can either use fully
specified absolute names or a relative imports using the syntax shown. For example:

mypackage/A/spam.py

from mypackage.A import grok # OK
from . import grok # OK
import grok # Error (not found)

The downside of using an absolute name, such as mypackage.A, is that it hardcodes the
top-level package name into your source code. This, in turn, makes your code more
brittle and hard to work with if you ever want to reorganize it. For example, if you ever
changed the name of the package, you would have to go through all of your files and fix
the source code. Similarly, hardcoded names make it difficult for someone else to move
the code around. For example, perhaps someone wants to install two different versions
of a package, differentiating them only by name. If relative imports are used, it would
all work fine, whereas everything would break with absolute names.

The . and .. syntax on the import statement might look funny, but think of it as spec‐
ifying a directory name. . means look in the current directory and ..B means look in
the ../B directory. This syntax only works with the from form of import. For example:

from . import grok # OK
import .grok # ERROR

400 | Chapter 10: Modules and Packages

Although it looks like you could navigate the filesystem using a relative import, they are
not allowed to escape the directory in which a package is defined. That is, combinations
of dotted name patterns that would cause an import to occur from a non-package di‐
rectory cause an error.

Finally, it should be noted that relative imports only work for modules that are located
inside a proper package. In particular, they do not work inside simple modules located
at the top level of scripts. They also won’t work if parts of a package are executed directly
as a script. For example:

% python3 mypackage/A/spam.py # Relative imports fail

On the other hand, if you execute the preceding script using the -m option to Python,
the relative imports will work properly. For example:

% python3 -m mypackage.A.spam # Relative imports work

For more background on relative package imports, see PEP 328.

10.4. Splitting a Module into Multiple Files
Problem
You have a module that you would like to split into multiple files. However, you would
like to do it without breaking existing code by keeping the separate files unified as a
single logical module.

Solution
A program module can be split into separate files by turning it into a package. Consider
the following simple module:

mymodule.py

class A:
 def spam(self):
 print('A.spam')

class B(A):
 def bar(self):
 print('B.bar')

Suppose you want to split mymodule.py into two files, one for each class definition. To
do that, start by replacing the mymodule.py file with a directory called mymodule. In
that directory, create the following files:

10.4. Splitting a Module into Multiple Files | 401

http://www.python.org/dev/peps/pep-0328

 mymodule/
 __init__.py
 a.py
 b.py

In the a.py file, put this code:

a.py

class A:
 def spam(self):
 print('A.spam')

In the b.py file, put this code:

b.py

from .a import A

class B(A):
 def bar(self):
 print('B.bar')

Finally, in the __init__.py file, glue the two files together:

__init__.py

from .a import A
from .b import B

If you follow these steps, the resulting mymodule package will appear to be a single logical
module:

>>> import mymodule
>>> a = mymodule.A()
>>> a.spam()
A.spam
>>> b = mymodule.B()
>>> b.bar()
B.bar
>>>

Discussion
The primary concern in this recipe is a design question of whether or not you want
users to work with a lot of small modules or just a single module. For example, in a large
code base, you could just break everything up into separate files and make users use a
lot of import statements like this:

from mymodule.a import A
from mymodule.b import B
...

402 | Chapter 10: Modules and Packages

This works, but it places more of a burden on the user to know where the different parts
are located. Often, it’s just easier to unify things and allow a single import like this:

from mymodule import A, B

For this latter case, it’s most common to think of mymodule as being one large source
file. However, this recipe shows how to stitch multiple files together into a single logical
namespace. The key to doing this is to create a package directory and to use the
__init__.py file to glue the parts together.

When a module gets split, you’ll need to pay careful attention to cross-filename refer‐
ences. For instance, in this recipe, class B needs to access class A as a base class. A package-
relative import from .a import A is used to get it.

Package-relative imports are used throughout the recipe to avoid hardcoding the top-
level module name into the source code. This makes it easier to rename the module or
move it around elsewhere later (see Recipe 10.3).

One extension of this recipe involves the introduction of “lazy” imports. As shown, the
__init__.py file imports all of the required subcomponents all at once. However, for a
very large module, perhaps you only want to load components as they are needed. To
do that, here is a slight variation of __init__.py:

__init__.py

def A():
 from .a import A
 return A()

def B():
 from .b import B
 return B()

In this version, classes A and B have been replaced by functions that load the desired
classes when they are first accessed. To a user, it won’t look much different. For example:

>>> import mymodule
>>> a = mymodule.A()
>>> a.spam()
A.spam
>>>

The main downside of lazy loading is that inheritance and type checking might break.
For example, you might have to change your code slightly:

if isinstance(x, mymodule.A): # Error
 ...

if isinstance(x, mymodule.a.A): # Ok
 ...

10.4. Splitting a Module into Multiple Files | 403

For a real-world example of lazy loading, look at the source code for multiprocessing/
__init__.py in the standard library.

10.5. Making Separate Directories of Code Import Under a
Common Namespace
Problem
You have a large base of code with parts possibly maintained and distributed by different
people. Each part is organized as a directory of files, like a package. However, instead
of having each part installed as a separated named package, you would like all of the
parts to join together under a common package prefix.

Solution
Essentially, the problem here is that you would like to define a top-level Python package
that serves as a namespace for a large collection of separately maintained subpackages.
This problem often arises in large application frameworks where the framework devel‐
opers want to encourage users to distribute plug-ins or add-on packages.

To unify separate directories under a common namespace, you organize the code just
like a normal Python package, but you omit __init__.py files in the directories where
the components are going to join together. To illustrate, suppose you have two different
directories of Python code like this:

 foo-package/
 spam/
 blah.py

 bar-package/
 spam/
 grok.py

In these directories, the name spam is being used as a common namespace. Observe that
there is no __init__.py file in either directory.

Now watch what happens if you add both foo-package and bar-package to the Python
module path and try some imports:

>>> import sys
>>> sys.path.extend(['foo-package', 'bar-package'])
>>> import spam.blah
>>> import spam.grok
>>>

You’ll observe that, by magic, the two different package directories merge together and
you can import either spam.blah or spam.grok. It just works.

404 | Chapter 10: Modules and Packages

Discussion
The mechanism at work here is a feature known as a “namespace package.” Essentially,
a namespace package is a special kind of package designed for merging different direc‐
tories of code together under a common namespace, as shown. For large frameworks,
this can be useful, since it allows parts of a framework to be broken up into separately
installed downloads. It also enables people to easily make third-party add-ons and other
extensions to such frameworks.

The key to making a namespace package is to make sure there are no __init__.py files
in the top-level directory that is to serve as the common namespace. The missing
__init__.py file causes an interesting thing to happen on package import. Instead of
causing an error, the interpreter instead starts creating a list of all directories that happen
to contain a matching package name. A special namespace package module is then
created and a read-only copy of the list of directories is stored in its __path__ variable.
For example:

>>> import spam
>>> spam.__path__
_NamespacePath(['foo-package/spam', 'bar-package/spam'])
>>>

The directories on __path__ are used when locating further package subcomponents
(e.g., when importing spam.grok or spam.blah).

An important feature of namespace packages is that anyone can extend the namespace
with their own code. For example, suppose you made your own directory of code like
this:

 my-package/
 spam/
 custom.py

If you added your directory of code to sys.path along with the other packages, it would
just seamlessly merge together with the other spam package directories:

>>> import spam.custom
>>> import spam.grok
>>> import spam.blah
>>>

As a debugging tool, the main way that you can tell if a package is serving as a namespace
package is to check its __file__ attribute. If it’s missing altogether, the package is a
namespace. This will also be indicated in the representation string by the word “name‐
space”:

>>> spam.__file__
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'module' object has no attribute '__file__'

10.5. Making Separate Directories of Code Import Under a Common Namespace | 405

>>> spam
<module 'spam' (namespace)>
>>>

Further information about namespace packages can be found in PEP 420.

10.6. Reloading Modules
Problem
You want to reload an already loaded module because you’ve made changes to its source.

Solution
To reload a previously loaded module, use imp.reload(). For example:

>>> import spam
>>> import imp
>>> imp.reload(spam)
<module 'spam' from './spam.py'>
>>>

Discussion
Reloading a module is something that is often useful during debugging and develop‐
ment, but which is generally never safe in production code due to the fact that it doesn’t
always work as you expect.

Under the covers, the reload() operation wipes out the contents of a module’s under‐
lying dictionary and refreshes it by re-executing the module’s source code. The identity
of the module object itself remains unchanged. Thus, this operation updates the module
everywhere that it has been imported in a program.

However, reload() does not update definitions that have been imported using state‐
ments such as from module import name. To illustrate, consider the following code:

spam.py

def bar():
 print('bar')

def grok():
 print('grok')

Now start an interactive session:

>>> import spam
>>> from spam import grok
>>> spam.bar()
bar

406 | Chapter 10: Modules and Packages

http://www.python.org/dev/peps/pep-0420

>>> grok()
grok
>>>

Without quitting Python, go edit the source code to spam.py so that the function grok()
looks like this:

def grok():
 print('New grok')

Now go back to the interactive session, perform a reload, and try this experiment:

>>> import imp
>>> imp.reload(spam)
<module 'spam' from './spam.py'>
>>> spam.bar()
bar
>>> grok() # Notice old output
grok
>>> spam.grok() # Notice new output
New grok
>>>

In this example, you’ll observe that there are two versions of the grok() function loaded.
Generally, this is not what you want, and is just the sort of thing that eventually leads
to massive headaches.

For this reason, reloading of modules is probably something to be avoided in production
code. Save it for debugging or for interactive sessions where you’re experimenting with
the interpreter and trying things out.

10.7. Making a Directory or Zip File Runnable As a Main
Script
Problem
You have a program that has grown beyond a simple script into an application involving
multiple files. You’d like to have some easy way for users to run the program.

Solution
If your application program has grown into multiple files, you can put it into its own
directory and add a __main__.py file. For example, you can create a directory like this:

 myapplication/
 spam.py
 bar.py
 grok.py
 __main__.py

10.7. Making a Directory or Zip File Runnable As a Main Script | 407

If __main__.py is present, you can simply run the Python interpreter on the top-level
directory like this:

bash % python3 myapplication

The interpreter will execute the __main__.py file as the main program.

This technique also works if you package all of your code up into a zip file. For example:

 bash % ls
 spam.py bar.py grok.py __main__.py
 bash % zip -r myapp.zip *.py
 bash % python3 myapp.zip
 ... output from __main__.py ...

Discussion
Creating a directory or zip file and adding a __main__.py file is one possible way to
package a larger Python application. It’s a little bit different than a package in that the
code isn’t meant to be used as a standard library module that’s installed into the Python
library. Instead, it’s just this bundle of code that you want to hand someone to execute.

Since directories and zip files are a little different than normal files, you may also want
to add a supporting shell script to make execution easier. For example, if the code was
in a file named myapp.zip, you could make a top-level script like this:

 #!/usr/bin/env python3 /usr/local/bin/myapp.zip

10.8. Reading Datafiles Within a Package
Problem
Your package includes a datafile that your code needs to read. You need to do this in the
most portable way possible.

Solution
Suppose you have a package with files organized as follows:

mypackage/
 __init__.py
 somedata.dat
 spam.py

Now suppose the file spam.py wants to read the contents of the file somedata.dat. To do
it, use the following code:

408 | Chapter 10: Modules and Packages

spam.py

import pkgutil
data = pkgutil.get_data(__package__, 'somedata.dat')

The resulting variable data will be a byte string containing the raw contents of the file.

Discussion
To read a datafile, you might be inclined to write code that uses built-in I/O functions,
such as open(). However, there are several problems with this approach.

First, a package has very little control over the current working directory of the inter‐
preter. Thus, any I/O operations would have to be programmed to use absolute file‐
names. Since each module includes a __file__ variable with the full path, it’s not im‐
possible to figure out the location, but it’s messy.

Second, packages are often installed as .zip or .egg files, which don’t preserve the files in
the same way as a normal directory on the filesystem. Thus, if you tried to use open()
on a datafile contained in an archive, it wouldn’t work at all.

The pkgutil.get_data() function is meant to be a high-level tool for getting a datafile
regardless of where or how a package has been installed. It will simply “work” and return
the file contents back to you as a byte string.

The first argument to get_data() is a string containing the package name. You can
either supply it directly or use a special variable, such as __package__. The second
argument is the relative name of the file within the package. If necessary, you can nav‐
igate into different directories using standard Unix filename conventions as long as the
final directory is still located within the package.

10.9. Adding Directories to sys.path
Problem
You have Python code that can’t be imported because it’s not located in a directory listed
in sys.path. You would like to add new directories to Python’s path, but don’t want to
hardwire it into your code.

Solution
There are two common ways to get new directories added to sys.path. First, you can
add them through the use of the PYTHONPATH environment variable. For example:

 bash % env PYTHONPATH=/some/dir:/other/dir python3
 Python 3.3.0 (default, Oct 4 2012, 10:17:33)
 [GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

10.9. Adding Directories to sys.path | 409

 Type "help", "copyright", "credits" or "license" for more information.
 >>> import sys
 >>> sys.path
 ['', '/some/dir', '/other/dir', ...]
 >>>

In a custom application, this environment variable could be set at program startup or
through a shell script of some kind.

The second approach is to create a .pth file that lists the directories like this:

 # myapplication.pth
 /some/dir
 /other/dir

This .pth file needs to be placed into one of Python’s site-packages directories, which are
typically located at /usr/local/lib/python3.3/site-packages or ~/.local/lib/python3.3/site-
packages. On interpreter startup, the directories listed in the .pth file will be added to
sys.path as long as they exist on the filesystem. Installation of a .pth file might require
administrator access if it’s being added to the system-wide Python interpreter.

Discussion
Faced with trouble locating files, you might be inclined to write code that manually
adjusts the value of sys.path. For example:

import sys
sys.path.insert(0, '/some/dir')
sys.path.insert(0, '/other/dir')

Although this “works,” it is extremely fragile in practice and should be avoided if pos‐
sible. Part of the problem with this approach is that it adds hardcoded directory names
to your source. This can cause maintenance problems if your code ever gets moved
around to a new location. It’s usually much better to configure the path elsewhere in a
manner that can be adjusted without making source code edits.

You can sometimes work around the problem of hardcoded directories if you carefully
construct an appropriate absolute path using module-level variables, such as
__file__. For example:

import sys
from os.path import abspath, join, dirname
sys.path.insert(0, abspath(dirname('__file__'), 'src'))

This adds an src directory to the path where that directory is located in the same direc‐
tory as the code that’s executing the insertion step.

The site-packages directories are the locations where third-party modules and packages
normally get installed. If your code was installed in that manner, that’s where it would
be placed. Although .pth files for configuring the path must appear in site-packages, they

410 | Chapter 10: Modules and Packages

can refer to any directories on the system that you wish. Thus, you can elect to have
your code in a completely different set of directories as long as those directories are
included in a .pth file.

10.10. Importing Modules Using a Name Given in a String
Problem
You have the name of a module that you would like to import, but it’s being held in a
string. You would like to invoke the import command on the string.

Solution
Use the importlib.import_module() function to manually import a module or part of
a package where the name is given as a string. For example:

>>> import importlib
>>> math = importlib.import_module('math')
>>> math.sin(2)
0.9092974268256817
>>> mod = importlib.import_module('urllib.request')
>>> u = mod.urlopen('http://www.python.org')
>>>

import_module simply performs the same steps as import, but returns the resulting
module object back to you as a result. You just need to store it in a variable and use it
like a normal module afterward.

If you are working with packages, import_module() can also be used to perform relative
imports. However, you need to give it an extra argument. For example:

import importlib

Same as 'from . import b'
b = importlib.import_module('.b', __package__)

Discussion
The problem of manually importing modules with import_module() most commonly
arises when writing code that manipulates or wraps around modules in some way. For
example, perhaps you’re implementing a customized importing mechanism of some
kind where you need to load a module by name and perform patches to the loaded code.

In older code, you will sometimes see the built-in __import__() function used to per‐
form imports. Although this works, importlib.import_module() is usually easier to
use.

See Recipe 10.11 for an advanced example of customizing the import process.

10.10. Importing Modules Using a Name Given in a String | 411

10.11. Loading Modules from a Remote Machine Using
Import Hooks
Problem
You would like to customize Python’s import statement so that it can transparently load
modules from a remote machine.

Solution
First, a serious disclaimer about security. The idea discussed in this recipe would be
wholly bad without some kind of extra security and authentication layer. That said, the
main goal is actually to take a deep dive into the inner workings of Python’s import
statement. If you get this recipe to work and understand the inner workings, you’ll have
a solid foundation of customizing import for almost any other purpose. With that out
of the way, let’s carry on.

At the core of this recipe is a desire to extend the functionality of the import statement.
There are several approaches for doing this, but for the purposes of illustration, start by
making the following directory of Python code:

testcode/
 spam.py
 fib.py
 grok/
 __init__.py
 blah.py

The content of these files doesn’t matter, but put a few simple statements and functions
in each file so you can test them and see output when they’re imported. For example:

spam.py
print("I'm spam")

def hello(name):
 print('Hello %s' % name)

fib.py
print("I'm fib")

def fib(n):
 if n < 2:
 return 1
 else:
 return fib(n-1) + fib(n-2)

grok/__init__.py
print("I'm grok.__init__")

412 | Chapter 10: Modules and Packages

grok/blah.py
print("I'm grok.blah")

The goal here is to allow remote access to these files as modules. Perhaps the easiest way
to do this is to publish them on a web server. Simply go to the testcode directory and
run Python like this:

bash % cd testcode
bash % python3 -m http.server 15000
Serving HTTP on 0.0.0.0 port 15000 ...

Leave that server running and start up a separate Python interpreter. Make sure you can
access the remote files using urllib. For example:

>>> from urllib.request import urlopen
>>> u = urlopen('http://localhost:15000/fib.py')
>>> data = u.read().decode('utf-8')
>>> print(data)
fib.py
print("I'm fib")

def fib(n):
 if n < 2:
 return 1
 else:
 return fib(n-1) + fib(n-2)

>>>

Loading source code from this server is going to form the basis for the remainder of
this recipe. Specifically, instead of manually grabbing a file of source code using urlop
en(), the import statement will be customized to do it transparently behind the scenes.

The first approach to loading a remote module is to create an explicit loading function
for doing it. For example:

import imp
import urllib.request
import sys

def load_module(url):
 u = urllib.request.urlopen(url)
 source = u.read().decode('utf-8')
 mod = sys.modules.setdefault(url, imp.new_module(url))
 code = compile(source, url, 'exec')
 mod.__file__ = url
 mod.__package__ = ''
 exec(code, mod.__dict__)
 return mod

10.11. Loading Modules from a Remote Machine Using Import Hooks | 413

This function merely downloads the source code, compiles it into a code object using
compile(), and executes it in the dictionary of a newly created module object. Here’s
how you would use the function:

>>> fib = load_module('http://localhost:15000/fib.py')
I'm fib
>>> fib.fib(10)
89
>>> spam = load_module('http://localhost:15000/spam.py')
I'm spam
>>> spam.hello('Guido')
Hello Guido
>>> fib
<module 'http://localhost:15000/fib.py' from 'http://localhost:15000/fib.py'>
>>> spam
<module 'http://localhost:15000/spam.py' from 'http://localhost:15000/spam.py'>
>>>

As you can see, it “works” for simple modules. However, it’s not plugged into the usual
import statement, and extending the code to support more advanced constructs, such
as packages, would require additional work.

A much slicker approach is to create a custom importer. The first way to do this is to
create what’s known as a meta path importer. Here is an example:

urlimport.py

import sys
import importlib.abc
import imp
from urllib.request import urlopen
from urllib.error import HTTPError, URLError
from html.parser import HTMLParser

Debugging
import logging
log = logging.getLogger(__name__)

Get links from a given URL
def _get_links(url):
 class LinkParser(HTMLParser):
 def handle_starttag(self, tag, attrs):
 if tag == 'a':
 attrs = dict(attrs)
 links.add(attrs.get('href').rstrip('/'))

 links = set()
 try:
 log.debug('Getting links from %s' % url)
 u = urlopen(url)
 parser = LinkParser()
 parser.feed(u.read().decode('utf-8'))

414 | Chapter 10: Modules and Packages

 except Exception as e:
 log.debug('Could not get links. %s', e)
 log.debug('links: %r', links)
 return links

class UrlMetaFinder(importlib.abc.MetaPathFinder):
 def __init__(self, baseurl):
 self._baseurl = baseurl
 self._links = { }
 self._loaders = { baseurl : UrlModuleLoader(baseurl) }

 def find_module(self, fullname, path=None):
 log.debug('find_module: fullname=%r, path=%r', fullname, path)
 if path is None:
 baseurl = self._baseurl
 else:
 if not path[0].startswith(self._baseurl):
 return None
 baseurl = path[0]

 parts = fullname.split('.')
 basename = parts[-1]
 log.debug('find_module: baseurl=%r, basename=%r', baseurl, basename)

 # Check link cache
 if basename not in self._links:
 self._links[baseurl] = _get_links(baseurl)

 # Check if it's a package
 if basename in self._links[baseurl]:
 log.debug('find_module: trying package %r', fullname)
 fullurl = self._baseurl + '/' + basename
 # Attempt to load the package (which accesses __init__.py)
 loader = UrlPackageLoader(fullurl)
 try:
 loader.load_module(fullname)
 self._links[fullurl] = _get_links(fullurl)
 self._loaders[fullurl] = UrlModuleLoader(fullurl)
 log.debug('find_module: package %r loaded', fullname)
 except ImportError as e:
 log.debug('find_module: package failed. %s', e)
 loader = None
 return loader

 # A normal module
 filename = basename + '.py'
 if filename in self._links[baseurl]:
 log.debug('find_module: module %r found', fullname)
 return self._loaders[baseurl]
 else:
 log.debug('find_module: module %r not found', fullname)
 return None

10.11. Loading Modules from a Remote Machine Using Import Hooks | 415

 def invalidate_caches(self):
 log.debug('invalidating link cache')
 self._links.clear()

Module Loader for a URL
class UrlModuleLoader(importlib.abc.SourceLoader):
 def __init__(self, baseurl):
 self._baseurl = baseurl
 self._source_cache = {}

 def module_repr(self, module):
 return '<urlmodule %r from %r>' % (module.__name__, module.__file__)

 # Required method
 def load_module(self, fullname):
 code = self.get_code(fullname)
 mod = sys.modules.setdefault(fullname, imp.new_module(fullname))
 mod.__file__ = self.get_filename(fullname)
 mod.__loader__ = self
 mod.__package__ = fullname.rpartition('.')[0]
 exec(code, mod.__dict__)
 return mod

 # Optional extensions
 def get_code(self, fullname):
 src = self.get_source(fullname)
 return compile(src, self.get_filename(fullname), 'exec')

 def get_data(self, path):
 pass

 def get_filename(self, fullname):
 return self._baseurl + '/' + fullname.split('.')[-1] + '.py'

 def get_source(self, fullname):
 filename = self.get_filename(fullname)
 log.debug('loader: reading %r', filename)
 if filename in self._source_cache:
 log.debug('loader: cached %r', filename)
 return self._source_cache[filename]
 try:
 u = urlopen(filename)
 source = u.read().decode('utf-8')
 log.debug('loader: %r loaded', filename)
 self._source_cache[filename] = source
 return source
 except (HTTPError, URLError) as e:
 log.debug('loader: %r failed. %s', filename, e)
 raise ImportError("Can't load %s" % filename)

416 | Chapter 10: Modules and Packages

 def is_package(self, fullname):
 return False

Package loader for a URL
class UrlPackageLoader(UrlModuleLoader):
 def load_module(self, fullname):
 mod = super().load_module(fullname)
 mod.__path__ = [self._baseurl]
 mod.__package__ = fullname

 def get_filename(self, fullname):
 return self._baseurl + '/' + '__init__.py'

 def is_package(self, fullname):
 return True

Utility functions for installing/uninstalling the loader
_installed_meta_cache = { }
def install_meta(address):
 if address not in _installed_meta_cache:
 finder = UrlMetaFinder(address)
 _installed_meta_cache[address] = finder
 sys.meta_path.append(finder)
 log.debug('%r installed on sys.meta_path', finder)

def remove_meta(address):
 if address in _installed_meta_cache:
 finder = _installed_meta_cache.pop(address)
 sys.meta_path.remove(finder)
 log.debug('%r removed from sys.meta_path', finder)

Here is an interactive session showing how to use the preceding code:

>>> # importing currently fails
>>> import fib
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'fib'

>>> # Load the importer and retry (it works)
>>> import urlimport
>>> urlimport.install_meta('http://localhost:15000')
>>> import fib
I'm fib
>>> import spam
I'm spam
>>> import grok.blah
I'm grok.__init__
I'm grok.blah
>>> grok.blah.__file__
'http://localhost:15000/grok/blah.py'
>>>

10.11. Loading Modules from a Remote Machine Using Import Hooks | 417

This particular solution involves installing an instance of a special finder object UrlMe
taFinder as the last entry in sys.meta_path. Whenever modules are imported, the
finders in sys.meta_path are consulted in order to locate the module. In this example,
the UrlMetaFinder instance becomes a finder of last resort that’s triggered when a
module can’t be found in any of the normal locations.

As for the general implementation approach, the UrlMetaFinder class wraps around a
user-specified URL. Internally, the finder builds sets of valid links by scraping them
from the given URL. When imports are made, the module name is compared against
this set of known links. If a match can be found, a separate UrlModuleLoader class is
used to load source code from the remote machine and create the resulting module
object. One reason for caching the links is to avoid unnecessary HTTP requests on
repeated imports.

The second approach to customizing import is to write a hook that plugs directly into
the sys.path variable, recognizing certain directory naming patterns. Add the following
class and support functions to urlimport.py:

urlimport.py

... include previous code above ...

Path finder class for a URL
class UrlPathFinder(importlib.abc.PathEntryFinder):
 def __init__(self, baseurl):
 self._links = None
 self._loader = UrlModuleLoader(baseurl)
 self._baseurl = baseurl

 def find_loader(self, fullname):
 log.debug('find_loader: %r', fullname)
 parts = fullname.split('.')
 basename = parts[-1]
 # Check link cache
 if self._links is None:
 self._links = [] # See discussion
 self._links = _get_links(self._baseurl)

 # Check if it's a package
 if basename in self._links:
 log.debug('find_loader: trying package %r', fullname)
 fullurl = self._baseurl + '/' + basename
 # Attempt to load the package (which accesses __init__.py)
 loader = UrlPackageLoader(fullurl)
 try:
 loader.load_module(fullname)
 log.debug('find_loader: package %r loaded', fullname)
 except ImportError as e:
 log.debug('find_loader: %r is a namespace package', fullname)

418 | Chapter 10: Modules and Packages

 loader = None
 return (loader, [fullurl])

 # A normal module
 filename = basename + '.py'
 if filename in self._links:
 log.debug('find_loader: module %r found', fullname)
 return (self._loader, [])
 else:
 log.debug('find_loader: module %r not found', fullname)
 return (None, [])

 def invalidate_caches(self):
 log.debug('invalidating link cache')
 self._links = None

Check path to see if it looks like a URL
_url_path_cache = {}
def handle_url(path):
 if path.startswith(('http://', 'https://')):
 log.debug('Handle path? %s. [Yes]', path)
 if path in _url_path_cache:
 finder = _url_path_cache[path]
 else:
 finder = UrlPathFinder(path)
 _url_path_cache[path] = finder
 return finder
 else:
 log.debug('Handle path? %s. [No]', path)

def install_path_hook():
 sys.path_hooks.append(handle_url)
 sys.path_importer_cache.clear()
 log.debug('Installing handle_url')

def remove_path_hook():
 sys.path_hooks.remove(handle_url)
 sys.path_importer_cache.clear()
 log.debug('Removing handle_url')

To use this path-based finder, you simply add URLs to sys.path. For example:

>>> # Initial import fails
>>> import fib
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'fib'

>>> # Install the path hook
>>> import urlimport
>>> urlimport.install_path_hook()

>>> # Imports still fail (not on path)

10.11. Loading Modules from a Remote Machine Using Import Hooks | 419

>>> import fib
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'fib'

>>> # Add an entry to sys.path and watch it work
>>> import sys
>>> sys.path.append('http://localhost:15000')
>>> import fib
I'm fib
>>> import grok.blah
I'm grok.__init__
I'm grok.blah
>>> grok.blah.__file__
'http://localhost:15000/grok/blah.py'
>>>

The key to this last example is the handle_url() function, which is added to the
sys.path_hooks variable. When the entries on sys.path are being processed, the func‐
tions in sys.path_hooks are invoked. If any of those functions return a finder object,
that finder is used to try to load modules for that entry on sys.path.

It should be noted that the remotely imported modules work exactly like any other
module. For instance:

>>> fib
<urlmodule 'fib' from 'http://localhost:15000/fib.py'>
>>> fib.__name__
'fib'
>>> fib.__file__
'http://localhost:15000/fib.py'
>>> import inspect
>>> print(inspect.getsource(fib))
fib.py
print("I'm fib")

def fib(n):
 if n < 2:
 return 1
 else:
 return fib(n-1) + fib(n-2)

>>>

Discussion
Before discussing this recipe in further detail, it should be emphasized that Python’s
module, package, and import mechanism is one of the most complicated parts of the
entire language—often poorly understood by even the most seasoned Python pro‐
grammers unless they’ve devoted effort to peeling back the covers. There are several

420 | Chapter 10: Modules and Packages

critical documents that are worth reading, including the documentation for the
importlib module and PEP 302. That documentation won’t be repeated here, but some
essential highlights will be discussed.

First, if you want to create a new module object, you use the imp.new_module() function.
For example:

>>> import imp
>>> m = imp.new_module('spam')
>>> m
<module 'spam'>
>>> m.__name__
'spam'
>>>

Module objects usually have a few expected attributes, including __file__ (the name
of the file that the module was loaded from) and __package__ (the name of the enclosing
package, if any).

Second, modules are cached by the interpreter. The module cache can be found in the
dictionary sys.modules. Because of this caching, it’s common to combine caching and
module creation together into a single step. For example:

>>> import sys
>>> import imp
>>> m = sys.modules.setdefault('spam', imp.new_module('spam'))
>>> m
<module 'spam'>
>>>

The main reason for doing this is that if a module with the given name already exists,
you’ll get the already created module instead. For example:

>>> import math
>>> m = sys.modules.setdefault('math', imp.new_module('math'))
>>> m
<module 'math' from '/usr/local/lib/python3.3/lib-dynload/math.so'>
>>> m.sin(2)
0.9092974268256817
>>> m.cos(2)
-0.4161468365471424
>>>

Since creating modules is easy, it is straightforward to write simple functions, such as
the load_module() function in the first part of this recipe. A downside of this approach
is that it is actually rather tricky to handle more complicated cases, such as package
imports. In order to handle a package, you would have to reimplement much of the
underlying logic that’s already part of the normal import statement (e.g., checking for
directories, looking for __init__.py files, executing those files, setting up paths, etc.).

10.11. Loading Modules from a Remote Machine Using Import Hooks | 421

http://docs.python.org/3/library/importlib.html
http://www.python.org/dev/peps/pep-0302

This complexity is one of the reasons why it’s often better to extend the import statement
directly rather than defining a custom function.

Extending the import statement is straightforward, but involves a number of moving
parts. At the highest level, import operations are processed by a list of “meta-path”
finders that you can find in the list sys.meta_path. If you output its value, you’ll see
the following:

>>> from pprint import pprint
>>> pprint(sys.meta_path)
[<class '_frozen_importlib.BuiltinImporter'>,
 <class '_frozen_importlib.FrozenImporter'>,
 <class '_frozen_importlib.PathFinder'>]
>>>

When executing a statement such as import fib, the interpreter walks through the
finder objects on sys.meta_path and invokes their find_module() method in order to
locate an appropriate module loader. It helps to see this by experimentation, so define
the following class and try the following:

>>> class Finder:
... def find_module(self, fullname, path):
... print('Looking for', fullname, path)
... return None
...
>>> import sys
>>> sys.meta_path.insert(0, Finder()) # Insert as first entry
>>> import math
Looking for math None
>>> import types
Looking for types None
>>> import threading
Looking for threading None
Looking for time None
Looking for traceback None
Looking for linecache None
Looking for tokenize None
Looking for token None
>>>

Notice how the find_module() method is being triggered on every import. The role of
the path argument in this method is to handle packages. When packages are imported,
it is a list of the directories that are found in the package’s __path__ attribute. These are
the paths that need to be checked to find package subcomponents. For example, notice
the path setting for xml.etree and xml.etree.ElementTree:

>>> import xml.etree.ElementTree
Looking for xml None
Looking for xml.etree ['/usr/local/lib/python3.3/xml']
Looking for xml.etree.ElementTree ['/usr/local/lib/python3.3/xml/etree']
Looking for warnings None

422 | Chapter 10: Modules and Packages

Looking for contextlib None
Looking for xml.etree.ElementPath ['/usr/local/lib/python3.3/xml/etree']
Looking for _elementtree None
Looking for copy None
Looking for org None
Looking for pyexpat None
Looking for ElementC14N None
>>>

The placement of the finder on sys.meta_path is critical. Remove it from the front of
the list to the end of the list and try more imports:

>>> del sys.meta_path[0]
>>> sys.meta_path.append(Finder())
>>> import urllib.request
>>> import datetime

Now you don’t see any output because the imports are being handled by other entries
in sys.meta_path. In this case, you would only see it trigger when nonexistent modules
are imported:

>>> import fib
Looking for fib None
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'fib'
>>> import xml.superfast
Looking for xml.superfast ['/usr/local/lib/python3.3/xml']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'xml.superfast'
>>>

The fact that you can install a finder to catch unknown modules is the key to the
UrlMetaFinder class in this recipe. An instance of UrlMetaFinder is added to the end
of sys.meta_path, where it serves as a kind of importer of last resort. If the requested
module name can’t be located by any of the other import mechanisms, it gets handled
by this finder. Some care needs to be taken when handling packages. Specifically, the
value presented in the path argument needs to be checked to see if it starts with the URL
registered in the finder. If not, the submodule must belong to some other finder and
should be ignored.

Additional handling of packages is found in the UrlPackageLoader class. This class,
rather than importing the package name, tries to load the underlying __init__.py file.
It also sets the module __path__ attribute. This last part is critical, as the value set will
be passed to subsequent find_module() calls when loading package submodules.

The path-based import hook is an extension of these ideas, but based on a somewhat
different mechanism. As you know, sys.path is a list of directories where Python looks
for modules. For example:

10.11. Loading Modules from a Remote Machine Using Import Hooks | 423

>>> from pprint import pprint
>>> import sys
>>> pprint(sys.path)
['',
 '/usr/local/lib/python33.zip',
 '/usr/local/lib/python3.3',
 '/usr/local/lib/python3.3/plat-darwin',
 '/usr/local/lib/python3.3/lib-dynload',
 '/usr/local/lib/...3.3/site-packages']
>>>

Each entry in sys.path is additionally attached to a finder object. You can view these
finders by looking at sys.path_importer_cache:

>>> pprint(sys.path_importer_cache)
{'.': FileFinder('.'),
 '/usr/local/lib/python3.3': FileFinder('/usr/local/lib/python3.3'),
 '/usr/local/lib/python3.3/': FileFinder('/usr/local/lib/python3.3/'),
 '/usr/local/lib/python3.3/collections': FileFinder('...python3.3/collections'),
 '/usr/local/lib/python3.3/encodings': FileFinder('...python3.3/encodings'),
 '/usr/local/lib/python3.3/lib-dynload': FileFinder('...python3.3/lib-dynload'),
 '/usr/local/lib/python3.3/plat-darwin': FileFinder('...python3.3/plat-darwin'),
 '/usr/local/lib/python3.3/site-packages': FileFinder('...python3.3/site-packages'),
 '/usr/local/lib/python33.zip': None}
>>>

sys.path_importer_cache tends to be much larger than sys.path because it records
finders for all known directories where code is being loaded. This includes subdirecto‐
ries of packages which usually aren’t included on sys.path.

To execute import fib, the directories on sys.path are checked in order. For each
directory, the name fib is presented to the associated finder found in sys.path_im
porter_cache. This is also something that you can investigate by making your own
finder and putting an entry in the cache. Try this experiment:

>>> class Finder:
... def find_loader(self, name):
... print('Looking for', name)
... return (None, [])
...
>>> import sys
>>> # Add a "debug" entry to the importer cache
>>> sys.path_importer_cache['debug'] = Finder()
>>> # Add a "debug" directory to sys.path
>>> sys.path.insert(0, 'debug')
>>> import threading
Looking for threading
Looking for time
Looking for traceback
Looking for linecache
Looking for tokenize

424 | Chapter 10: Modules and Packages

Looking for token
>>>

Here, you’ve installed a new cache entry for the name debug and installed the name
debug as the first entry on sys.path. On all subsequent imports, you see your finder
being triggered. However, since it returns (None, []), processing simply continues to the
next entry.

The population of sys.path_importer_cache is controlled by a list of functions stored
in sys.path_hooks. Try this experiment, which clears the cache and adds a new path
checking function to sys.path_hooks:

>>> sys.path_importer_cache.clear()
>>> def check_path(path):
... print('Checking', path)
... raise ImportError()
...
>>> sys.path_hooks.insert(0, check_path)
>>> import fib
Checked debug
Checking .
Checking /usr/local/lib/python33.zip
Checking /usr/local/lib/python3.3
Checking /usr/local/lib/python3.3/plat-darwin
Checking /usr/local/lib/python3.3/lib-dynload
Checking /Users/beazley/.local/lib/python3.3/site-packages
Checking /usr/local/lib/python3.3/site-packages
Looking for fib
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'fib'
>>>

As you can see, the check_path() function is being invoked for every entry on
sys.path. However, since an ImportError exception is raised, nothing else happens
(checking just moves to the next function on sys.path_hooks).

Using this knowledge of how sys.path is processed, you can install a custom path
checking function that looks for filename patterns, such as URLs. For instance:

>>> def check_url(path):
... if path.startswith('http://'):
... return Finder()
... else:
... raise ImportError()
...
>>> sys.path.append('http://localhost:15000')
>>> sys.path_hooks[0] = check_url
>>> import fib
Looking for fib # Finder output!
Traceback (most recent call last):

10.11. Loading Modules from a Remote Machine Using Import Hooks | 425

 File "<stdin>", line 1, in <module>
ImportError: No module named 'fib'

>>> # Notice installation of Finder in sys.path_importer_cache
>>> sys.path_importer_cache['http://localhost:15000']
<__main__.Finder object at 0x10064c850>
>>>

This is the key mechanism at work in the last part of this recipe. Essentially, a custom
path checking function has been installed that looks for URLs in sys.path. When they
are encountered, a new UrlPathFinder instance is created and installed into
sys.path_importer_cache. From that point forward, all import statements that pass
through that part of sys.path will try to use your custom finder.

Package handling with a path-based importer is somewhat tricky, and relates to the
return value of the find_loader() method. For simple modules, find_loader() re‐
turns a tuple (loader, None) where loader is an instance of a loader that will import
the module.

For a normal package, find_loader() returns a tuple (loader, path) where loader
is the loader instance that will import the package (and execute __init__.py) and path
is a list of the directories that will make up the initial setting of the package’s __path__
attribute. For example, if the base URL was http://localhost:15000 and a user exe‐
cuted import grok, the path returned by find_loader() would be ['http://local
host:15000/grok'].

The find_loader() must additionally account for the possibility of a namespace pack‐
age. A namespace package is a package where a valid package directory name exists,
but no __init__.py file can be found. For this case, find_loader() must return a tuple
(None, path) where path is a list of directories that would have made up the package’s
__path__ attribute had it defined an __init__.py file. For this case, the import mecha‐
nism moves on to check further directories on sys.path. If more namespace packages
are found, all of the resulting paths are joined together to make a final namespace pack‐
age. See Recipe 10.5 for more information on namespace packages.

There is a recursive element to package handling that is not immediately obvious in the
solution, but also at work. All packages contain an internal path setting, which can be
found in __path__ attribute. For example:

>>> import xml.etree.ElementTree
>>> xml.__path__
['/usr/local/lib/python3.3/xml']
>>> xml.etree.__path__
['/usr/local/lib/python3.3/xml/etree']
>>>

426 | Chapter 10: Modules and Packages

As mentioned, the setting of __path__ is controlled by the return value of the find_load
er() method. However, the subsequent processing of __path__ is also handled by the
functions in sys.path_hooks. Thus, when package subcomponents are loaded, the en‐
tries in __path__ are checked by the handle_url() function. This causes new instances
of UrlPathFinder to be created and added to sys.path_importer_cache.

One remaining tricky part of the implementation concerns the behavior of the han
dle_url() function and its interaction with the _get_links() function used internally.
If your implementation of a finder involves the use of other modules (e.g., urllib.re
quest), there is a possibility that those modules will attempt to make further imports
in the middle of the finder’s operation. This can actually cause handle_url() and other
parts of the finder to get executed in a kind of recursive loop. To account for this pos‐
sibility, the implementation maintains a cache of created finders (one per URL). This
avoids the problem of creating duplicate finders. In addition, the following fragment of
code ensures that the finder doesn’t respond to any import requests while it’s in the
processs of getting the initial set of links:

 # Check link cache
 if self._links is None:
 self._links = [] # See discussion
 self._links = _get_links(self._baseurl)

You may not need this checking in other implementations, but for this example involv‐
ing URLs, it was required.

Finally, the invalidate_caches() method of both finders is a utility method that is
supposed to clear internal caches should the source code change. This method is trig‐
gered when a user invokes importlib.invalidate_caches(). You might use it if you
want the URL importers to reread the list of links, possibly for the purpose of being able
to access newly added files.

In comparing the two approaches (modifying sys.meta_path or using a path hook), it
helps to take a high-level view. Importers installed using sys.meta_path are free to
handle modules in any manner that they wish. For instance, they could load modules
out of a database or import them in a manner that is radically different than normal
module/package handling. This freedom also means that such importers need to do
more bookkeeping and internal management. This explains, for instance, why the im‐
plementation of UrlMetaFinder needs to do its own caching of links, loaders, and other
details. On the other hand, path-based hooks are more narrowly tied to the processing
of sys.path. Because of the connection to sys.path, modules loaded with such exten‐
sions will tend to have the same features as normal modules and packages that pro‐
grammers are used to.

10.11. Loading Modules from a Remote Machine Using Import Hooks | 427

Assuming that your head hasn’t completely exploded at this point, a key to understand‐
ing and experimenting with this recipe may be the added logging calls. You can enable
logging and try experiments such as this:

>>> import logging
>>> logging.basicConfig(level=logging.DEBUG)
>>> import urlimport
>>> urlimport.install_path_hook()
DEBUG:urlimport:Installing handle_url
>>> import fib
DEBUG:urlimport:Handle path? /usr/local/lib/python33.zip. [No]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'fib'
>>> import sys
>>> sys.path.append('http://localhost:15000')
>>> import fib
DEBUG:urlimport:Handle path? http://localhost:15000. [Yes]
DEBUG:urlimport:Getting links from http://localhost:15000
DEBUG:urlimport:links: {'spam.py', 'fib.py', 'grok'}
DEBUG:urlimport:find_loader: 'fib'
DEBUG:urlimport:find_loader: module 'fib' found
DEBUG:urlimport:loader: reading 'http://localhost:15000/fib.py'
DEBUG:urlimport:loader: 'http://localhost:15000/fib.py' loaded
I'm fib
>>>

Last, but not least, spending some time sleeping with PEP 302 and the documentation
for importlib under your pillow may be advisable.

10.12. Patching Modules on Import
Problem
You want to patch or apply decorators to functions in an existing module. However, you
only want to do it if the module actually gets imported and used elsewhere.

Solution
The essential problem here is that you would like to carry out actions in response to a
module being loaded. Perhaps you want to trigger some kind of callback function that
would notify you when a module was loaded.

This problem can be solved using the same import hook machinery discussed in
Recipe 10.11. Here is a possible solution:

428 | Chapter 10: Modules and Packages

http://www.python.org/dev/peps/pep-0302

postimport.py

import importlib
import sys
from collections import defaultdict

_post_import_hooks = defaultdict(list)

class PostImportFinder:
 def __init__(self):
 self._skip = set()

 def find_module(self, fullname, path=None):
 if fullname in self._skip:
 return None
 self._skip.add(fullname)
 return PostImportLoader(self)

class PostImportLoader:
 def __init__(self, finder):
 self._finder = finder

 def load_module(self, fullname):
 importlib.import_module(fullname)
 module = sys.modules[fullname]
 for func in _post_import_hooks[fullname]:
 func(module)
 self._finder._skip.remove(fullname)
 return module

def when_imported(fullname):
 def decorate(func):
 if fullname in sys.modules:
 func(sys.modules[fullname])
 else:
 _post_import_hooks[fullname].append(func)
 return func
 return decorate

sys.meta_path.insert(0, PostImportFinder())

To use this code, you use the when_imported() decorator. For example:

>>> from postimport import when_imported
>>> @when_imported('threading')
... def warn_threads(mod):
... print('Threads? Are you crazy?')
...
>>>
>>> import threading
Threads? Are you crazy?
>>>

10.12. Patching Modules on Import | 429

As a more practical example, maybe you want to apply decorators to existing definitions,
such as shown here:

from functools import wraps
from postimport import when_imported

def logged(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 print('Calling', func.__name__, args, kwargs)
 return func(*args, **kwargs)
 return wrapper

Example
@when_imported('math')
def add_logging(mod):
 mod.cos = logged(mod.cos)
 mod.sin = logged(mod.sin)

Discussion
This recipe relies on the import hooks that were discussed in Recipe 10.11, with a slight
twist.

First, the role of the @when_imported decorator is to register handler functions that get
triggered on import. The decorator checks sys.modules to see if a module was already
loaded. If so, the handler is invoked immediately. Otherwise, the handler is added to a
list in the _post_import_hooks dictionary. The purpose of _post_import_hooks is
simply to collect all handler objects that have been registered for each module. In prin‐
ciple, more than one handler could be registered for a given module.

To trigger the pending actions in _post_import_hooks after module import, the Post
ImportFinder class is installed as the first item in sys.meta_path. If you recall from
Recipe 10.11, sys.meta_path contains a list of finder objects that are consulted in order
to locate modules. By installing PostImportFinder as the first item, it captures all mod‐
ule imports.

In this recipe, however, the role of PostImportFinder is not to load modules, but to
trigger actions upon the completion of an import. To do this, the actual import is dele‐
gated to the other finders on sys.meta_path. Rather than trying to do this directly, the
function imp.import_module() is called recursively in the PostImportLoader class. To
avoid getting stuck in an infinite loop, PostImportFinder keeps a set of all the modules
that are currently in the process of being loaded. If a module name is part of this set, it
is simply ignored by PostImportFinder. This is what causes the import request to pass
to the other finders on sys.meta_path.

430 | Chapter 10: Modules and Packages

After a module has been loaded with imp.import_module(), all handlers currently reg‐
istered in _post_import_hooks are called with the newly loaded module as an argument.
From this point forward, the handlers are free to do what they want with the module.

A major feature of the approach shown in this recipe is that the patching of a module
occurs in a seamless fashion, regardless of where or how a module of interest is actually
loaded. You simply write a handler function that’s decorated with @when_imported()
and it all just magically works from that point forward.

One caution about this recipe is that it does not work for modules that have been ex‐
plicitly reloaded using imp.reload(). That is, if you reload a previously loaded module,
the post import handler function doesn’t get triggered again (all the more reason to not
use reload() in production code). On the other hand, if you delete the module from
sys.modules and redo the import, you’ll see the handler trigger again.

More information about post-import hooks can be found in PEP 369 . As of this writing,
the PEP has been withdrawn by the author due to it being out of date with the current
implementation of the importlib module. However, it is easy enough to implement
your own solution using this recipe.

10.13. Installing Packages Just for Yourself
Problem
You want to install a third-party package, but you don’t have permission to install pack‐
ages into the system Python. Alternatively, perhaps you just want to install a package
for your own use, not all users on the system.

Solution
Python has a per-user installation directory that’s typically located in a directory such
as ~/.local/lib/python3.3/site-packages. To force packages to install in this directory, give
the --user option to the installation command. For example:

 python3 setup.py install --user

or

 pip install --user packagename

The user site-packages directory normally appears before the system site-packages di‐
rectory on sys.path. Thus, packages you install using this technique take priority over
the packages already installed on the system (although this is not always the case de‐
pending on the behavior of third-party package managers, such as distribute or pip).

10.13. Installing Packages Just for Yourself | 431

http://www.python.org/dev/peps/pep-0369

Discussion
Normally, packages get installed into the system-wide site-packages directory, which is
found in a location such as /usr/local/lib/python3.3/site-packages. However, doing so
typically requires administrator permissions and use of the sudo command. Even if you
have permission to execute such a command, using sudo to install a new, possibly un‐
proven, package might give you some pause.

Installing packages into the per-user directory is often an effective workaround that
allows you to create a custom installation.

As an alternative, you can also create a virtual environment, which is discussed in the
next recipe.

10.14. Creating a New Python Environment
Problem
You want to create a new Python environment in which you can install modules and
packages. However, you want to do this without installing a new copy of Python or
making changes that might affect the system Python installation.

Solution
You can make a new “virtual” environment using the pyvenv command. This command
is installed in the same directory as the Python interpreter or possibly in the Scripts
directory on Windows. Here is an example:

 bash % pyvenv Spam
 bash %

The name supplied to pyvenv is the name of a directory that will be created. Upon
creation, the Spam directory will look something like this:

 bash % cd Spam
 bash % ls
 bin include lib pyvenv.cfg
 bash %

In the bin directory, you’ll find a Python interpreter that you can use. For example:

 bash % Spam/bin/python3
 Python 3.3.0 (default, Oct 6 2012, 15:45:22)
 [GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
 Type "help", "copyright", "credits" or "license" for more information.
 >>> from pprint import pprint
 >>> import sys
 >>> pprint(sys.path)
 ['',

432 | Chapter 10: Modules and Packages

 '/usr/local/lib/python33.zip',
 '/usr/local/lib/python3.3',
 '/usr/local/lib/python3.3/plat-darwin',
 '/usr/local/lib/python3.3/lib-dynload',
 '/Users/beazley/Spam/lib/python3.3/site-packages']
 >>>

A key feature of this interpreter is that its site-packages directory has been set to the
newly created environment. Should you decide to install third-party packages, they will
be installed here, not in the normal system site-packages directory.

Discussion
The creation of a virtual environment mostly pertains to the installation and manage‐
ment of third-party packages. As you can see in the example, the sys.path variable
contains directories from the normal system Python, but the site-packages directory has
been relocated to a new directory.

With a new virtual environment, the next step is often to install a package manager,
such as distribute or pip. When installing such tools and subsequent packages, you
just need to make sure you use the interpreter that’s part of the virtual environment.
This should install the packages into the newly created site-packages directory.

Although a virtual environment might look like a copy of the Python installation, it
really only consists of a few files and symbolic links. All of the standard library files and
interpreter executables come from the original Python installation. Thus, creating such
environments is easy, and takes almost no machine resources.

By default, virtual environments are completely clean and contain no third-party add-
ons. If you would like to include already installed packages as part of a virtual environ‐
ment, create the environment using the --system-site-packages option. For example:

 bash % pyvenv --system-site-packages Spam
 bash %

More information about pyvenv and virtual environments can be found in PEP 405.

10.15. Distributing Packages
Problem
You’ve written a useful library, and you want to be able to give it away to others.

10.15. Distributing Packages | 433

http://www.python.org/dev/peps/pep-0405

Solution
If you’re going to start giving code away, the first thing to do is to give it a unique name
and clean up its directory structure. For example, a typical library package might look
something like this:

 projectname/
 README.txt
 Doc/
 documentation.txt
 projectname/
 __init__.py
 foo.py
 bar.py
 utils/
 __init__.py
 spam.py
 grok.py
 examples/
 helloworld.py
 ...

To make the package something that you can distribute, first write a setup.py file that
looks like this:

setup.py
from distutils.core import setup

setup(name='projectname',
 version='1.0',
 author='Your Name',
 author_email='you@youraddress.com',
 url='http://www.you.com/projectname',
 packages=['projectname', 'projectname.utils'],
)

Next, make a file MANIFEST.in that lists various nonsource files that you want to in‐
clude in your package:

 # MANIFEST.in
 include *.txt
 recursive-include examples *
 recursive-include Doc *

Make sure the setup.py and MANIFEST.in files appear in the top-level directory of your
package. Once you have done this, you should be able to make a source distribution by
typing a command such as this:

% bash python3 setup.py sdist

This will create a file such as projectname-1.0.zip or projectname-1.0.tar.gz, depending
on the platform. If it all works, this file is suitable for giving to others or uploading to
the Python Package Index.

434 | Chapter 10: Modules and Packages

http://pypi.python.org

Discussion
For pure Python code, writing a plain setup.py file is usually straightforward. One po‐
tential gotcha is that you have to manually list every subdirectory that makes up the
packages source code. A common mistake is to only list the top-level directory of a
package and to forget to include package subcomponents. This is why the specification
for packages in setup.py includes the list packages=['projectname', 'project
name.utils'].

As most Python programmers know, there are many third-party packaging options,
including setuptools, distribute, and so forth. Some of these are replacements for the
distutils library found in the standard library. Be aware that if you rely on these
packages, users may not be able to install your software unless they also install the
required package manager first. Because of this, you can almost never go wrong by
keeping things as simple as possible. At a bare minimum, make sure your code can be
installed using a standard Python 3 installation. Additional features can be supported
as an option if additional packages are available.

Packaging and distribution of code involving C extensions can get considerably more
complicated. Chapter 15 on C extensions has a few details on this. In particular, see
Recipe 15.2.

10.15. Distributing Packages | 435

CHAPTER 11

Network and Web Programming

This chapter is about various topics related to using Python in networked and dis‐
tributed applications. Topics are split between using Python as a client to access existing
services and using Python to implement networked services as a server. Common tech‐
niques for writing code involving cooperating or communicating with interpreters are
also given.

11.1. Interacting with HTTP Services As a Client
Problem
You need to access various services via HTTP as a client. For example, downloading
data or interacting with a REST-based API.

Solution
For simple things, it’s usually easy enough to use the urllib.request module. For
example, to send a simple HTTP GET request to a remote service, do something like this:

from urllib import request, parse

Base URL being accessed
url = 'http://httpbin.org/get'

Dictionary of query parameters (if any)
parms = {
 'name1' : 'value1',
 'name2' : 'value2'
}

Encode the query string
querystring = parse.urlencode(parms)

437

Make a GET request and read the response
u = request.urlopen(url+'?' + querystring)
resp = u.read()

If you need to send the query parameters in the request body using a POST method,
encode them and supply them as an optional argument to urlopen() like this:

from urllib import request, parse

Base URL being accessed
url = 'http://httpbin.org/post'

Dictionary of query parameters (if any)
parms = {
 'name1' : 'value1',
 'name2' : 'value2'
}

Encode the query string
querystring = parse.urlencode(parms)

Make a POST request and read the response
u = request.urlopen(url, querystring.encode('ascii'))
resp = u.read()

If you need to supply some custom HTTP headers in the outgoing request such as a
change to the user-agent field, make a dictionary containing their value and create a
Request instance and pass it to urlopen() like this:

from urllib import request, parse
...

Extra headers
headers = {
 'User-agent' : 'none/ofyourbusiness',
 'Spam' : 'Eggs'
}

req = request.Request(url, querystring.encode('ascii'), headers=headers)

Make a request and read the response
u = request.urlopen(req)
resp = u.read()

If your interaction with a service is more complicated than this, you should probably
look at the requests library. For example, here is equivalent requests code for the
preceding operations:

import requests

Base URL being accessed
url = 'http://httpbin.org/post'

438 | Chapter 11: Network and Web Programming

http://pypi.python.org/pypi/requests

Dictionary of query parameters (if any)
parms = {
 'name1' : 'value1',
 'name2' : 'value2'
}

Extra headers
headers = {
 'User-agent' : 'none/ofyourbusiness',
 'Spam' : 'Eggs'
}

resp = requests.post(url, data=parms, headers=headers)

Decoded text returned by the request
text = resp.text

A notable feature of requests is how it returns the resulting response content from a
request. As shown, the resp.text attribute gives you the Unicode decoded text of a
request. However, if you access resp.content, you get the raw binary content instead.
On the other hand, if you access resp.json, then you get the response content inter‐
preted as JSON.

Here is an example of using requests to make a HEAD request and extract a few fields
of header data from the response:

import requests

resp = requests.head('http://www.python.org/index.html')

status = resp.status_code
last_modified = resp.headers['last-modified']
content_type = resp.headers['content-type']
content_length = resp.headers['content-length']

Here is a requests example that executes a login into the Python Package index using
basic authentication:

import requests

resp = requests.get('http://pypi.python.org/pypi?:action=login',
 auth=('user','password'))

Here is an example of using requests to pass HTTP cookies from one request to the
next:

import requests

First request
resp1 = requests.get(url)
...

11.1. Interacting with HTTP Services As a Client | 439

Second requests with cookies received on first requests
resp2 = requests.get(url, cookies=resp1.cookies)

Last, but not least, here is an example of using requests to upload content:

import requests
url = 'http://httpbin.org/post'
files = { 'file': ('data.csv', open('data.csv', 'rb')) }

r = requests.post(url, files=files)

Discussion
For really simple HTTP client code, using the built-in urllib module is usually fine.
However, if you have to do anything other than simple GET or POST requests, you really
can’t rely on its functionality. This is where a third-party module, such as requests,
comes in handy.

For example, if you decided to stick entirely with the standard library instead of a library
like requests, you might have to implement your code using the low-level http.cli
ent module instead. For example, this code shows how to execute a HEAD request:

from http.client import HTTPConnection
from urllib import parse

c = HTTPConnection('www.python.org', 80)
c.request('HEAD', '/index.html')
resp = c.getresponse()

print('Status', resp.status)
for name, value in resp.getheaders():
 print(name, value)

Similarly, if you have to write code involving proxies, authentication, cookies, and other
details, using urllib is awkward and verbose. For example, here is a sample of code that
authenticates to the Python package index:

import urllib.request

auth = urllib.request.HTTPBasicAuthHandler()
auth.add_password('pypi','http://pypi.python.org','username','password')
opener = urllib.request.build_opener(auth)

r = urllib.request.Request('http://pypi.python.org/pypi?:action=login')
u = opener.open(r)
resp = u.read()

From here. You can access more pages using opener
...

440 | Chapter 11: Network and Web Programming

Frankly, all of this is much easier in requests.

Testing HTTP client code during development can often be frustrating because of all
the tricky details you need to worry about (e.g., cookies, authentication, headers, en‐
codings, etc.). To do this, consider using the httpbin service. This site receives requests
and then echoes information back to you in the form a JSON response. Here is an
interactive example:

>>> import requests
>>> r = requests.get('http://httpbin.org/get?name=Dave&n=37',
... headers = { 'User-agent': 'goaway/1.0' })
>>> resp = r.json
>>> resp['headers']
{'User-Agent': 'goaway/1.0', 'Content-Length': '', 'Content-Type': '',
'Accept-Encoding': 'gzip, deflate, compress', 'Connection':
'keep-alive', 'Host': 'httpbin.org', 'Accept': '*/*'}
>>> resp['args']
{'name': 'Dave', 'n': '37'}
>>>

Working with a site such as httpbin.org is often preferable to experimenting with a real
site—especially if there’s a risk it might shut down your account after three failed login
attempts (i.e., don’t try to learn how to write an HTTP authentication client by logging
into your bank).

Although it’s not discussed here, requests provides support for many more advanced
HTTP-client protocols, such as OAuth. The requests documentation is excellent (and
frankly better than anything that could be provided in this short space). Go there for
more information.

11.2. Creating a TCP Server
Problem
You want to implement a server that communicates with clients using the TCP Internet
protocol.

Solution
An easy way to create a TCP server is to use the socketserver library. For example,
here is a simple echo server:

from socketserver import BaseRequestHandler, TCPServer

class EchoHandler(BaseRequestHandler):
 def handle(self):
 print('Got connection from', self.client_address)
 while True:

11.2. Creating a TCP Server | 441

http://httpbin.org
http://httpbin.org
http://docs.python-requests.org

 msg = self.request.recv(8192)
 if not msg:
 break
 self.request.send(msg)

if __name__ == '__main__':
 serv = TCPServer(('', 20000), EchoHandler)
 serv.serve_forever()

In this code, you define a special handler class that implements a handle() method for
servicing client connections. The request attribute is the underlying client socket and
client_address has client address.

To test the server, run it and then open a separate Python process that connects to it:

>>> from socket import socket, AF_INET, SOCK_STREAM
>>> s = socket(AF_INET, SOCK_STREAM)
>>> s.connect(('localhost', 20000))
>>> s.send(b'Hello')
5
>>> s.recv(8192)
b'Hello'
>>>

In many cases, it may be easier to define a slightly different kind of handler. Here is an
example that uses the StreamRequestHandler base class to put a file-like interface on
the underlying socket:

from socketserver import StreamRequestHandler, TCPServer

class EchoHandler(StreamRequestHandler):
 def handle(self):
 print('Got connection from', self.client_address)
 # self.rfile is a file-like object for reading
 for line in self.rfile:
 # self.wfile is a file-like object for writing
 self.wfile.write(line)

if __name__ == '__main__':
 serv = TCPServer(('', 20000), EchoHandler)
 serv.serve_forever()

Discussion
socketserver makes it relatively easy to create simple TCP servers. However, you
should be aware that, by default, the servers are single threaded and can only serve one
client at a time. If you want to handle multiple clients, either instantiate a ForkingTCP
Server or ThreadingTCPServer object instead. For example:

from socketserver import ThreadingTCPServer
...

442 | Chapter 11: Network and Web Programming

if __name__ == '__main__':
 serv = ThreadingTCPServer(('', 20000), EchoHandler)
 serv.serve_forever()

One issue with forking and threaded servers is that they spawn a new process or thread
on each client connection. There is no upper bound on the number of allowed clients,
so a malicious hacker could potentially launch a large number of simultaneous con‐
nections in an effort to make your server explode.

If this is a concern, you can create a pre-allocated pool of worker threads or processes.
To do this, you create an instance of a normal nonthreaded server, but then launch the
serve_forever() method in a pool of multiple threads. For example:

...
if __name__ == '__main__':
 from threading import Thread
 NWORKERS = 16
 serv = TCPServer(('', 20000), EchoHandler)
 for n in range(NWORKERS):
 t = Thread(target=serv.serve_forever)
 t.daemon = True
 t.start()
 serv.serve_forever()

Normally, a TCPServer binds and activates the underlying socket upon instantiation.
However, sometimes you might want to adjust the underlying socket by setting options.
To do this, supply the bind_and_activate=False argument, like this:

if __name__ == '__main__':
 serv = TCPServer(('', 20000), EchoHandler, bind_and_activate=False)
 # Set up various socket options
 serv.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, True)
 # Bind and activate
 serv.server_bind()
 serv.server_activate()
 serv.serve_forever()

The socket option shown is actually a very common setting that allows the server to
rebind to a previously used port number. It’s actually so common that it’s a class variable
that can be set on TCPServer. Set it before instantiating the server, as shown in this
example:

...
if __name__ == '__main__':
 TCPServer.allow_reuse_address = True
 serv = TCPServer(('', 20000), EchoHandler)
 serv.serve_forever()

In the solution, two different handler base classes were shown (BaseRequestHandler
and StreamRequestHandler). The StreamRequestHandler class is actually a bit more

11.2. Creating a TCP Server | 443

flexible, and supports some features that can be enabled through the specification of
additional class variables. For example:

import socket

class EchoHandler(StreamRequestHandler):
 # Optional settings (defaults shown)
 timeout = 5 # Timeout on all socket operations
 rbufsize = -1 # Read buffer size
 wbufsize = 0 # Write buffer size
 disable_nagle_algorithm = False # Sets TCP_NODELAY socket option
 def handle(self):
 print('Got connection from', self.client_address)
 try:
 for line in self.rfile:
 # self.wfile is a file-like object for writing
 self.wfile.write(line)
 except socket.timeout:
 print('Timed out!')

Finally, it should be noted that most of Python’s higher-level networking modules (e.g.,
HTTP, XML-RPC, etc.) are built on top of the socketserver functionality. That said,
it is also not difficult to implement servers directly using the socket library as well. Here
is a simple example of directly programming a server with Sockets:

from socket import socket, AF_INET, SOCK_STREAM

def echo_handler(address, client_sock):
 print('Got connection from {}'.format(address))
 while True:
 msg = client_sock.recv(8192)
 if not msg:
 break
 client_sock.sendall(msg)
 client_sock.close()

def echo_server(address, backlog=5):
 sock = socket(AF_INET, SOCK_STREAM)
 sock.bind(address)
 sock.listen(backlog)
 while True:
 client_sock, client_addr = sock.accept()
 echo_handler(client_addr, client_sock)

if __name__ == '__main__':
 echo_server(('', 20000))

444 | Chapter 11: Network and Web Programming

11.3. Creating a UDP Server
Problem
You want to implement a server that communicates with clients using the UDP Internet
protocol.

Solution
As with TCP, UDP servers are also easy to create using the socketserver library. For
example, here is a simple time server:

from socketserver import BaseRequestHandler, UDPServer
import time

class TimeHandler(BaseRequestHandler):
 def handle(self):
 print('Got connection from', self.client_address)
 # Get message and client socket
 msg, sock = self.request
 resp = time.ctime()
 sock.sendto(resp.encode('ascii'), self.client_address)

if __name__ == '__main__':
 serv = UDPServer(('', 20000), TimeHandler)
 serv.serve_forever()

As before, you define a special handler class that implements a handle() method for
servicing client connections. The request attribute is a tuple that contains the incoming
datagram and underlying socket object for the server. The client_address contains
the client address.

To test the server, run it and then open a separate Python process that sends messages
to it:

>>> from socket import socket, AF_INET, SOCK_DGRAM
>>> s = socket(AF_INET, SOCK_DGRAM)
>>> s.sendto(b'', ('localhost', 20000))
0
>>> s.recvfrom(8192)
(b'Wed Aug 15 20:35:08 2012', ('127.0.0.1', 20000))
>>>

Discussion
A typical UDP server receives an incoming datagram (message) along with a client
address. If the server is to respond, it sends a datagram back to the client. For trans‐
mission of datagrams, you should use the sendto() and recvfrom() methods of a

11.3. Creating a UDP Server | 445

socket. Although the traditional send() and recv() methods also might work, the for‐
mer two methods are more commonly used with UDP communication.

Given that there is no underlying connection, UDP servers are often much easier to
write than a TCP server. However, UDP is also inherently unreliable (e.g., no “connec‐
tion” is established and messages might be lost). Thus, it would be up to you to figure
out how to deal with lost messages. That’s a topic beyond the scope of this book, but
typically you might need to introduce sequence numbers, retries, timeouts, and other
mechanisms to ensure reliability if it matters for your application. UDP is often used in
cases where the requirement of reliable delivery can be relaxed. For instance, in real-
time applications such as multimedia streaming and games where there is simply no
option to go back in time and recover a lost packet (the program simply skips it and
keeps moving forward).

The UDPServer class is single threaded, which means that only one request can be serv‐
iced at a time. In practice, this is less of an issue with UDP than with TCP connections.
However, should you want concurrent operation, instantiate a ForkingUDPServer or
ThreadingUDPServer object instead:

from socketserver import ThreadingUDPServer
...
if __name__ == '__main__':
 serv = ThreadingUDPServer(('',20000), TimeHandler)
 serv.serve_forever()

Implementing a UDP server directly using sockets is also not difficult. Here is an
example:

from socket import socket, AF_INET, SOCK_DGRAM
import time

def time_server(address):
 sock = socket(AF_INET, SOCK_DGRAM)
 sock.bind(address)
 while True:
 msg, addr = sock.recvfrom(8192)
 print('Got message from', addr)
 resp = time.ctime()
 sock.sendto(resp.encode('ascii'), addr)

if __name__ == '__main__':
 time_server(('', 20000))

446 | Chapter 11: Network and Web Programming

11.4. Generating a Range of IP Addresses from a CIDR
Address
Problem
You have a CIDR network address such as “123.45.67.89/27,” and you want to generate
a range of all the IP addresses that it represents (e.g., “123.45.67.64,” “123.45.67.65,” …,
“123.45.67.95”).

Solution
The ipaddress module can be easily used to perform such calculations. For example:

>>> import ipaddress
>>> net = ipaddress.ip_network('123.45.67.64/27')
>>> net
IPv4Network('123.45.67.64/27')
>>> for a in net:
... print(a)
...
123.45.67.64
123.45.67.65
123.45.67.66
123.45.67.67
123.45.67.68
...
123.45.67.95
>>>

>>> net6 = ipaddress.ip_network('12:3456:78:90ab:cd:ef01:23:30/125')
>>> net6
IPv6Network('12:3456:78:90ab:cd:ef01:23:30/125')
>>> for a in net6:
... print(a)
...
12:3456:78:90ab:cd:ef01:23:30
12:3456:78:90ab:cd:ef01:23:31
12:3456:78:90ab:cd:ef01:23:32
12:3456:78:90ab:cd:ef01:23:33
12:3456:78:90ab:cd:ef01:23:34
12:3456:78:90ab:cd:ef01:23:35
12:3456:78:90ab:cd:ef01:23:36
12:3456:78:90ab:cd:ef01:23:37
>>>

Network objects also allow indexing like arrays. For example:

>>> net.num_addresses
32
>>> net[0]

11.4. Generating a Range of IP Addresses from a CIDR Address | 447

IPv4Address('123.45.67.64')
>>> net[1]
IPv4Address('123.45.67.65')
>>> net[-1]
IPv4Address('123.45.67.95')
>>> net[-2]
IPv4Address('123.45.67.94')
>>>

In addition, you can perform operations such as a check for network membership:

>>> a = ipaddress.ip_address('123.45.67.69')
>>> a in net
True
>>> b = ipaddress.ip_address('123.45.67.123')
>>> b in net
False
>>>

An IP address and network address can be specified together as an IP interface. For
example:

>>> inet = ipaddress.ip_interface('123.45.67.73/27')
>>> inet.network
IPv4Network('123.45.67.64/27')
>>> inet.ip
IPv4Address('123.45.67.73')
>>>

Discussion
The ipaddress module has classes for representing IP addresses, networks, and inter‐
faces. This can be especially useful if you want to write code that needs to manipulate
network addresses in some way (e.g., parsing, printing, validating, etc.).

Be aware that there is only limited interaction between the ipaddress module and other
network-related modules, such as the socket library. In particular, it is usually not
possible to use an instance of IPv4Address as a substitute for address string. Instead,
you have to explicitly convert it using str() first. For example:

>>> a = ipaddress.ip_address('127.0.0.1')
>>> from socket import socket, AF_INET, SOCK_STREAM
>>> s = socket(AF_INET, SOCK_STREAM)
>>> s.connect((a, 8080))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't convert 'IPv4Address' object to str implicitly
>>> s.connect((str(a), 8080))
>>>

See “An Introduction to the ipaddress Module” for more information and advanced
usage.

448 | Chapter 11: Network and Web Programming

http://docs.python.org/3/howto/ipaddress.html

11.5. Creating a Simple REST-Based Interface
Problem
You want to be able to control or interact with your program remotely over the network
using a simple REST-based interface. However, you don’t want to do it by installing a
full-fledged web programming framework.

Solution
One of the easiest ways to build REST-based interfaces is to create a tiny library based
on the WSGI standard, as described in PEP 3333. Here is an example:

resty.py

import cgi

def notfound_404(environ, start_response):
 start_response('404 Not Found', [('Content-type', 'text/plain')])
 return [b'Not Found']

class PathDispatcher:
 def __init__(self):
 self.pathmap = { }

 def __call__(self, environ, start_response):
 path = environ['PATH_INFO']
 params = cgi.FieldStorage(environ['wsgi.input'],
 environ=environ)
 method = environ['REQUEST_METHOD'].lower()
 environ['params'] = { key: params.getvalue(key) for key in params }
 handler = self.pathmap.get((method,path), notfound_404)
 return handler(environ, start_response)

 def register(self, method, path, function):
 self.pathmap[method.lower(), path] = function
 return function

To use this dispatcher, you simply write different handlers, such as the following:

import time

_hello_resp = '''\
<html>
 <head>
 <title>Hello {name}</title>
 </head>
 <body>
 <h1>Hello {name}!</h1>
 </body>
</html>'''

11.5. Creating a Simple REST-Based Interface | 449

http://www.python.org/dev/peps/pep-3333

def hello_world(environ, start_response):
 start_response('200 OK', [('Content-type','text/html')])
 params = environ['params']
 resp = _hello_resp.format(name=params.get('name'))
 yield resp.encode('utf-8')

_localtime_resp = '''\
<?xml version="1.0"?>
<time>
 <year>{t.tm_year}</year>
 <month>{t.tm_mon}</month>
 <day>{t.tm_mday}</day>
 <hour>{t.tm_hour}</hour>
 <minute>{t.tm_min}</minute>
 <second>{t.tm_sec}</second>
</time>'''

def localtime(environ, start_response):
 start_response('200 OK', [('Content-type', 'application/xml')])
 resp = _localtime_resp.format(t=time.localtime())
 yield resp.encode('utf-8')

if __name__ == '__main__':
 from resty import PathDispatcher
 from wsgiref.simple_server import make_server

 # Create the dispatcher and register functions
 dispatcher = PathDispatcher()
 dispatcher.register('GET', '/hello', hello_world)
 dispatcher.register('GET', '/localtime', localtime)

 # Launch a basic server
 httpd = make_server('', 8080, dispatcher)
 print('Serving on port 8080...')
 httpd.serve_forever()

To test your server, you can interact with it using a browser or urllib. For example:

>>> u = urlopen('http://localhost:8080/hello?name=Guido')
>>> print(u.read().decode('utf-8'))
<html>
 <head>
 <title>Hello Guido</title>
 </head>
 <body>
 <h1>Hello Guido!</h1>
 </body>
</html>
>>> u = urlopen('http://localhost:8080/localtime')
>>> print(u.read().decode('utf-8'))
<?xml version="1.0"?>
<time>

450 | Chapter 11: Network and Web Programming

 <year>2012</year>
 <month>11</month>
 <day>24</day>
 <hour>14</hour>
 <minute>49</minute>
 <second>17</second>
</time>
>>>

Discussion
In REST-based interfaces, you are typically writing programs that respond to common
HTTP requests. However, unlike a full-fledged website, you’re often just pushing data
around. This data might be encoded in a variety of standard formats such as XML, JSON,
or CSV. Although it seems minimal, providing an API in this manner can be a very
useful thing for a wide variety of applications.

For example, long-running programs might use a REST API to implement monitoring
or diagnostics. Big data applications can use REST to build a query/data extraction
system. REST can even be used to control hardware devices, such as robots, sensors,
mills, or lightbulbs. What’s more, REST APIs are well supported by various client-side
programming environments, such as Javascript, Android, iOS, and so forth. Thus, hav‐
ing such an interface can be a way to encourage the development of more complex
applications that interface with your code.

For implementing a simple REST interface, it is often easy enough to base your code on
the Python WSGI standard. WSGI is supported by the standard library, but also by most
third-party web frameworks. Thus, if you use it, there is a lot of flexibility in how your
code might be used later.

In WSGI, you simply implement applications in the form of a callable that accepts this
calling convention:

import cgi

def wsgi_app(environ, start_response):
 ...

The environ argument is a dictionary that contains values inspired by the CGI interface
provided by various web servers such as Apache [see Internet RFC 3875]. To extract
different fields, you would write code like this:

def wsgi_app(environ, start_response):
 method = environ['REQUEST_METHOD']
 path = environ['PATH_INFO']
 # Parse the query parameters
 params = cgi.FieldStorage(environ['wsgi.input'], environ=environ)
 ...

11.5. Creating a Simple REST-Based Interface | 451

http://tools.ietf.org/html/rfc3875

A few common values are shown here. environ['REQUEST_METHOD'] is the type of re‐
quest (e.g., GET, POST, HEAD, etc.). environ['PATH_INFO'] is the path or the resource
being requested. The call to cgi.FieldStorage() extracts supplied query parameters
from the request and puts them into a dictionary-like object for later use.

The start_response argument is a function that must be called to initiate a response.
The first argument is the resulting HTTP status. The second argument is a list of (name,
value) tuples that make up the HTTP headers of the response. For example:

def wsgi_app(environ, start_response):
 ...
 start_response('200 OK', [('Content-type', 'text/plain')])

To return data, an WSGI application must return a sequence of byte strings. This can
be done using a list like this:

def wsgi_app(environ, start_response):
 ...
 start_response('200 OK', [('Content-type', 'text/plain')])
 resp = []
 resp.append(b'Hello World\n')
 resp.append(b'Goodbye!\n')
 return resp

Alternatively, you can use yield:

def wsgi_app(environ, start_response):
 ...
 start_response('200 OK', [('Content-type', 'text/plain')])
 yield b'Hello World\n'
 yield b'Goodbye!\n'

It’s important to emphasize that byte strings must be used in the result. If the response
consists of text, it will need to be encoded into bytes first. Of course, there is no re‐
quirement that the returned value be text—you could easily write an application func‐
tion that creates images.

Although WSGI applications are commonly defined as a function, as shown, an instance
may also be used as long as it implements a suitable __call__() method. For example:

class WSGIApplication:
 def __init__(self):
 ...
 def __call__(self, environ, start_response)
 ...

This technique has been used to create the PathDispatcher class in the recipe. The
dispatcher does nothing more than manage a dictionary mapping (method, path) pairs
to handler functions. When a request arrives, the method and path are extracted and
used to dispatch to a handler. In addition, any query variables are parsed and put into

452 | Chapter 11: Network and Web Programming

a dictionary that is stored as environ['params'] (this latter step is so common, it makes
a lot of sense to simply do it in the dispatcher in order to avoid a lot of replicated code).

To use the dispatcher, you simply create an instance and register various WSGI-style
application functions with it, as shown in the recipe. Writing these functions should be
extremely straightforward, as you follow the rules concerning the start_response()
function and produce output as byte strings.

One thing to consider when writing such functions is the careful use of string templates.
Nobody likes to work with code that is a tangled mess of print() functions, XML, and
various formatting operations. In the solution, triple-quoted string templates are being
defined and used internally. This particular approach makes it easier to change the
format of the output later (just change the template as opposed to any of the code that
uses it).

Finally, an important part of using WSGI is that nothing in the implementation is spe‐
cific to a particular web server. That is actually the whole idea—since the standard is
server and framework neutral, you should be able to plug your application into a wide
variety of servers. In the recipe, the following code is used for testing:

if __name__ == '__main__':
 from wsgiref.simple_server import make_server

 # Create the dispatcher and register functions
 dispatcher = PathDispatcher()
 ...

 # Launch a basic server
 httpd = make_server('', 8080, dispatcher)
 print('Serving on port 8080...')
 httpd.serve_forever()

This will create a simple server that you can use to see if your implementation works.
Later on, when you’re ready to scale things up to a larger level, you will change this code
to work with a particular server.

WSGI is an intentionally minimal specification. As such, it doesn’t provide any support
for more advanced concepts such as authentication, cookies, redirection, and so forth.
These are not hard to implement yourself. However, if you want just a bit more support,
you might consider third-party libraries, such as WebOb or Paste.

11.5. Creating a Simple REST-Based Interface | 453

http://webob.org
http://pythonpaste.org

11.6. Implementing a Simple Remote Procedure Call with
XML-RPC
Problem
You want an easy way to execute functions or methods in Python programs running on
remote machines.

Solution
Perhaps the easiest way to implement a simple remote procedure call mechanism is to
use XML-RPC. Here is an example of a simple server that implements a simple key-
value store:

from xmlrpc.server import SimpleXMLRPCServer

class KeyValueServer:
 _rpc_methods_ = ['get', 'set', 'delete', 'exists', 'keys']
 def __init__(self, address):
 self._data = {}
 self._serv = SimpleXMLRPCServer(address, allow_none=True)
 for name in self._rpc_methods_:
 self._serv.register_function(getattr(self, name))

 def get(self, name):
 return self._data[name]

 def set(self, name, value):
 self._data[name] = value

 def delete(self, name):
 del self._data[name]

 def exists(self, name):
 return name in self._data

 def keys(self):
 return list(self._data)

 def serve_forever(self):
 self._serv.serve_forever()

Example
if __name__ == '__main__':
 kvserv = KeyValueServer(('', 15000))
 kvserv.serve_forever()

Here is how you would access the server remotely from a client:

454 | Chapter 11: Network and Web Programming

>>> from xmlrpc.client import ServerProxy
>>> s = ServerProxy('http://localhost:15000', allow_none=True)
>>> s.set('foo', 'bar')
>>> s.set('spam', [1, 2, 3])
>>> s.keys()
['spam', 'foo']
>>> s.get('foo')
'bar'
>>> s.get('spam')
[1, 2, 3]
>>> s.delete('spam')
>>> s.exists('spam')
False
>>>

Discussion
XML-RPC can be an extremely easy way to set up a simple remote procedure call service.
All you need to do is create a server instance, register functions with it using the regis
ter_function() method, and then launch it using the serve_forever() method. This
recipe packages it up into a class to put all of the code together, but there is no such
requirement. For example, you could create a server by trying something like this:

from xmlrpc.server import SimpleXMLRPCServer
def add(x,y):
 return x+y

serv = SimpleXMLRPCServer(('', 15000))
serv.register_function(add)
serv.serve_forever()

Functions exposed via XML-RPC only work with certain kinds of data such as strings,
numbers, lists, and dictionaries. For everything else, some study is required. For in‐
stance, if you pass an instance through XML-RPC, only its instance dictionary is
handled:

>>> class Point:
... def __init__(self, x, y):
... self.x = x
... self.y = y
...
>>> p = Point(2, 3)
>>> s.set('foo', p)
>>> s.get('foo')
{'x': 2, 'y': 3}
>>>

Similarly, handling of binary data is a bit different than you expect:

>>> s.set('foo', b'Hello World')
>>> s.get('foo')
<xmlrpc.client.Binary object at 0x10131d410>

11.6. Implementing a Simple Remote Procedure Call with XML-RPC | 455

>>> _.data
b'Hello World'
>>>

As a general rule, you probably shouldn’t expose an XML-RPC service to the rest of the
world as a public API. It often works best on internal networks where you might want
to write simple distributed programs involving a few different machines.

A downside to XML-RPC is its performance. The SimpleXMLRPCServer implementa‐
tion is only single threaded, and wouldn’t be appropriate for scaling a large application,
although it can be made to run multithreaded, as shown in Recipe 11.2. Also, since
XML-RPC serializes all data as XML, it’s inherently slower than other approaches.
However, one benefit of this encoding is that it’s understood by a variety of other pro‐
gramming languages. By using it, clients written in languages other than Python will be
able to access your service.

Despite its limitations, XML-RPC is worth knowing about if you ever have the need to
make a quick and dirty remote procedure call system. Oftentimes, the simple solution
is good enough.

11.7. Communicating Simply Between Interpreters
Problem
You are running multiple instances of the Python interpreter, possibly on different ma‐
chines, and you would like to exchange data between interpreters using messages.

Solution
It is easy to communicate between interpreters if you use the multiprocessing.con
nection module. Here is a simple example of writing an echo server:

from multiprocessing.connection import Listener
import traceback

def echo_client(conn):
 try:
 while True:
 msg = conn.recv()
 conn.send(msg)
 except EOFError:
 print('Connection closed')

def echo_server(address, authkey):
 serv = Listener(address, authkey=authkey)
 while True:
 try:
 client = serv.accept()

456 | Chapter 11: Network and Web Programming

 echo_client(client)
 except Exception:
 traceback.print_exc()

echo_server(('', 25000), authkey=b'peekaboo')

Here is a simple example of a client connecting to the server and sending various
messages:

>>> from multiprocessing.connection import Client
>>> c = Client(('localhost', 25000), authkey=b'peekaboo')
>>> c.send('hello')
>>> c.recv()
'hello'
>>> c.send(42)
>>> c.recv()
42
>>> c.send([1, 2, 3, 4, 5])
>>> c.recv()
[1, 2, 3, 4, 5]
>>>

Unlike a low-level socket, messages are kept intact (each object sent using send() is
received in its entirety with recv()). In addition, objects are serialized using pickle.
So, any object compatible with pickle can be sent or received over the connection.

Discussion
There are many packages and libraries related to implementing various forms of mes‐
sage passing, such as ZeroMQ, Celery, and so forth. As an alternative, you might also
be inclined to implement a message layer on top of low-level sockets. However, some‐
times you just want a simple solution. The multiprocessing.connection library is just
that—using a few simple primitives, you can easily connect interpreters together and
have them exchange messages.

If you know that the interpreters are going to be running on the same machine, you can
use alternative forms of networking, such as UNIX domain sockets or Windows named
pipes. To create a connection using a UNIX domain socket, simply change the address
to a filename such as this:

s = Listener('/tmp/myconn', authkey=b'peekaboo')

To create a connection using a Windows named pipe, use a filename such as this:

s = Listener(r'\\.\pipe\myconn', authkey=b'peekaboo')

As a general rule, you would not be using multiprocessing to implement public-facing
services. The authkey parameter to Client() and Listener() is there to help authen‐
ticate the end points of the connection. Connection attempts with a bad key raise an
exception. In addition, the module is probably best suited for long-running connections

11.7. Communicating Simply Between Interpreters | 457

(not a large number of short connections). For example, two interpreters might establish
a connection at startup and keep the connection active for the entire duration of a
problem.

Don’t use multiprocessing if you need more low-level control over aspects of the con‐
nection. For example, if you needed to support timeouts, nonblocking I/O, or anything
similar, you’re probably better off using a different library or implementing such features
on top of sockets instead.

11.8. Implementing Remote Procedure Calls
Problem
You want to implement simple remote procedure call (RPC) on top of a message passing
layer, such as sockets, multiprocessing connections, or ZeroMQ.

Solution
RPC is easy to implement by encoding function requests, arguments, and return values
using pickle, and passing the pickled byte strings between interpreters. Here is an
example of a simple RPC handler that could be incorporated into a server:

rpcserver.py

import pickle
class RPCHandler:
 def __init__(self):
 self._functions = { }

 def register_function(self, func):
 self._functions[func.__name__] = func

 def handle_connection(self, connection):
 try:
 while True:
 # Receive a message
 func_name, args, kwargs = pickle.loads(connection.recv())
 # Run the RPC and send a response
 try:
 r = self._functions[func_name](*args,**kwargs)
 connection.send(pickle.dumps(r))
 except Exception as e:
 connection.send(pickle.dumps(e))
 except EOFError:
 pass

458 | Chapter 11: Network and Web Programming

To use this handler, you need to add it into a messaging server. There are many possible
choices, but the multiprocessing library provides a simple option. Here is an example
RPC server:

from multiprocessing.connection import Listener
from threading import Thread

def rpc_server(handler, address, authkey):
 sock = Listener(address, authkey=authkey)
 while True:
 client = sock.accept()
 t = Thread(target=handler.handle_connection, args=(client,))
 t.daemon = True
 t.start()

Some remote functions
def add(x, y):
 return x + y

def sub(x, y):
 return x - y

Register with a handler
handler = RPCHandler()
handler.register_function(add)
handler.register_function(sub)

Run the server
rpc_server(handler, ('localhost', 17000), authkey=b'peekaboo')

To access the server from a remote client, you need to create a corresponding RPC proxy
class that forwards requests. For example:

import pickle

class RPCProxy:
 def __init__(self, connection):
 self._connection = connection
 def __getattr__(self, name):
 def do_rpc(*args, **kwargs):
 self._connection.send(pickle.dumps((name, args, kwargs)))
 result = pickle.loads(self._connection.recv())
 if isinstance(result, Exception):
 raise result
 return result
 return do_rpc

To use the proxy, you wrap it around a connection to the server. For example:

>>> from multiprocessing.connection import Client
>>> c = Client(('localhost', 17000), authkey=b'peekaboo')
>>> proxy = RPCProxy(c)
>>> proxy.add(2, 3)

11.8. Implementing Remote Procedure Calls | 459

5
>>> proxy.sub(2, 3)
-1
>>> proxy.sub([1, 2], 4)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "rpcserver.py", line 37, in do_rpc
 raise result
TypeError: unsupported operand type(s) for -: 'list' and 'int'
>>>

It should be noted that many messaging layers (such as multiprocessing) already se‐
rialize data using pickle. If this is the case, the pickle.dumps() and pickle.loads()
calls can be eliminated.

Discussion
The general idea of the RPCHandler and RPCProxy classes is relatively simple. If a client
wants to call a remote function, such as foo(1, 2, z=3), the proxy class creates a tuple
('foo', (1, 2), {'z': 3}) that contains the function name and arguments. This
tuple is pickled and sent over the connection. This is performed in the do_rpc() closure
that’s returned by the __getattr__() method of RPCProxy. The server receives and
unpickles the message, looks up the function name to see if it’s registered, and executes
it with the given arguments. The result (or exception) is then pickled and sent back.

As shown, the example relies on multiprocessing for communication. However, this
approach could be made to work with just about any other messaging system. For ex‐
ample, if you want to implement RPC over ZeroMQ, just replace the connection objects
with an appropriate ZeroMQ socket object.

Given the reliance on pickle, security is a major concern (because a clever hacker can
create messages that make arbitrary functions execute during unpickling). In particular,
you should never allow RPC from untrusted or unauthenticated clients. In particular,
you definitely don’t want to allow access from just any machine on the Internet—this
should really only be used internally, behind a firewall, and not exposed to the rest of
the world.

As an alternative to pickle, you might consider the use of JSON, XML, or some other
data encoding for serialization. For example, this recipe is fairly easy to adapt to JSON
encoding if you simply replace pickle.loads() and pickle.dumps() with
json.loads() and json.dumps(). For example:

jsonrpcserver.py
import json

class RPCHandler:
 def __init__(self):
 self._functions = { }

460 | Chapter 11: Network and Web Programming

 def register_function(self, func):
 self._functions[func.__name__] = func

 def handle_connection(self, connection):
 try:
 while True:
 # Receive a message
 func_name, args, kwargs = json.loads(connection.recv())
 # Run the RPC and send a response
 try:
 r = self._functions[func_name](*args,**kwargs)
 connection.send(json.dumps(r))
 except Exception as e:
 connection.send(json.dumps(str(e)))
 except EOFError:
 pass

jsonrpcclient.py
import json

class RPCProxy:
 def __init__(self, connection):
 self._connection = connection
 def __getattr__(self, name):
 def do_rpc(*args, **kwargs):
 self._connection.send(json.dumps((name, args, kwargs)))
 result = json.loads(self._connection.recv())
 return result
 return do_rpc

One complicated factor in implementing RPC is how to handle exceptions. At the very
least, the server shouldn’t crash if an exception is raised by a method. However, the
means by which the exception gets reported back to the client requires some study. If
you’re using pickle, exception instances can often be serialized and reraised in the
client. If you’re using some other protocol, you might have to think of an alternative
approach. At the very least, you would probably want to return the exception string in
the response. This is the approach taken in the JSON example.

For another example of an RPC implementation, it can be useful to look at the imple‐
mentation of the SimpleXMLRPCServer and ServerProxy classes used in XML-RPC, as
described in Recipe 11.6.

11.9. Authenticating Clients Simply
Problem
You want a simple way to authenticate the clients connecting to servers in a distributed
system, but don’t need the complexity of something like SSL.

11.9. Authenticating Clients Simply | 461

Solution
Simple but effective authentication can be performed by implementing a connection
handshake using the hmac module. Here is sample code:

import hmac
import os

def client_authenticate(connection, secret_key):
 '''
 Authenticate client to a remote service.
 connection represents a network connection.
 secret_key is a key known only to both client/server.
 '''
 message = connection.recv(32)
 hash = hmac.new(secret_key, message)
 digest = hash.digest()
 connection.send(digest)

def server_authenticate(connection, secret_key):
 '''
 Request client authentication.
 '''
 message = os.urandom(32)
 connection.send(message)
 hash = hmac.new(secret_key, message)
 digest = hash.digest()
 response = connection.recv(len(digest))
 return hmac.compare_digest(digest,response)

The general idea is that upon connection, the server presents the client with a message
of random bytes (returned by os.urandom(), in this case). The client and server both
compute a cryptographic hash of the random data using hmac and a secret key known
only to both ends. The client sends its computed digest back to the server, where it is
compared and used to decide whether or not to accept or reject the connection.

Comparison of resulting digests should be performed using the hmac.compare_di
gest() function. This function has been written in a way that avoids timing-analysis-
based attacks and should be used instead of a normal comparison operator (==).

To use these functions, you would incorporate them into existing networking or mes‐
saging code. For example, with sockets, the server code might look something like this:

from socket import socket, AF_INET, SOCK_STREAM

secret_key = b'peekaboo'
def echo_handler(client_sock):
 if not server_authenticate(client_sock, secret_key):
 client_sock.close()
 return
 while True:

462 | Chapter 11: Network and Web Programming

 msg = client_sock.recv(8192)
 if not msg:
 break
 client_sock.sendall(msg)

def echo_server(address):
 s = socket(AF_INET, SOCK_STREAM)
 s.bind(address)
 s.listen(5)
 while True:
 c,a = s.accept()
 echo_handler(c)

echo_server(('', 18000))

Within a client, you would do this:

from socket import socket, AF_INET, SOCK_STREAM

secret_key = b'peekaboo'

s = socket(AF_INET, SOCK_STREAM)
s.connect(('localhost', 18000))
client_authenticate(s, secret_key)
s.send(b'Hello World')
resp = s.recv(1024)
...

Discussion
A common use of hmac authentication is in internal messaging systems and interprocess
communication. For example, if you are writing a system that involves multiple pro‐
cesses communicating across a cluster of machines, you can use this approach to make
sure that only allowed processes are allowed to connect to one another. In fact, HMAC-
based authentication is used internally by the multiprocessing library when it sets up
communication with subprocesses.

It’s important to stress that authenticating a connection is not the same as encryption.
Subsequent communication on an authenticated connection is sent in the clear, and
would be visible to anyone inclined to sniff the traffic (although the secret key known
to both sides is never transmitted).

The authentication algorithm used by hmac is based on cryptographic hashing functions,
such as MD5 and SHA-1, and is described in detail in IETF RFC 2104.

11.9. Authenticating Clients Simply | 463

http://tools.ietf.org/html/rfc2104.html

11.10. Adding SSL to Network Services
Problem
You want to implement a network service involving sockets where servers and clients
authenticate themselves and encrypt the transmitted data using SSL.

Solution
The ssl module provides support for adding SSL to low-level socket connections. In
particular, the ssl.wrap_socket() function takes an existing socket and wraps an SSL
layer around it. For example, here’s an example of a simple echo server that presents a
server certificate to connecting clients:

from socket import socket, AF_INET, SOCK_STREAM
import ssl

KEYFILE = 'server_key.pem' # Private key of the server
CERTFILE = 'server_cert.pem' # Server certificate (given to client)

def echo_client(s):
 while True:
 data = s.recv(8192)
 if data == b'':
 break
 s.send(data)
 s.close()
 print('Connection closed')

def echo_server(address):
 s = socket(AF_INET, SOCK_STREAM)
 s.bind(address)
 s.listen(1)

 # Wrap with an SSL layer requiring client certs
 s_ssl = ssl.wrap_socket(s,
 keyfile=KEYFILE,
 certfile=CERTFILE,
 server_side=True
)
 # Wait for connections
 while True:
 try:
 c,a = s_ssl.accept()
 print('Got connection', c, a)
 echo_client(c)
 except Exception as e:
 print('{}: {}'.format(e.__class__.__name__, e))

echo_server(('', 20000))

464 | Chapter 11: Network and Web Programming

Here’s an interactive session that shows how to connect to the server as a client. The
client requires the server to present its certificate and verifies it:

>>> from socket import socket, AF_INET, SOCK_STREAM
>>> import ssl
>>> s = socket(AF_INET, SOCK_STREAM)
>>> s_ssl = ssl.wrap_socket(s,
... cert_reqs=ssl.CERT_REQUIRED,
... ca_certs = 'server_cert.pem')
>>> s_ssl.connect(('localhost', 20000))
>>> s_ssl.send(b'Hello World?')
12
>>> s_ssl.recv(8192)
b'Hello World?'
>>>

The problem with all of this low-level socket hacking is that it doesn’t play well with
existing network services already implemented in the standard library. For example,
most server code (HTTP, XML-RPC, etc.) is actually based on the socketserver library.
Client code is also implemented at a higher level. It is possible to add SSL to existing
services, but a slightly different approach is needed.

First, for servers, SSL can be added through the use of a mixin class like this:

import ssl

class SSLMixin:
 '''
 Mixin class that adds support for SSL to existing servers based
 on the socketserver module.
 '''
 def __init__(self, *args,
 keyfile=None, certfile=None, ca_certs=None,
 cert_reqs=ssl.NONE,
 **kwargs):
 self._keyfile = keyfile
 self._certfile = certfile
 self._ca_certs = ca_certs
 self._cert_reqs = cert_reqs
 super().__init__(*args, **kwargs)

 def get_request(self):
 client, addr = super().get_request()
 client_ssl = ssl.wrap_socket(client,
 keyfile = self._keyfile,
 certfile = self._certfile,
 ca_certs = self._ca_certs,
 cert_reqs = self._cert_reqs,
 server_side = True)
 return client_ssl, addr

11.10. Adding SSL to Network Services | 465

To use this mixin class, you can mix it with other server classes. For example, here’s an
example of defining an XML-RPC server that operates over SSL:

XML-RPC server with SSL

from xmlrpc.server import SimpleXMLRPCServer

class SSLSimpleXMLRPCServer(SSLMixin, SimpleXMLRPCServer):
 pass

Here’s the XML-RPC server from Recipe 11.6 modified only slightly to use SSL:

import ssl
from xmlrpc.server import SimpleXMLRPCServer
from sslmixin import SSLMixin

class SSLSimpleXMLRPCServer(SSLMixin, SimpleXMLRPCServer):
 pass

class KeyValueServer:
 _rpc_methods_ = ['get', 'set', 'delete', 'exists', 'keys']
 def __init__(self, *args, **kwargs):
 self._data = {}
 self._serv = SSLSimpleXMLRPCServer(*args, allow_none=True, **kwargs)
 for name in self._rpc_methods_:
 self._serv.register_function(getattr(self, name))

 def get(self, name):
 return self._data[name]

 def set(self, name, value):
 self._data[name] = value

 def delete(self, name):
 del self._data[name]

 def exists(self, name):
 return name in self._data

 def keys(self):
 return list(self._data)

 def serve_forever(self):
 self._serv.serve_forever()

if __name__ == '__main__':
 KEYFILE='server_key.pem' # Private key of the server
 CERTFILE='server_cert.pem' # Server certificate
 kvserv = KeyValueServer(('', 15000),
 keyfile=KEYFILE,
 certfile=CERTFILE),
 kvserv.serve_forever()

466 | Chapter 11: Network and Web Programming

To use this server, you can connect using the normal xmlrpc.client module. Just spec‐
ify a https: in the URL. For example:

>>> from xmlrpc.client import ServerProxy
>>> s = ServerProxy('https://localhost:15000', allow_none=True)
>>> s.set('foo','bar')
>>> s.set('spam', [1, 2, 3])
>>> s.keys()
['spam', 'foo']
>>> s.get('foo')
'bar'
>>> s.get('spam')
[1, 2, 3]
>>> s.delete('spam')
>>> s.exists('spam')
False
>>>

One complicated issue with SSL clients is performing extra steps to verify the server
certificate or to present a server with client credentials (such as a client certificate).
Unfortunately, there seems to be no standardized way to accomplish this, so research is
often required. However, here is an example of how to set up a secure XML-RPC con‐
nection that verifies the server’s certificate:

from xmlrpc.client import SafeTransport, ServerProxy
import ssl

class VerifyCertSafeTransport(SafeTransport):
 def __init__(self, cafile, certfile=None, keyfile=None):
 SafeTransport.__init__(self)
 self._ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLSv1)
 self._ssl_context.load_verify_locations(cafile)
 if cert:
 self._ssl_context.load_cert_chain(certfile, keyfile)
 self._ssl_context.verify_mode = ssl.CERT_REQUIRED

 def make_connection(self, host):
 # Items in the passed dictionary are passed as keyword
 # arguments to the http.client.HTTPSConnection() constructor.
 # The context argument allows an ssl.SSLContext instance to
 # be passed with information about the SSL configuration
 s = super().make_connection((host, {'context': self._ssl_context}))

 return s

Create the client proxy
s = ServerProxy('https://localhost:15000',
 transport=VerifyCertSafeTransport('server_cert.pem'),
 allow_none=True)

11.10. Adding SSL to Network Services | 467

As shown, the server presents a certificate to the client and the client verifies it. This
verification can go both directions. If the server wants to verify the client, change the
server startup to the following:

if __name__ == '__main__':
 KEYFILE='server_key.pem' # Private key of the server
 CERTFILE='server_cert.pem' # Server certificate
 CA_CERTS='client_cert.pem' # Certificates of accepted clients

 kvserv = KeyValueServer(('', 15000),
 keyfile=KEYFILE,
 certfile=CERTFILE,
 ca_certs=CA_CERTS,
 cert_reqs=ssl.CERT_REQUIRED,
)
 kvserv.serve_forever()

To make the XML-RPC client present its certificates, change the ServerProxy initiali‐
zation to this:

Create the client proxy
s = ServerProxy('https://localhost:15000',
 transport=VerifyCertSafeTransport('server_cert.pem',
 'client_cert.pem',
 'client_key.pem'),
 allow_none=True)

Discussion
Getting this recipe to work will test your system configuration skills and understanding
of SSL. Perhaps the biggest challenge is simply getting the initial configuration of keys,
certificates, and other matters in order.

To clarify what’s required, each endpoint of an SSL connection typically has a private
key and a signed certificate file. The certificate file contains the public key and is pre‐
sented to the remote peer on each connection. For public servers, certificates are nor‐
mally signed by a certificate authority such as Verisign, Equifax, or similar organization
(something that costs money). To verify server certificates, clients maintain a file con‐
taining the certificates of trusted certificate authorities. For example, web browsers
maintain certificates corresponding to the major certificate authorities and use them to
verify the integrity of certificates presented by web servers during HTTPS connections.

For the purposes of this recipe, you can create what’s known as a self-signed certificate.
Here’s how you do it:

bash % openssl req -new -x509 -days 365 -nodes -out server_cert.pem \
 -keyout server_key.pem
Generating a 1024 bit RSA private key
..++++++
...++++++

468 | Chapter 11: Network and Web Programming

writing new private key to 'server_key.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Illinois
Locality Name (eg, city) []:Chicago
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Dabeaz, LLC
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:localhost
Email Address []:
bash %

When creating the certificate, the values for the various fields are often arbitrary. How‐
ever, the “Common Name” field often contains the DNS hostname of servers. If you’re
just testing things out on your own machine, use “localhost.” Otherwise, use the domain
name of the machine that’s going to run the server.

As a result of this configuration, you will have a server_key.pem file that contains the
private key. It looks like this:

 -----BEGIN RSA PRIVATE KEY-----
 MIICXQIBAAKBgQCZrCNLoEyAKF+f9UNcFaz5Osa6jf7qkbUl8si5xQrY3ZYC7juu
 nL1dZLn/VbEFIITaUOgvBtPv1qUWTJGwga62VSG1oFE0ODIx3g2Nh4sRf+rySsx2
 L4442nx0z4O5vJQ7k6eRNHAZUUnCL50+YvjyLyt7ryLSjSuKhCcJsbZgPwIDAQAB
 AoGAB5evrr7eyL4160tM5rHTeATlaLY3UBOe5Z8XN8Z6gLiB/ucSX9AysviVD/6F
 3oD6z2aL8jbeJc1vHqjt0dC2dwwm32vVl8mRdyoAsQpWmiqXrkvP4Bsl04VpBeHw
 Qt8xNSW9SFhceL3LEvw9M8i9MV39viih1ILyH8OuHdvJyFECQQDLEjl2d2ppxND9
 PoLqVFAirDfX2JnLTdWbc+M11a9Jdn3hKF8TcxfEnFVs5Gav1MusicY5KB0ylYPb
 YbTvqKc7AkEAwbnRBO2VYEZsJZp2X0IZqP9ovWokkpYx+PE4+c6MySDgaMcigL7v
 WDIHJG1CHudD09GbqENasDzyb2HAIW4CzQJBAKDdkv+xoW6gJx42Auc2WzTcUHCA
 eXR/+BLpPrhKykzbvOQ8YvS5W764SUO1u1LWs3G+wnRMvrRvlMCZKgggBjkCQQCG
 Jewto2+a+WkOKQXrNNScCDE5aPTmZQc5waCYq4UmCZQcOjkUOiN3ST1U5iuxRqfb
 V/yX6fw0qh+fLWtkOs/JAkA+okMSxZwqRtfgOFGBfwQ8/iKrnizeanTQ3L6scFXI
 CHZXdJ3XQ6qUmNxNn7iJ7S/LDawo1QfWkCfD9FYoxBlg
 -----END RSA PRIVATE KEY-----

The server certificate in server_cert.pem looks similar:

 -----BEGIN CERTIFICATE-----
 MIIC+DCCAmGgAwIBAgIJAPMd+vi45js3MA0GCSqGSIb3DQEBBQUAMFwxCzAJBgNV
 BAYTAlVTMREwDwYDVQQIEwhJbGxpbm9pczEQMA4GA1UEBxMHQ2hpY2FnbzEUMBIG
 A1UEChMLRGFiZWF6LCBMTEMxEjAQBgNVBAMTCWxvY2FsaG9zdDAeFw0xMzAxMTEx
 ODQyMjdaFw0xNDAxMTExODQyMjdaMFwxCzAJBgNVBAYTAlVTMREwDwYDVQQIEwhJ
 bGxpbm9pczEQMA4GA1UEBxMHQ2hpY2FnbzEUMBIGA1UEChMLRGFiZWF6LCBMTEMx
 EjAQBgNVBAMTCWxvY2FsaG9zdDCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA
 mawjS6BMgChfn/VDXBWs+TrGuo3+6pG1JfLIucUK2N2WAu47rpy9XWS5/1WxBSCE
 2lDoLwbT79alFkyRsIGutlUhtaBRNDgyMd4NjYeLEX/q8krMdi+OONp8dM+DubyU

11.10. Adding SSL to Network Services | 469

 O5OnkTRwGVFJwi+dPmL48i8re68i0o0rioQnCbG2YD8CAwEAAaOBwTCBvjAdBgNV
 HQ4EFgQUrtoLHHgXiDZTr26NMmgKJLJLFtIwgY4GA1UdIwSBhjCBg4AUrtoLHHgX
 iDZTr26NMmgKJLJLFtKhYKReMFwxCzAJBgNVBAYTAlVTMREwDwYDVQQIEwhJbGxp
 bm9pczEQMA4GA1UEBxMHQ2hpY2FnbzEUMBIGA1UEChMLRGFiZWF6LCBMTEMxEjAQ
 BgNVBAMTCWxvY2FsaG9zdIIJAPMd+vi45js3MAwGA1UdEwQFMAMBAf8wDQYJKoZI
 hvcNAQEFBQADgYEAFci+dqvMG4xF8UTnbGVvZJPIzJDRee6Nbt6AHQo9pOdAIMAu
 WsGCplSOaDNdKKzl+b2UT2Zp3AIW4Qd51bouSNnR4M/gnr9ZD1ZctFd3jS+C5XRp
 D3vvcW5lAnCCC80P6rXy7d7hTeFu5EYKtRGXNvVNd/06NALGDflrrOwxF3Y=
 -----END CERTIFICATE-----

In server-related code, both the private key and certificate file will be presented to the
various SSL-related wrapping functions. The certificate is what gets presented to clients.
The private key should be protected and remains on the server.

In client-related code, a special file of valid certificate authorities needs to be maintained
to verify the server’s certificate. If you have no such file, then at the very least, you can
put a copy of the server’s certificate on the client machine and use that as a means for
verification. During connection, the server will present its certificate, and then you’ll
use the stored certificate you already have to verify that it’s correct.

Servers can also elect to verify the identity of clients. To do that, clients need to have
their own private key and certificate key. The server would also need to maintain a file
of trusted certificate authorities for verifying the client certificates.

If you intend to add SSL support to a network service for real, this recipe really only
gives a small taste of how to set it up. You will definitely want to consult the documen‐
tation for more of the finer points. Be prepared to spend a significant amount of time
experimenting with it to get things to work.

11.11. Passing a Socket File Descriptor Between Processes
Problem
You have multiple Python interpreter processes running and you want to pass an open
file descriptor from one interpreter to the other. For instance, perhaps there is a server
process that is responsible for receiving connections, but the actual servicing of clients
is to be handled by a different interpreter.

Solution
To pass a file descriptor between processes, you first need to connect the processes
together. On Unix machines, you might use a Unix domain socket, whereas on Win‐
dows, you could use a named pipe. However, rather than deal with such low-level
mechanics, it is often easier to use the multiprocessing module to set up such a
connection.

470 | Chapter 11: Network and Web Programming

http://docs.python.org/3/library/ssl.html
http://docs.python.org/3/library/ssl.html

Once a connection is established, you can use the send_handle() and recv_handle()
functions in multiprocessing.reduction to send file descriptors between processes.

The following example illustrates the basics:

import multiprocessing
from multiprocessing.reduction import recv_handle, send_handle
import socket

def worker(in_p, out_p):
 out_p.close()
 while True:
 fd = recv_handle(in_p)
 print('CHILD: GOT FD', fd)
 with socket.socket(socket.AF_INET, socket.SOCK_STREAM, fileno=fd) as s:
 while True:
 msg = s.recv(1024)
 if not msg:
 break
 print('CHILD: RECV {!r}'.format(msg))
 s.send(msg)

def server(address, in_p, out_p, worker_pid):
 in_p.close()
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, True)
 s.bind(address)
 s.listen(1)
 while True:
 client, addr = s.accept()
 print('SERVER: Got connection from', addr)
 send_handle(out_p, client.fileno(), worker_pid)
 client.close()

if __name__ == '__main__':
 c1, c2 = multiprocessing.Pipe()
 worker_p = multiprocessing.Process(target=worker, args=(c1,c2))
 worker_p.start()

 server_p = multiprocessing.Process(target=server,
 args=(('', 15000), c1, c2, worker_p.pid))
 server_p.start()

 c1.close()
 c2.close()

In this example, two processes are spawned and connected by a multiprocessing Pipe
object. The server process opens a socket and waits for client connections. The worker
process merely waits to receive a file descriptor on the pipe using recv_handle(). When
the server receives a connection, it sends the resulting socket file descriptor to the worker

11.11. Passing a Socket File Descriptor Between Processes | 471

using send_handle(). The worker takes over the socket and echoes data back to the
client until the connection is closed.

If you connect to the running server using Telnet or a similar tool, here is an example
of what you might see:

 bash % python3 passfd.py
 SERVER: Got connection from ('127.0.0.1', 55543)
 CHILD: GOT FD 7
 CHILD: RECV b'Hello\r\n'
 CHILD: RECV b'World\r\n'

The most important part of this example is the fact that the client socket accepted in the
server is actually serviced by a completely different process. The server merely hands it
off, closes it, and waits for the next connection.

Discussion
Passing file descriptors between processes is something that many programmers don’t
even realize is possible. However, it can sometimes be a useful tool in building scalable
systems. For example, on a multicore machine, you could have multiple instances of the
Python interpreter and use file descriptor passing to more evenly balance the number
of clients being handled by each interpreter.

The send_handle() and recv_handle() functions shown in the solution really only
work with multiprocessing connections. Instead of using a pipe, you can connect in‐
terpreters as shown in Recipe 11.7, and it will work as long as you use UNIX domain
sockets or Windows pipes. For example, you could implement the server and worker
as completely separate programs to be started separately. Here is the implementation of
the server:

servermp.py
from multiprocessing.connection import Listener
from multiprocessing.reduction import send_handle
import socket

def server(work_address, port):
 # Wait for the worker to connect
 work_serv = Listener(work_address, authkey=b'peekaboo')
 worker = work_serv.accept()
 worker_pid = worker.recv()

 # Now run a TCP/IP server and send clients to worker
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, True)
 s.bind(('', port))
 s.listen(1)
 while True:
 client, addr = s.accept()
 print('SERVER: Got connection from', addr)

472 | Chapter 11: Network and Web Programming

 send_handle(worker, client.fileno(), worker_pid)
 client.close()

if __name__ == '__main__':
 import sys
 if len(sys.argv) != 3:
 print('Usage: server.py server_address port', file=sys.stderr)
 raise SystemExit(1)

 server(sys.argv[1], int(sys.argv[2]))

To run this server, you would run a command such as python3 servermp.py /tmp/
servconn 15000. Here is the corresponding client code:

workermp.py

from multiprocessing.connection import Client
from multiprocessing.reduction import recv_handle
import os
from socket import socket, AF_INET, SOCK_STREAM

def worker(server_address):
 serv = Client(server_address, authkey=b'peekaboo')
 serv.send(os.getpid())
 while True:
 fd = recv_handle(serv)
 print('WORKER: GOT FD', fd)
 with socket(AF_INET, SOCK_STREAM, fileno=fd) as client:
 while True:
 msg = client.recv(1024)
 if not msg:
 break
 print('WORKER: RECV {!r}'.format(msg))
 client.send(msg)

if __name__ == '__main__':
 import sys
 if len(sys.argv) != 2:
 print('Usage: worker.py server_address', file=sys.stderr)
 raise SystemExit(1)

 worker(sys.argv[1])

To run the worker, you would type python3 workermp.py /tmp/servconn. The result‐
ing operation should be exactly the same as the example that used Pipe().

Under the covers, file descriptor passing involves creating a UNIX domain socket and
the sendmsg() method of sockets. Since this technique is not widely known, here is a
different implementation of the server that shows how to pass descriptors using sockets:

server.py
import socket

11.11. Passing a Socket File Descriptor Between Processes | 473

import struct

def send_fd(sock, fd):
 '''
 Send a single file descriptor.
 '''
 sock.sendmsg([b'x'],
 [(socket.SOL_SOCKET, socket.SCM_RIGHTS, struct.pack('i', fd))])
 ack = sock.recv(2)
 assert ack == b'OK'

def server(work_address, port):
 # Wait for the worker to connect
 work_serv = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
 work_serv.bind(work_address)
 work_serv.listen(1)
 worker, addr = work_serv.accept()

 # Now run a TCP/IP server and send clients to worker
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, True)
 s.bind(('',port))
 s.listen(1)
 while True:
 client, addr = s.accept()
 print('SERVER: Got connection from', addr)
 send_fd(worker, client.fileno())
 client.close()

if __name__ == '__main__':
 import sys
 if len(sys.argv) != 3:
 print('Usage: server.py server_address port', file=sys.stderr)
 raise SystemExit(1)

 server(sys.argv[1], int(sys.argv[2]))

Here is an implementation of the worker using sockets:

worker.py
import socket
import struct

def recv_fd(sock):
 '''
 Receive a single file descriptor
 '''
 msg, ancdata, flags, addr = sock.recvmsg(1,
 socket.CMSG_LEN(struct.calcsize('i')))

 cmsg_level, cmsg_type, cmsg_data = ancdata[0]
 assert cmsg_level == socket.SOL_SOCKET and cmsg_type == socket.SCM_RIGHTS
 sock.sendall(b'OK')

474 | Chapter 11: Network and Web Programming

 return struct.unpack('i', cmsg_data)[0]

def worker(server_address):
 serv = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
 serv.connect(server_address)
 while True:
 fd = recv_fd(serv)
 print('WORKER: GOT FD', fd)
 with socket.socket(socket.AF_INET, socket.SOCK_STREAM, fileno=fd) as client:
 while True:
 msg = client.recv(1024)
 if not msg:
 break
 print('WORKER: RECV {!r}'.format(msg))
 client.send(msg)

if __name__ == '__main__':
 import sys
 if len(sys.argv) != 2:
 print('Usage: worker.py server_address', file=sys.stderr)
 raise SystemExit(1)

 worker(sys.argv[1])

If you are going to use file-descriptor passing in your program, it is advisable to read
more about it in an advanced text, such as Unix Network Programming by W. Richard
Stevens (Prentice Hall, 1990). Passing file descriptors on Windows uses a different
technique than Unix (not shown). For that platform, it is advisable to study the source
code to multiprocessing.reduction in close detail to see how it works.

11.12. Understanding Event-Driven I/O
Problem
You have heard about packages based on “event-driven” or “asynchronous” I/O, but
you’re not entirely sure what it means, how it actually works under the covers, or how
it might impact your program if you use it.

Solution
At a fundamental level, event-driven I/O is a technique that takes basic I/O operations
(e.g., reads and writes) and converts them into events that must be handled by your
program. For example, whenever data was received on a socket, it turns into a “receive”
event that is handled by some sort of callback method or function that you supply to
respond to it. As a possible starting point, an event-driven framework might start with
a base class that implements a series of basic event handler methods like this:

11.12. Understanding Event-Driven I/O | 475

class EventHandler:
 def fileno(self):
 'Return the associated file descriptor'
 raise NotImplemented('must implement')

 def wants_to_receive(self):
 'Return True if receiving is allowed'
 return False

 def handle_receive(self):
 'Perform the receive operation'
 pass

 def wants_to_send(self):
 'Return True if sending is requested'
 return False

 def handle_send(self):
 'Send outgoing data'
 pass

Instances of this class then get plugged into an event loop that looks like this:

import select

def event_loop(handlers):
 while True:
 wants_recv = [h for h in handlers if h.wants_to_receive()]
 wants_send = [h for h in handlers if h.wants_to_send()]
 can_recv, can_send, _ = select.select(wants_recv, wants_send, [])
 for h in can_recv:
 h.handle_receive()
 for h in can_send:
 h.handle_send()

That’s it! The key to the event loop is the select() call, which polls file descriptors for
activity. Prior to calling select(), the event loop simply queries all of the handlers to
see which ones want to receive or send. It then supplies the resulting lists to select().
As a result, select() returns the list of objects that are ready to receive or send. The
corresponding handle_receive() or handle_send() methods are triggered.

To write applications, specific instances of EventHandler classes are created. For ex‐
ample, here are two simple handlers that illustrate two UDP-based network services:

import socket
import time

class UDPServer(EventHandler):
 def __init__(self, address):
 self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 self.sock.bind(address)

476 | Chapter 11: Network and Web Programming

 def fileno(self):
 return self.sock.fileno()

 def wants_to_receive(self):
 return True

class UDPTimeServer(UDPServer):
 def handle_receive(self):
 msg, addr = self.sock.recvfrom(1)
 self.sock.sendto(time.ctime().encode('ascii'), addr)

class UDPEchoServer(UDPServer):
 def handle_receive(self):
 msg, addr = self.sock.recvfrom(8192)
 self.sock.sendto(msg, addr)

if __name__ == '__main__':
 handlers = [UDPTimeServer(('',14000)), UDPEchoServer(('',15000))]
 event_loop(handlers)

To test this code, you can try connecting to it from another Python interpreter:

>>> from socket import *
>>> s = socket(AF_INET, SOCK_DGRAM)
>>> s.sendto(b'',('localhost',14000))
0
>>> s.recvfrom(128)
(b'Tue Sep 18 14:29:23 2012', ('127.0.0.1', 14000))
>>> s.sendto(b'Hello',('localhost',15000))
5
>>> s.recvfrom(128)
(b'Hello', ('127.0.0.1', 15000))
>>>

Implementing a TCP server is somewhat more complex, since each client involves the
instantiation of a new handler object. Here is an example of a TCP echo client.

class TCPServer(EventHandler):
 def __init__(self, address, client_handler, handler_list):
 self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, True)
 self.sock.bind(address)
 self.sock.listen(1)
 self.client_handler = client_handler
 self.handler_list = handler_list

 def fileno(self):
 return self.sock.fileno()

 def wants_to_receive(self):
 return True

11.12. Understanding Event-Driven I/O | 477

 def handle_receive(self):
 client, addr = self.sock.accept()
 # Add the client to the event loop's handler list
 self.handler_list.append(self.client_handler(client, self.handler_list))

class TCPClient(EventHandler):
 def __init__(self, sock, handler_list):
 self.sock = sock
 self.handler_list = handler_list
 self.outgoing = bytearray()

 def fileno(self):
 return self.sock.fileno()

 def close(self):
 self.sock.close()
 # Remove myself from the event loop's handler list
 self.handler_list.remove(self)

 def wants_to_send(self):
 return True if self.outgoing else False

 def handle_send(self):
 nsent = self.sock.send(self.outgoing)
 self.outgoing = self.outgoing[nsent:]

class TCPEchoClient(TCPClient):
 def wants_to_receive(self):
 return True

 def handle_receive(self):
 data = self.sock.recv(8192)
 if not data:
 self.close()
 else:
 self.outgoing.extend(data)

if __name__ == '__main__':
 handlers = []
 handlers.append(TCPServer(('',16000), TCPEchoClient, handlers))
 event_loop(handlers)

The key to the TCP example is the addition and removal of clients from the handler list.
On each connection, a new handler is created for the client and added to the list. When
the connection is closed, each client must take care to remove themselves from the list.

If you run this program and try connecting with Telnet or some similar tool, you’ll see
it echoing received data back to you. It should easily handle multiple clients.

478 | Chapter 11: Network and Web Programming

Discussion
Virtually all event-driven frameworks operate in a manner that is similar to that shown
in the solution. The actual implementation details and overall software architecture
might vary greatly, but at the core, there is a polling loop that checks sockets for activity
and which performs operations in response.

One potential benefit of event-driven I/O is that it can handle a very large number of
simultaneous connections without ever using threads or processes. That is, the se
lect() call (or equivalent) can be used to monitor hundreds or thousands of sockets
and respond to events occuring on any of them. Events are handled one at a time by the
event loop, without the need for any other concurrency primitives.

The downside to event-driven I/O is that there is no true concurrency involved. If any
of the event handler methods blocks or performs a long-running calculation, it blocks
the progress of everything. There is also the problem of calling out to library functions
that aren’t written in an event-driven style. There is always the risk that some library
call will block, causing the event loop to stall.

Problems with blocking or long-running calculations can be solved by sending the work
out to a separate thread or process. However, coordinating threads and processes with
an event loop is tricky. Here is an example of code that will do it using the concur
rent.futures module:

from concurrent.futures import ThreadPoolExecutor
import os

class ThreadPoolHandler(EventHandler):
 def __init__(self, nworkers):
 if os.name == 'posix':
 self.signal_done_sock, self.done_sock = socket.socketpair()
 else:
 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 server.bind(('127.0.0.1', 0))
 server.listen(1)
 self.signal_done_sock = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
 self.signal_done_sock.connect(server.getsockname())
 self.done_sock, _ = server.accept()
 server.close()

 self.pending = []
 self.pool = ThreadPoolExecutor(nworkers)

 def fileno(self):
 return self.done_sock.fileno()

 # Callback that executes when the thread is done
 def _complete(self, callback, r):

11.12. Understanding Event-Driven I/O | 479

 self.pending.append((callback, r.result()))
 self.signal_done_sock.send(b'x')

 # Run a function in a thread pool
 def run(self, func, args=(), kwargs={},*,callback):
 r = self.pool.submit(func, *args, **kwargs)
 r.add_done_callback(lambda r: self._complete(callback, r))

 def wants_to_receive(self):
 return True

 # Run callback functions of completed work
 def handle_receive(self):
 # Invoke all pending callback functions
 for callback, result in self.pending:
 callback(result)
 self.done_sock.recv(1)
 self.pending = []

In this code, the run() method is used to submit work to the pool along with a callback
function that should be triggered upon completion. The actual work is then submitted
to a ThreadPoolExecutor instance. However, a really tricky problem concerns the co‐
ordination of the computed result and the event loop. To do this, a pair of sockets are
created under the covers and used as a kind of signaling mechanism. When work is
completed by the thread pool, it executes the _complete() method in the class. This
method queues up the pending callback and result before writing a byte of data on one
of these sockets. The fileno() method is programmed to return the other socket. Thus,
when this byte is written, it will signal to the event loop that something has happened.
The handle_receive() method, when triggered, will then execute all of the callback
functions for previously submitted work. Frankly, it’s enough to make one’s head spin.

Here is a simple server that shows how to use the thread pool to carry out a long-running
calculation:

A really bad Fibonacci implementation
def fib(n):
 if n < 2:
 return 1
 else:
 return fib(n - 1) + fib(n - 2)

class UDPFibServer(UDPServer):
 def handle_receive(self):
 msg, addr = self.sock.recvfrom(128)
 n = int(msg)
 pool.run(fib, (n,), callback=lambda r: self.respond(r, addr))

 def respond(self, result, addr):
 self.sock.sendto(str(result).encode('ascii'), addr)

480 | Chapter 11: Network and Web Programming

if __name__ == '__main__':
 pool = ThreadPoolHandler(16)
 handlers = [pool, UDPFibServer(('',16000))]
 event_loop(handlers)

To try this server, simply run it and try some experiments with another Python program:

from socket import *
sock = socket(AF_INET, SOCK_DGRAM)
for x in range(40):
 sock.sendto(str(x).encode('ascii'), ('localhost', 16000))
 resp = sock.recvfrom(8192)
 print(resp[0])

You should be able to run this program repeatedly from many different windows and
have it operate without stalling other programs, even though it gets slower and slower
as the numbers get larger.

Having gone through this recipe, should you use its code? Probably not. Instead, you
should look for a more fully developed framework that accomplishes the same task.
However, if you understand the basic concepts presented here, you’ll understand the
core techniques used to make such frameworks operate. As an alternative to callback-
based programming, event-driven code will sometimes use coroutines. See Recipe 12.12
for an example.

11.13. Sending and Receiving Large Arrays
Problem
You want to send and receive large arrays of contiguous data across a network connec‐
tion, making as few copies of the data as possible.

Solution
The following functions utilize memoryviews to send and receive large arrays:

zerocopy.py

def send_from(arr, dest):
 view = memoryview(arr).cast('B')
 while len(view):
 nsent = dest.send(view)
 view = view[nsent:]

def recv_into(arr, source):
 view = memoryview(arr).cast('B')
 while len(view):
 nrecv = source.recv_into(view)
 view = view[nrecv:]

11.13. Sending and Receiving Large Arrays | 481

To test the program, first create a server and client program connected over a socket.
In the server:

>>> from socket import *
>>> s = socket(AF_INET, SOCK_STREAM)
>>> s.bind(('', 25000))
>>> s.listen(1)
>>> c,a = s.accept()
>>>

In the client (in a separate interpreter):

>>> from socket import *
>>> c = socket(AF_INET, SOCK_STREAM)
>>> c.connect(('localhost', 25000))
>>>

Now, the whole idea of this recipe is that you can blast a huge array through the con‐
nection. In this case, arrays might be created by the array module or perhaps numpy.
For example:

Server
>>> import numpy
>>> a = numpy.arange(0.0, 50000000.0)
>>> send_from(a, c)
>>>

Client
>>> import numpy
>>> a = numpy.zeros(shape=50000000, dtype=float)
>>> a[0:10]
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
>>> recv_into(a, c)
>>> a[0:10]
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
>>>

Discussion
In data-intensive distributed computing and parallel programming applications, it’s not
uncommon to write programs that need to send/receive large chunks of data. However,
to do this, you somehow need to reduce the data down to raw bytes for use with low-
level network functions. You may also need to slice the data into chunks, since most
network-related functions aren’t able to send or receive huge blocks of data entirely all
at once.

One approach is to serialize the data in some way—possibly by converting into a byte
string. However, this usually ends up making a copy of the data. Even if you do this
piecemeal, your code still ends up making a lot of little copies.

482 | Chapter 11: Network and Web Programming

This recipe gets around this by playing a sneaky trick with memoryviews. Essentially, a
memoryview is an overlay of an existing array. Not only that, memoryviews can be cast
to different types to allow interpretation of the data in a different manner. This is the
purpose of the following statement:

view = memoryview(arr).cast('B')

It takes an array arr and casts into a memoryview of unsigned bytes.

In this form, the view can be passed to socket-related functions, such as sock.send()
or send.recv_into(). Under the covers, those methods are able to work directly with
the memory region. For example, sock.send() sends data directly from memory
without a copy. send.recv_into() uses the memoryview as the input buffer for the
receive operation.

The remaining complication is the fact that the socket functions may only work with
partial data. In general, it will take many different send() and recv_into() calls to
transmit the entire array. Not to worry. After each operation, the view is sliced by the
number of sent or received bytes to produce a new view. The new view is also a memory
overlay. Thus, no copies are made.

One issue here is that the receiver has to know in advance how much data will be sent
so that it can either preallocate an array or verify that it can receive the data into an
existing array. If this is a problem, the sender could always arrange to send the size first,
followed by the array data.

11.13. Sending and Receiving Large Arrays | 483

CHAPTER 12

Concurrency

Python has long supported different approaches to concurrent programming, including
programming with threads, launching subprocesses, and various tricks involving gen‐
erator functions. In this chapter, recipes related to various aspects of concurrent pro‐
gramming are presented, including common thread programming techniques and ap‐
proaches for parallel processing.

As experienced programmers know, concurrent programming is fraught with potential
peril. Thus, a major focus of this chapter is on recipes that tend to lead to more reliable
and debuggable code.

12.1. Starting and Stopping Threads
Problem
You want to create and destroy threads for concurrent execution of code.

Solution
The threading library can be used to execute any Python callable in its own thread. To
do this, you create a Thread instance and supply the callable that you wish to execute
as a target. Here is a simple example:

Code to execute in an independent thread
import time
def countdown(n):
 while n > 0:
 print('T-minus', n)
 n -= 1
 time.sleep(5)

485

Create and launch a thread
from threading import Thread
t = Thread(target=countdown, args=(10,))
t.start()

When you create a thread instance, it doesn’t start executing until you invoke its start()
method (which invokes the target function with the arguments you supplied).

Threads are executed in their own system-level thread (e.g., a POSIX thread or Windows
threads) that is fully managed by the host operating system. Once started, threads run
independently until the target function returns. You can query a thread instance to see
if it’s still running:

if t.is_alive():
 print('Still running')
else:
 print('Completed')

You can also request to join with a thread, which waits for it to terminate:

 t.join()

The interpreter remains running until all threads terminate. For long-running threads
or background tasks that run forever, you should consider making the thread daemonic.
For example:

t = Thread(target=countdown, args=(10,), daemon=True)
t.start()

Daemonic threads can’t be joined. However, they are destroyed automatically when the
main thread terminates.

Beyond the two operations shown, there aren’t many other things you can do with
threads. For example, there are no operations to terminate a thread, signal a thread,
adjust its scheduling, or perform any other high-level operations. If you want these
features, you need to build them yourself.

If you want to be able to terminate threads, the thread must be programmed to poll for
exit at selected points. For example, you might put your thread in a class such as this:

class CountdownTask:
 def __init__(self):
 self._running = True

 def terminate(self):
 self._running = False

 def run(self, n):
 while self._running and n > 0:
 print('T-minus', n)
 n -= 1
 time.sleep(5)

486 | Chapter 12: Concurrency

c = CountdownTask()
t = Thread(target=c.run, args=(10,))
t.start()
...
c.terminate() # Signal termination
t.join() # Wait for actual termination (if needed)

Polling for thread termination can be tricky to coordinate if threads perform blocking
operations such as I/O. For example, a thread blocked indefinitely on an I/O operation
may never return to check if it’s been killed. To correctly deal with this case, you’ll need
to carefully program thread to utilize timeout loops. For example:

class IOTask:
 def terminate(self):
 self._running = False

 def run(self, sock):
 # sock is a socket
 sock.settimeout(5) # Set timeout period
 while self._running:
 # Perform a blocking I/O operation w/ timeout
 try:
 data = sock.recv(8192)
 break
 except socket.timeout:
 continue
 # Continued processing
 ...
 # Terminated
 return

Discussion
Due to a global interpreter lock (GIL), Python threads are restricted to an execution
model that only allows one thread to execute in the interpreter at any given time. For
this reason, Python threads should generally not be used for computationally intensive
tasks where you are trying to achieve parallelism on multiple CPUs. They are much
better suited for I/O handling and handling concurrent execution in code that performs
blocking operations (e.g., waiting for I/O, waiting for results from a database, etc.).

Sometimes you will see threads defined via inheritance from the Thread class. For
example:

from threading import Thread

class CountdownThread(Thread):
 def __init__(self, n):
 super().__init__()
 self.n = 0
 def run(self):
 while self.n > 0:

12.1. Starting and Stopping Threads | 487

 print('T-minus', self.n)
 self.n -= 1
 time.sleep(5)

c = CountdownThread(5)
c.start()

Although this works, it introduces an extra dependency between the code and the
threading library. That is, you can only use the resulting code in the context of threads,
whereas the technique shown earlier involves writing code with no explicit dependency
on threading. By freeing your code of such dependencies, it becomes usable in other
contexts that may or may not involve threads. For instance, you might be able to execute
your code in a separate process using the multiprocessing module using code like this:

import multiprocessing
c = CountdownTask(5)
p = multiprocessing.Process(target=c.run)
p.start()
...

Again, this only works if the CountdownTask class has been written in a manner that is
neutral to the actual means of concurrency (threads, processes, etc.).

12.2. Determining If a Thread Has Started
Problem
You’ve launched a thread, but want to know when it actually starts running.

Solution
A key feature of threads is that they execute independently and nondeterministically.
This can present a tricky synchronization problem if other threads in the program need
to know if a thread has reached a certain point in its execution before carrying out
further operations. To solve such problems, use the Event object from the threading
library.

Event instances are similar to a “sticky” flag that allows threads to wait for something
to happen. Initially, an event is set to 0. If the event is unset and a thread waits on the
event, it will block (i.e., go to sleep) until the event gets set. A thread that sets the event
will wake up all of the threads that happen to be waiting (if any). If a thread waits on an
event that has already been set, it merely moves on, continuing to execute.

Here is some sample code that uses an Event to coordinate the startup of a thread:

from threading import Thread, Event
import time

488 | Chapter 12: Concurrency

Code to execute in an independent thread
def countdown(n, started_evt):
 print('countdown starting')
 started_evt.set()
 while n > 0:
 print('T-minus', n)
 n -= 1
 time.sleep(5)

Create the event object that will be used to signal startup
started_evt = Event()

Launch the thread and pass the startup event
print('Launching countdown')
t = Thread(target=countdown, args=(10,started_evt))
t.start()

Wait for the thread to start
started_evt.wait()
print('countdown is running')

When you run this code, the “countdown is running” message will always appear after
the “countdown starting” message. This is coordinated by the event that makes the main
thread wait until the countdown() function has first printed the startup message.

Discussion
Event objects are best used for one-time events. That is, you create an event, threads
wait for the event to be set, and once set, the Event is discarded. Although it is possible
to clear an event using its clear() method, safely clearing an event and waiting for it
to be set again is tricky to coordinate, and can lead to missed events, deadlock, or other
problems (in particular, you can’t guarantee that a request to clear an event after setting
it will execute before a released thread cycles back to wait on the event again).

If a thread is going to repeatedly signal an event over and over, you’re probably better
off using a Condition object instead. For example, this code implements a periodic timer
that other threads can monitor to see whenever the timer expires:

import threading
import time

class PeriodicTimer:
 def __init__(self, interval):
 self._interval = interval
 self._flag = 0
 self._cv = threading.Condition()

 def start(self):
 t = threading.Thread(target=self.run)
 t.daemon = True

12.2. Determining If a Thread Has Started | 489

 t.start()

 def run(self):
 '''
 Run the timer and notify waiting threads after each interval
 '''
 while True:
 time.sleep(self._interval)
 with self._cv:
 self._flag ^= 1
 self._cv.notify_all()

 def wait_for_tick(self):
 '''
 Wait for the next tick of the timer
 '''
 with self._cv:
 last_flag = self._flag
 while last_flag == self._flag:
 self._cv.wait()

Example use of the timer
ptimer = PeriodicTimer(5)
ptimer.start()

Two threads that synchronize on the timer
def countdown(nticks):
 while nticks > 0:
 ptimer.wait_for_tick()
 print('T-minus', nticks)
 nticks -= 1

def countup(last):
 n = 0
 while n < last:
 ptimer.wait_for_tick()
 print('Counting', n)
 n += 1

threading.Thread(target=countdown, args=(10,)).start()
threading.Thread(target=countup, args=(5,)).start()

A critical feature of Event objects is that they wake all waiting threads. If you are writing
a program where you only want to wake up a single waiting thread, it is probably better
to use a Semaphore or Condition object instead.

For example, consider this code involving semaphores:

Worker thread
def worker(n, sema):
 # Wait to be signaled
 sema.acquire()

490 | Chapter 12: Concurrency

 # Do some work
 print('Working', n)

Create some threads
sema = threading.Semaphore(0)
nworkers = 10
for n in range(nworkers):
 t = threading.Thread(target=worker, args=(n, sema,))
 t.start()

If you run this, a pool of threads will start, but nothing happens because they’re all
blocked waiting to acquire the semaphore. Each time the semaphore is released, only
one worker will wake up and run. For example:

>>> sema.release()
Working 0
>>> sema.release()
Working 1
>>>

Writing code that involves a lot of tricky synchronization between threads is likely to
make your head explode. A more sane approach is to thread threads as communicating
tasks using queues or as actors. Queues are described in the next recipe. Actors are
described in Recipe 12.10.

12.3. Communicating Between Threads
Problem
You have multiple threads in your program and you want to safely communicate or
exchange data between them.

Solution
Perhaps the safest way to send data from one thread to another is to use a Queue from
the queue library. To do this, you create a Queue instance that is shared by the threads.
Threads then use put() or get() operations to add or remove items from the queue.
For example:

from queue import Queue
from threading import Thread

A thread that produces data
def producer(out_q):
 while True:
 # Produce some data
 ...
 out_q.put(data)

12.3. Communicating Between Threads | 491

A thread that consumes data
def consumer(in_q):
 while True:
 # Get some data
 data = in_q.get()
 # Process the data
 ...

Create the shared queue and launch both threads
q = Queue()
t1 = Thread(target=consumer, args=(q,))
t2 = Thread(target=producer, args=(q,))
t1.start()
t2.start()

Queue instances already have all of the required locking, so they can be safely shared by
as many threads as you wish.

When using queues, it can be somewhat tricky to coordinate the shutdown of the pro‐
ducer and consumer. A common solution to this problem is to rely on a special sentinel
value, which when placed in the queue, causes consumers to terminate. For example:

from queue import Queue
from threading import Thread

Object that signals shutdown
_sentinel = object()

A thread that produces data
def producer(out_q):
 while running:
 # Produce some data
 ...
 out_q.put(data)

 # Put the sentinel on the queue to indicate completion
 out_q.put(_sentinel)

A thread that consumes data
def consumer(in_q):
 while True:
 # Get some data
 data = in_q.get()

 # Check for termination
 if data is _sentinel:
 in_q.put(_sentinel)
 break

 # Process the data
 ...

492 | Chapter 12: Concurrency

A subtle feature of this example is that the consumer, upon receiving the special sentinel
value, immediately places it back onto the queue. This propagates the sentinel to other
consumers threads that might be listening on the same queue—thus shutting them all
down one after the other.

Although queues are the most common thread communication mechanism, you can
build your own data structures as long as you add the required locking and synchroni‐
zation. The most common way to do this is to wrap your data structures with a condition
variable. For example, here is how you might build a thread-safe priority queue, as
discussed in Recipe 1.5.

import heapq
import threading

class PriorityQueue:
 def __init__(self):
 self._queue = []
 self._count = 0
 self._cv = threading.Condition()
 def put(self, item, priority):
 with self._cv:
 heapq.heappush(self._queue, (-priority, self._count, item))
 self._count += 1
 self._cv.notify()

 def get(self):
 with self._cv:
 while len(self._queue) == 0:
 self._cv.wait()
 return heapq.heappop(self._queue)[-1]

Thread communication with a queue is a one-way and nondeterministic process. In
general, there is no way to know when the receiving thread has actually received a
message and worked on it. However, Queue objects do provide some basic completion
features, as illustrated by the task_done() and join() methods in this example:

from queue import Queue
from threading import Thread

A thread that produces data
def producer(out_q):
 while running:
 # Produce some data
 ...
 out_q.put(data)

A thread that consumes data
def consumer(in_q):
 while True:
 # Get some data
 data = in_q.get()

12.3. Communicating Between Threads | 493

 # Process the data
 ...
 # Indicate completion
 in_q.task_done()

Create the shared queue and launch both threads
q = Queue()
t1 = Thread(target=consumer, args=(q,))
t2 = Thread(target=producer, args=(q,))
t1.start()
t2.start()

Wait for all produced items to be consumed
q.join()

If a thread needs to know immediately when a consumer thread has processed a par‐
ticular item of data, you should pair the sent data with an Event object that allows the
producer to monitor its progress. For example:

from queue import Queue
from threading import Thread, Event

A thread that produces data
def producer(out_q):
 while running:
 # Produce some data
 ...
 # Make an (data, event) pair and hand it to the consumer
 evt = Event()
 out_q.put((data, evt))
 ...
 # Wait for the consumer to process the item
 evt.wait()

A thread that consumes data
def consumer(in_q):
 while True:
 # Get some data
 data, evt = in_q.get()
 # Process the data
 ...
 # Indicate completion
 evt.set()

Discussion
Writing threaded programs based on simple queuing is often a good way to maintain
sanity. If you can break everything down to simple thread-safe queuing, you’ll find that
you don’t need to litter your program with locks and other low-level synchronization.
Also, communicating with queues often leads to designs that can be scaled up to other
kinds of message-based communication patterns later on. For instance, you might be

494 | Chapter 12: Concurrency

able to split your program into multiple processes, or even a distributed system, without
changing much of its underlying queuing architecture.

One caution with thread queues is that putting an item in a queue doesn’t make a copy
of the item. Thus, communication actually involves passing an object reference between
threads. If you are concerned about shared state, it may make sense to only pass im‐
mutable data structures (e.g., integers, strings, or tuples) or to make deep copies of the
queued items. For example:

from queue import Queue
from threading import Thread
import copy

A thread that produces data
def producer(out_q):
 while True:
 # Produce some data
 ...
 out_q.put(copy.deepcopy(data))

A thread that consumes data
def consumer(in_q):
 while True:
 # Get some data
 data = in_q.get()
 # Process the data
 ...

Queue objects provide a few additional features that may prove to be useful in certain
contexts. If you create a Queue with an optional size, such as Queue(N), it places a limit
on the number of items that can be enqueued before the put() blocks the producer.
Adding an upper bound to a queue might make sense if there is mismatch in speed
between a producer and consumer. For instance, if a producer is generating items at a
much faster rate than they can be consumed. On the other hand, making a queue block
when it’s full can also have an unintended cascading effect throughout your program,
possibly causing it to deadlock or run poorly. In general, the problem of “flow control”
between communicating threads is a much harder problem than it seems. If you ever
find yourself trying to fix a problem by fiddling with queue sizes, it could be an indicator
of a fragile design or some other inherent scaling problem.

Both the get() and put() methods support nonblocking and timeouts. For example:

import queue
q = queue.Queue()

try:
 data = q.get(block=False)
except queue.Empty:
 ...

12.3. Communicating Between Threads | 495

try:
 q.put(item, block=False)
except queue.Full:
 ...

try:
 data = q.get(timeout=5.0)
except queue.Empty:
 ...

Both of these options can be used to avoid the problem of just blocking indefinitely on
a particular queuing operation. For example, a nonblocking put() could be used with
a fixed-sized queue to implement different kinds of handling code for when a queue is
full. For example, issuing a log message and discarding:

def producer(q):
 ...
 try:
 q.put(item, block=False)
 except queue.Full:
 log.warning('queued item %r discarded!', item)

A timeout is useful if you’re trying to make consumer threads periodically give up on
operations such as q.get() so that they can check things such as a termination flag, as
described in Recipe 12.1.

_running = True

def consumer(q):
 while _running:
 try:
 item = q.get(timeout=5.0)
 # Process item
 ...
 except queue.Empty:
 pass

Lastly, there are utility methods q.qsize(), q.full(), q.empty() that can tell you the
current size and status of the queue. However, be aware that all of these are unreliable
in a multithreaded environment. For example, a call to q.empty() might tell you that
the queue is empty, but in the time that has elapsed since making the call, another thread
could have added an item to the queue. Frankly, it’s best to write your code not to rely
on such functions.

496 | Chapter 12: Concurrency

12.4. Locking Critical Sections
Problem
Your program uses threads and you want to lock critical sections of code to avoid race
conditions.

Solution
To make mutable objects safe to use by multiple threads, use Lock objects in the thread
ing library, as shown here:

import threading

class SharedCounter:
 '''
 A counter object that can be shared by multiple threads.
 '''
 def __init__(self, initial_value = 0):
 self._value = initial_value
 self._value_lock = threading.Lock()

 def incr(self,delta=1):
 '''
 Increment the counter with locking
 '''
 with self._value_lock:
 self._value += delta

 def decr(self,delta=1):
 '''
 Decrement the counter with locking
 '''
 with self._value_lock:
 self._value -= delta

A Lock guarantees mutual exclusion when used with the with statement—that is, only
one thread is allowed to execute the block of statements under the with statement at a
time. The with statement acquires the lock for the duration of the indented statements
and releases the lock when control flow exits the indented block.

Discussion
Thread scheduling is inherently nondeterministic. Because of this, failure to use locks
in threaded programs can result in randomly corrupted data and bizarre behavior
known as a “race condition.” To avoid this, locks should always be used whenever shared
mutable state is accessed by multiple threads.

12.4. Locking Critical Sections | 497

In older Python code, it is common to see locks explicitly acquired and released. For
example, in this variant of the last example:

import threading

class SharedCounter:
 '''
 A counter object that can be shared by multiple threads.
 '''
 def __init__(self, initial_value = 0):
 self._value = initial_value
 self._value_lock = threading.Lock()

 def incr(self,delta=1):
 '''
 Increment the counter with locking
 '''
 self._value_lock.acquire()
 self._value += delta
 self._value_lock.release()

 def decr(self,delta=1):
 '''
 Decrement the counter with locking
 '''
 self._value_lock.acquire()
 self._value -= delta
 self._value_lock.release()

The with statement is more elegant and less prone to error—especially in situations
where a programmer might forget to call the release() method or if a program happens
to raise an exception while holding a lock (the with statement guarantees that locks are
always released in both cases).

To avoid the potential for deadlock, programs that use locks should be written in a way
such that each thread is only allowed to acquire one lock at a time. If this is not possible,
you may need to introduce more advanced deadlock avoidance into your program, as
described in Recipe 12.5.

In the threading library, you’ll find other synchronization primitives, such as RLock
and Semaphore objects. As a general rule of thumb, these are more special purpose and
should not be used for simple locking of mutable state. An RLock or re-entrant lock
object is a lock that can be acquired multiple times by the same thread. It is primarily
used to implement code based locking or synchronization based on a construct known
as a “monitor.” With this kind of locking, only one thread is allowed to use an entire
function or the methods of a class while the lock is held. For example, you could im‐
plement the SharedCounter class like this:

498 | Chapter 12: Concurrency

import threading

class SharedCounter:
 '''
 A counter object that can be shared by multiple threads.
 '''
 _lock = threading.RLock()
 def __init__(self, initial_value = 0):
 self._value = initial_value

 def incr(self,delta=1):
 '''
 Increment the counter with locking
 '''
 with SharedCounter._lock:
 self._value += delta

 def decr(self,delta=1):
 '''
 Decrement the counter with locking
 '''
 with SharedCounter._lock:
 self.incr(-delta)

In this variant of the code, there is just a single class-level lock shared by all instances
of the class. Instead of the lock being tied to the per-instance mutable state, the lock is
meant to synchronize the methods of the class. Specifically, this lock ensures that only
one thread is allowed to be using the methods of the class at once. However, unlike a
standard lock, it is OK for methods that already have the lock to call other methods that
also use the lock (e.g., see the decr() method).

One feature of this implementation is that only one lock is created, regardless of how
many counter instances are created. Thus, it is much more memory-efficient in situa‐
tions where there are a large number of counters. However, a possible downside is that
it may cause more lock contention in programs that use a large number of threads and
make frequent counter updates.

A Semaphore object is a synchronization primitive based on a shared counter. If the
counter is nonzero, the with statement decrements the count and a thread is allowed to
proceed. The counter is incremented upon the conclusion of the with block. If the
counter is zero, progress is blocked until the counter is incremented by another thread.
Although a semaphore can be used in the same manner as a standard Lock, the added
complexity in implementation negatively impacts performance. Instead of simple lock‐
ing, Semaphore objects are more useful for applications involving signaling between
threads or throttling. For example, if you want to limit the amount of concurrency in a
part of code, you might use a semaphore, as follows:

from threading import Semaphore
import urllib.request

12.4. Locking Critical Sections | 499

At most, five threads allowed to run at once
_fetch_url_sema = Semaphore(5)

def fetch_url(url):
 with _fetch_url_sema:
 return urllib.request.urlopen(url)

If you’re interested in the underlying theory and implementation of thread synchroni‐
zation primitives, consult almost any textbook on operating systems.

12.5. Locking with Deadlock Avoidance
Problem
You’re writing a multithreaded program where threads need to acquire more than one
lock at a time while avoiding deadlock.

Solution
In multithreaded programs, a common source of deadlock is due to threads that attempt
to acquire multiple locks at once. For instance, if a thread acquires the first lock, but
then blocks trying to acquire the second lock, that thread can potentially block the
progress of other threads and make the program freeze.

One solution to deadlock avoidance is to assign each lock in the program a unique
number, and to enforce an ordering rule that only allows multiple locks to be acquired
in ascending order. This is surprisingly easy to implement using a context manager as
follows:

import threading
from contextlib import contextmanager

Thread-local state to stored information on locks already acquired
_local = threading.local()

@contextmanager
def acquire(*locks):
 # Sort locks by object identifier
 locks = sorted(locks, key=lambda x: id(x))

 # Make sure lock order of previously acquired locks is not violated
 acquired = getattr(_local,'acquired',[])
 if acquired and max(id(lock) for lock in acquired) >= id(locks[0]):
 raise RuntimeError('Lock Order Violation')

 # Acquire all of the locks
 acquired.extend(locks)
 _local.acquired = acquired

500 | Chapter 12: Concurrency

 try:
 for lock in locks:
 lock.acquire()
 yield
 finally:
 # Release locks in reverse order of acquisition
 for lock in reversed(locks):
 lock.release()
 del acquired[-len(locks):]

To use this context manager, you simply allocate lock objects in the normal way, but use
the acquire() function whenever you want to work with one or more locks. For
example:

import threading
x_lock = threading.Lock()
y_lock = threading.Lock()

def thread_1():
 while True:
 with acquire(x_lock, y_lock):
 print('Thread-1')

def thread_2():
 while True:
 with acquire(y_lock, x_lock):
 print('Thread-2')

t1 = threading.Thread(target=thread_1)
t1.daemon = True
t1.start()

t2 = threading.Thread(target=thread_2)
t2.daemon = True
t2.start()

If you run this program, you’ll find that it happily runs forever without deadlock—even
though the acquisition of locks is specified in a different order in each function.

The key to this recipe lies in the first statement that sorts the locks according to object
identifier. By sorting the locks, they always get acquired in a consistent order regardless
of how the user might have provided them to acquire().

The solution uses thread-local storage to solve a subtle problem with detecting potential
deadlock if multiple acquire() operations are nested. For example, suppose you wrote
the code like this:

import threading
x_lock = threading.Lock()
y_lock = threading.Lock()

def thread_1():

12.5. Locking with Deadlock Avoidance | 501

 while True:
 with acquire(x_lock):
 with acquire(y_lock):
 print('Thread-1')

def thread_2():
 while True:
 with acquire(y_lock):
 with acquire(x_lock):
 print('Thread-2')

t1 = threading.Thread(target=thread_1)
t1.daemon = True
t1.start()

t2 = threading.Thread(target=thread_2)
t2.daemon = True
t2.start()

If you run this version of the program, one of the threads will crash with an exception
such as this:

Exception in thread Thread-1:
Traceback (most recent call last):
 File "/usr/local/lib/python3.3/threading.py", line 639, in _bootstrap_inner
 self.run()
 File "/usr/local/lib/python3.3/threading.py", line 596, in run
 self._target(*self._args, **self._kwargs)
 File "deadlock.py", line 49, in thread_1
 with acquire(y_lock):
 File "/usr/local/lib/python3.3/contextlib.py", line 48, in __enter__
 return next(self.gen)
 File "deadlock.py", line 15, in acquire
 raise RuntimeError("Lock Order Violation")
RuntimeError: Lock Order Violation
>>>

This crash is caused by the fact that each thread remembers the locks it has already
acquired. The acquire() function checks the list of previously acquired locks and en‐
forces the ordering constraint that previously acquired locks must have an object ID
that is less than the new locks being acquired.

Discussion
The issue of deadlock is a well-known problem with programs involving threads (as
well as a common subject in textbooks on operating systems). As a rule of thumb, as
long as you can ensure that threads can hold only one lock at a time, your program will
be deadlock free. However, once multiple locks are being acquired at the same time, all
bets are off.

502 | Chapter 12: Concurrency

Detecting and recovering from deadlock is an extremely tricky problem with few elegant
solutions. For example, a common deadlock detection and recovery scheme involves
the use of a watchdog timer. As threads run, they periodically reset the timer, and as
long as everything is running smoothly, all is well. However, if the program deadlocks,
the watchdog timer will eventually expire. At that point, the program “recovers” by
killing and then restarting itself.

Deadlock avoidance is a different strategy where locking operations are carried out in
a manner that simply does not allow the program to enter a deadlocked state. The
solution in which locks are always acquired in strict order of ascending object ID can
be mathematically proven to avoid deadlock, although the proof is left as an exercise to
the reader (the gist of it is that by acquiring locks in a purely increasing order, you can’t
get cyclic locking dependencies, which are a necessary condition for deadlock to occur).

As a final example, a classic thread deadlock problem is the so-called “dining philoso‐
pher’s problem.” In this problem, five philosophers sit around a table on which there
are five bowls of rice and five chopsticks. Each philosopher represents an independent
thread and each chopstick represents a lock. In the problem, philosophers either sit and
think or they eat rice. However, in order to eat rice, a philosopher needs two chopsticks.
Unfortunately, if all of the philosophers reach over and grab the chopstick to their left,
they’ll all just sit there with one stick and eventually starve to death. It’s a gruesome
scene.

Using the solution, here is a simple deadlock free implementation of the dining philos‐
opher’s problem:

import threading

The philosopher thread
def philosopher(left, right):
 while True:
 with acquire(left,right):
 print(threading.currentThread(), 'eating')

The chopsticks (represented by locks)
NSTICKS = 5
chopsticks = [threading.Lock() for n in range(NSTICKS)]

Create all of the philosophers
for n in range(NSTICKS):
 t = threading.Thread(target=philosopher,
 args=(chopsticks[n],chopsticks[(n+1) % NSTICKS]))
 t.start()

Last, but not least, it should be noted that in order to avoid deadlock, all locking oper‐
ations must be carried out using our acquire() function. If some fragment of code
decided to acquire a lock directly, then the deadlock avoidance algorithm wouldn’t work.

12.5. Locking with Deadlock Avoidance | 503

12.6. Storing Thread-Specific State
Problem
You need to store state that’s specific to the currently executing thread and not visible
to other threads.

Solution
Sometimes in multithreaded programs, you need to store data that is only specific to
the currently executing thread. To do this, create a thread-local storage object using
threading.local(). Attributes stored and read on this object are only visible to the
executing thread and no others.

As an interesting practical example of using thread-local storage, consider the LazyCon
nection context-manager class that was first defined in Recipe 8.3. Here is a slightly
modified version that safely works with multiple threads:

from socket import socket, AF_INET, SOCK_STREAM
import threading

class LazyConnection:
 def __init__(self, address, family=AF_INET, type=SOCK_STREAM):
 self.address = address
 self.family = AF_INET
 self.type = SOCK_STREAM
 self.local = threading.local()

 def __enter__(self):
 if hasattr(self.local, 'sock'):
 raise RuntimeError('Already connected')
 self.local.sock = socket(self.family, self.type)
 self.local.sock.connect(self.address)
 return self.local.sock

 def __exit__(self, exc_ty, exc_val, tb):
 self.local.sock.close()
 del self.local.sock

In this code, carefully observe the use of the self.local attribute. It is initialized as an
instance of threading.local(). The other methods then manipulate a socket that’s
stored as self.local.sock. This is enough to make it possible to safely use an instance
of LazyConnection in multiple threads. For example:

from functools import partial
def test(conn):
 with conn as s:
 s.send(b'GET /index.html HTTP/1.0\r\n')
 s.send(b'Host: www.python.org\r\n')

504 | Chapter 12: Concurrency

 s.send(b'\r\n')
 resp = b''.join(iter(partial(s.recv, 8192), b''))

 print('Got {} bytes'.format(len(resp)))

if __name__ == '__main__':
 conn = LazyConnection(('www.python.org', 80))

 t1 = threading.Thread(target=test, args=(conn,))
 t2 = threading.Thread(target=test, args=(conn,))
 t1.start()
 t2.start()
 t1.join()
 t2.join()

The reason it works is that each thread actually creates its own dedicated socket con‐
nection (stored as self.local.sock). Thus, when the different threads perform socket
operations, they don’t interfere with one another as they are being performed on dif‐
ferent sockets.

Discussion
Creating and manipulating thread-specific state is not a problem that often arises in
most programs. However, when it does, it commonly involves situations where an object
being used by multiple threads needs to manipulate some kind of dedicated system
resource, such as a socket or file. You can’t just have a single socket object shared by
everyone because chaos would ensue if multiple threads ever started reading and writing
on it at the same time. Thread-local storage fixes this by making such resources only
visible in the thread where they’re being used.

In this recipe, the use of threading.local() makes the LazyConnection class support
one connection per thread, as opposed to one connection for the entire process. It’s a
subtle but interesting distinction.

Under the covers, an instance of threading.local() maintains a separate instance
dictionary for each thread. All of the usual instance operations of getting, setting, and
deleting values just manipulate the per-thread dictionary. The fact that each thread uses
a separate dictionary is what provides the isolation of data.

12.7. Creating a Thread Pool
Problem
You want to create a pool of worker threads for serving clients or performing other kinds
of work.

12.7. Creating a Thread Pool | 505

Solution
The concurrent.futures library has a ThreadPoolExecutor class that can be used for
this purpose. Here is an example of a simple TCP server that uses a thread-pool to serve
clients:

from socket import AF_INET, SOCK_STREAM, socket
from concurrent.futures import ThreadPoolExecutor

def echo_client(sock, client_addr):
 '''
 Handle a client connection
 '''
 print('Got connection from', client_addr)
 while True:
 msg = sock.recv(65536)
 if not msg:
 break
 sock.sendall(msg)
 print('Client closed connection')
 sock.close()

def echo_server(addr):
 pool = ThreadPoolExecutor(128)
 sock = socket(AF_INET, SOCK_STREAM)
 sock.bind(addr)
 sock.listen(5)
 while True:
 client_sock, client_addr = sock.accept()
 pool.submit(echo_client, client_sock, client_addr)

echo_server(('',15000))

If you want to manually create your own thread pool, it’s usually easy enough to do it
using a Queue. Here is a slightly different, but manual implementation of the same code:

from socket import socket, AF_INET, SOCK_STREAM
from threading import Thread
from queue import Queue

def echo_client(q):
 '''
 Handle a client connection
 '''
 sock, client_addr = q.get()
 print('Got connection from', client_addr)
 while True:
 msg = sock.recv(65536)
 if not msg:
 break
 sock.sendall(msg)
 print('Client closed connection')

506 | Chapter 12: Concurrency

 sock.close()

def echo_server(addr, nworkers):
 # Launch the client workers
 q = Queue()
 for n in range(nworkers):
 t = Thread(target=echo_client, args=(q,))
 t.daemon = True
 t.start()

 # Run the server
 sock = socket(AF_INET, SOCK_STREAM)
 sock.bind(addr)
 sock.listen(5)
 while True:
 client_sock, client_addr = sock.accept()
 q.put((client_sock, client_addr))

echo_server(('',15000), 128)

One advantage of using ThreadPoolExecutor over a manual implementation is that it
makes it easier for the submitter to receive results from the called function. For example,
you could write code like this:

from concurrent.futures import ThreadPoolExecutor
import urllib.request

def fetch_url(url):
 u = urllib.request.urlopen(url)
 data = u.read()
 return data

pool = ThreadPoolExecutor(10)
Submit work to the pool
a = pool.submit(fetch_url, 'http://www.python.org')
b = pool.submit(fetch_url, 'http://www.pypy.org')

Get the results back
x = a.result()
y = b.result()

The result objects in the example handle all of the blocking and coordination needed
to get data back from the worker thread. Specifically, the operation a.result() blocks
until the corresponding function has been executed by the pool and returned a value.

Discussion
Generally, you should avoid writing programs that allow unlimited growth in the num‐
ber of threads. For example, take a look at the following server:

from threading import Thread
from socket import socket, AF_INET, SOCK_STREAM

12.7. Creating a Thread Pool | 507

def echo_client(sock, client_addr):
 '''
 Handle a client connection
 '''
 print('Got connection from', client_addr)
 while True:
 msg = sock.recv(65536)
 if not msg:
 break
 sock.sendall(msg)
 print('Client closed connection')
 sock.close()

def echo_server(addr, nworkers):
 # Run the server
 sock = socket(AF_INET, SOCK_STREAM)
 sock.bind(addr)
 sock.listen(5)
 while True:
 client_sock, client_addr = sock.accept()
 t = Thread(target=echo_client, args=(client_sock, client_addr))
 t.daemon = True
 t.start()

echo_server(('',15000))

Although this works, it doesn’t prevent some asynchronous hipster from launching an
attack on the server that makes it create so many threads that your program runs out
of resources and crashes (thus further demonstrating the “evils” of using threads). By
using a pre-initialized thread pool, you can carefully put an upper limit on the amount
of supported concurrency.

You might be concerned with the effect of creating a large number of threads. However,
modern systems should have no trouble creating pools of a few thousand threads.
Moreover, having a thousand threads just sitting around waiting for work isn’t going to
have much, if any, impact on the performance of other code (a sleeping thread does just
that—nothing at all). Of course, if all of those threads wake up at the same time and
start hammering on the CPU, that’s a different story—especially in light of the Global
Interpreter Lock (GIL). Generally, you only want to use thread pools for I/O-bound
processing.

One possible concern with creating large thread pools might be memory use. For ex‐
ample, if you create 2,000 threads on OS X, the system shows the Python process using
up more than 9 GB of virtual memory. However, this is actually somewhat misleading.
When creating a thread, the operating system reserves a region of virtual memory to
hold the thread’s execution stack (often as large as 8 MB). Only a small fragment of this
memory is actually mapped to real memory, though. Thus, if you look a bit closer, you
might find the Python process is using far less real memory (e.g., for 2,000 threads, only

508 | Chapter 12: Concurrency

70 MB of real memory is used, not 9 GB). If the size of the virtual memory is a concern,
you can dial it down using the threading.stack_size() function. For example:

import threading
threading.stack_size(65536)

If you add this call and repeat the experiment of creating 2,000 threads, you’ll find that
the Python process is now only using about 210 MB of virtual memory, although the
amount of real memory in use remains about the same. Note that the thread stack size
must be at least 32,768 bytes, and is usually restricted to be a multiple of the system
memory page size (4096, 8192, etc.).

12.8. Performing Simple Parallel Programming
Problem
You have a program that performs a lot of CPU-intensive work, and you want to make
it run faster by having it take advantage of multiple CPUs.

Solution
The concurrent.futures library provides a ProcessPoolExecutor class that can be
used to execute computationally intensive functions in a separately running instance of
the Python interpreter. However, in order to use it, you first need to have some com‐
putationally intensive work. Let’s illustrate with a simple yet practical example.

Suppose you have an entire directory of gzip-compressed Apache web server logs:

logs/
 20120701.log.gz
 20120702.log.gz
 20120703.log.gz
 20120704.log.gz
 20120705.log.gz
 20120706.log.gz
 ...

Further suppose each log file contains lines like this:

124.115.6.12 - - [10/Jul/2012:00:18:50 -0500] "GET /robots.txt ..." 200 71
210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] "GET /ply/ ..." 200 11875
210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] "GET /favicon.ico ..." 404 369
61.135.216.105 - - [10/Jul/2012:00:20:04 -0500] "GET /blog/atom.xml ..." 304 -
...

Here is a simple script that takes this data and identifies all hosts that have accessed the
robots.txt file:

12.8. Performing Simple Parallel Programming | 509

findrobots.py

import gzip
import io
import glob

def find_robots(filename):
 '''
 Find all of the hosts that access robots.txt in a single log file
 '''
 robots = set()
 with gzip.open(filename) as f:
 for line in io.TextIOWrapper(f,encoding='ascii'):
 fields = line.split()
 if fields[6] == '/robots.txt':
 robots.add(fields[0])
 return robots

def find_all_robots(logdir):
 '''
 Find all hosts across and entire sequence of files
 '''
 files = glob.glob(logdir+'/*.log.gz')
 all_robots = set()
 for robots in map(find_robots, files):
 all_robots.update(robots)
 return all_robots

if __name__ == '__main__':
 robots = find_all_robots('logs')
 for ipaddr in robots:
 print(ipaddr)

The preceding program is written in the commonly used map-reduce style. The function
find_robots() is mapped across a collection of filenames and the results are combined
into a single result (the all_robots set in the find_all_robots() function).

Now, suppose you want to modify this program to use multiple CPUs. It turns out to
be easy—simply replace the map() operation with a similar operation carried out on a
process pool from the concurrent.futures library. Here is a slightly modified version
of the code:

findrobots.py

import gzip
import io
import glob
from concurrent import futures

def find_robots(filename):
 '''
 Find all of the hosts that access robots.txt in a single log file

510 | Chapter 12: Concurrency

 '''
 robots = set()
 with gzip.open(filename) as f:
 for line in io.TextIOWrapper(f,encoding='ascii'):
 fields = line.split()
 if fields[6] == '/robots.txt':
 robots.add(fields[0])
 return robots

def find_all_robots(logdir):
 '''
 Find all hosts across and entire sequence of files
 '''
 files = glob.glob(logdir+'/*.log.gz')
 all_robots = set()
 with futures.ProcessPoolExecutor() as pool:
 for robots in pool.map(find_robots, files):
 all_robots.update(robots)
 return all_robots

if __name__ == '__main__':
 robots = find_all_robots('logs')
 for ipaddr in robots:
 print(ipaddr)

With this modification, the script produces the same result but runs about 3.5 times
faster on our quad-core machine. The actual performance will vary according to the
number of CPUs available on your machine.

Discussion
Typical usage of a ProcessPoolExecutor is as follows:

from concurrent.futures import ProcessPoolExecutor

with ProcessPoolExecutor() as pool:
 ...
 do work in parallel using pool
 ...

Under the covers, a ProcessPoolExecutor creates N independent running Python in‐
terpreters where N is the number of available CPUs detected on the system. You can
change the number of processes created by supplying an optional argument to Proces
sPoolExecutor(N). The pool runs until the last statement in the with block is executed,
at which point the process pool is shut down. However, the program will wait until all
submitted work has been processed.

Work to be submitted to a pool must be defined in a function. There are two methods
for submission. If you are are trying to parallelize a list comprehension or a map()
operation, you use pool.map():

12.8. Performing Simple Parallel Programming | 511

A function that performs a lot of work
def work(x):
 ...
 return result

Nonparallel code
results = map(work, data)

Parallel implementation
with ProcessPoolExecutor() as pool:
 results = pool.map(work, data)

Alternatively, you can manually submit single tasks using the pool.submit() method:

Some function
def work(x):
 ...
 return result

with ProcessPoolExecutor() as pool:
 ...
 # Example of submitting work to the pool
 future_result = pool.submit(work, arg)

 # Obtaining the result (blocks until done)
 r = future_result.result()
 ...

If you manually submit a job, the result is an instance of Future. To obtain the actual
result, you call its result() method. This blocks until the result is computed and re‐
turned by the pool.

Instead of blocking, you can also arrange to have a callback function triggered upon
completion instead. For example:

def when_done(r):
 print('Got:', r.result())

with ProcessPoolExecutor() as pool:
 future_result = pool.submit(work, arg)
 future_result.add_done_callback(when_done)

The user-supplied callback function receives an instance of Future that must be used
to obtain the actual result (i.e., by calling its result() method).

Although process pools can be easy to use, there are a number of important consider‐
ations to be made in designing larger programs. In no particular order:

• This technique for parallelization only works well for problems that can be trivially
decomposed into independent parts.

512 | Chapter 12: Concurrency

• Work must be submitted in the form of simple functions. Parallel execution of
instance methods, closures, or other kinds of constructs are not supported.

• Function arguments and return values must be compatible with pickle. Work is
carried out in a separate interpreter using interprocess communication. Thus, data
exchanged between interpreters has to be serialized.

• Functions submitted for work should not maintain persistent state or have side
effects. With the exception of simple things such as logging, you don’t really have
any control over the behavior of child processes once started. Thus, to preserve your
sanity, it is probably best to keep things simple and carry out work in pure-functions
that don’t alter their environment.

• Process pools are created by calling the fork() system call on Unix. This makes a
clone of the Python interpreter, including all of the program state at the time of the
fork. On Windows, an independent copy of the interpreter that does not clone state
is launched. The actual forking process does not occur until the first pool.map()
or pool.submit() method is called.

• Great care should be made when combining process pools and programs that use
threads. In particular, you should probably create and launch process pools prior
to the creation of any threads (e.g., create the pool in the main thread at program
startup).

12.9. Dealing with the GIL (and How to Stop Worrying
About It)
Problem
You’ve heard about the Global Interpreter Lock (GIL), and are worried that it might be
affecting the performance of your multithreaded program.

Solution
Although Python fully supports thread programming, parts of the C implementation
of the interpreter are not entirely thread safe to a level of allowing fully concurrent
execution. In fact, the interpreter is protected by a so-called Global Interpreter Lock
(GIL) that only allows one Python thread to execute at any given time. The most no‐
ticeable effect of the GIL is that multithreaded Python programs are not able to fully
take advantage of multiple CPU cores (e.g., a computationally intensive application
using more than one thread only runs on a single CPU).

12.9. Dealing with the GIL (and How to Stop Worrying About It) | 513

Before discussing common GIL workarounds, it is important to emphasize that the GIL
tends to only affect programs that are heavily CPU bound (i.e., dominated by compu‐
tation). If your program is mostly doing I/O, such as network communication, threads
are often a sensible choice because they’re mostly going to spend their time sitting
around waiting. In fact, you can create thousands of Python threads with barely a con‐
cern. Modern operating systems have no trouble running with that many threads, so
it’s simply not something you should worry much about.

For CPU-bound programs, you really need to study the nature of the computation being
performed. For instance, careful choice of the underlying algorithm may produce a far
greater speedup than trying to parallelize an unoptimal algorithm with threads. Simi‐
larly, given that Python is interpreted, you might get a far greater speedup simply by
moving performance-critical code into a C extension module. Extensions such as
NumPy are also highly effective at speeding up certain kinds of calculations involving
array data. Last, but not least, you might investigate alternative implementations, such
as PyPy, which features optimizations such as a JIT compiler (although, as of this writing,
it does not yet support Python 3).

It’s also worth noting that threads are not necessarily used exclusively for performance.
A CPU-bound program might be using threads to manage a graphical user interface, a
network connection, or provide some other kind of service. In this case, the GIL can
actually present more of a problem, since code that holds it for an excessively long period
will cause annoying stalls in the non-CPU-bound threads. In fact, a poorly written C
extension can actually make this problem worse, even though the computation part of
the code might run faster than before.

Having said all of this, there are two common strategies for working around the limi‐
tations of the GIL. First, if you are working entirely in Python, you can use the multi
processing module to create a process pool and use it like a co-processor. For example,
suppose you have the following thread code:

Performs a large calculation (CPU bound)
def some_work(args):
 ...
 return result

A thread that calls the above function
def some_thread():
 while True:
 ...
 r = some_work(args)
 ...

Here’s how you would modify the code to use a pool:

Processing pool (see below for initiazation)
pool = None

514 | Chapter 12: Concurrency

http://www.numpy.org

Performs a large calculation (CPU bound)
def some_work(args):
 ...
 return result

A thread that calls the above function
def some_thread():
 while True:
 ...
 r = pool.apply(some_work, (args))
 ...

Initiaze the pool
if __name__ == '__main__':
 import multiprocessing
 pool = multiprocessing.Pool()

This example with a pool works around the GIL using a neat trick. Whenever a thread
wants to perform CPU-intensive work, it hands the work to the pool. The pool, in turn,
hands the work to a separate Python interpreter running in a different process. While
the thread is waiting for the result, it releases the GIL. Moreover, because the calculation
is being performed in a separate interpreter, it’s no longer bound by the restrictions of
the GIL. On a multicore system, you’ll find that this technique easily allows you to take
advantage of all the CPUs.

The second strategy for working around the GIL is to focus on C extension program‐
ming. The general idea is to move computationally intensive tasks to C, independent of
Python, and have the C code release the GIL while it’s working. This is done by inserting
special macros into the C code like this:

#include "Python.h"
...

PyObject *pyfunc(PyObject *self, PyObject *args) {
 ...
 Py_BEGIN_ALLOW_THREADS
 // Threaded C code
 ...
 Py_END_ALLOW_THREADS
 ...
}

If you are using other tools to access C, such as the ctypes library or Cython, you may
not need to do anything. For example, ctypes releases the GIL when calling into C by
default.

Discussion
Many programmers, when faced with thread performance problems, are quick to blame
the GIL for all of their ills. However, doing so is shortsighted and naive. Just as a real-

12.9. Dealing with the GIL (and How to Stop Worrying About It) | 515

world example, mysterious “stalls” in a multithreaded network program might be caused
by something entirely different (e.g., a stalled DNS lookup) rather than anything related
to the GIL. The bottom line is that you really need to study your code to know if the
GIL is an issue or not. Again, realize that the GIL is mostly concerned with CPU-bound
processing, not I/O.

If you are going to use a process pool as a workaround, be aware that doing so involves
data serialization and communication with a different Python interpreter. For this to
work, the operation to be performed needs to be contained within a Python function
defined by the def statement (i.e., no lambdas, closures, callable instances, etc.), and the
function arguments and return value must be compatible with pickle. Also, the amount
of work to be performed must be sufficiently large to make up for the extra communi‐
cation overhead.

Another subtle aspect of pools is that mixing threads and process pools together can be
a good way to make your head explode. If you are going to use both of these features
together, it is often best to create the process pool as a singleton at program startup,
prior to the creation of any threads. Threads will then use the same process pool for all
of their computationally intensive work.

For C extensions, the most important feature is maintaining isolation from the Python
interpreter process. That is, if you’re going to offload work from Python to C, you need
to make sure the C code operates independently of Python. This means using no Python
data structures and making no calls to Python’s C API. Another consideration is that
you want to make sure your C extension does enough work to make it all worthwhile.
That is, it’s much better if the extension can perform millions of calculations as opposed
to just a few small calculations.

Needless to say, these solutions to working around the GIL don’t apply to all possible
problems. For instance, certain kinds of applications don’t work well if separated into
multiple processes, nor may you want to code parts in C. For these kinds of applications,
you may have to come up with your own solution (e.g., multiple processes accessing
shared memory regions, multiple interpreters running in the same process, etc.). Al‐
ternatively, you might look at some other implementations of the interpreter, such as
PyPy.

See Recipes 15.7 and 15.10 for additional information on releasing the GIL in C
extensions.

12.10. Defining an Actor Task
Problem
You’d like to define tasks with behavior similar to “actors” in the so-called “actor model.”

516 | Chapter 12: Concurrency

Solution
The “actor model” is one of the oldest and most simple approaches to concurrency and
distributed computing. In fact, its underlying simplicity is part of its appeal. In a nutshell,
an actor is a concurrently executing task that simply acts upon messages sent to it. In
response to these messages, it may decide to send further messages to other actors.
Communication with actors is one way and asynchronous. Thus, the sender of a message
does not know when a message actually gets delivered, nor does it receive a response
or acknowledgment that the message has been processed.

Actors are straightforward to define using a combination of a thread and a queue. For
example:

from queue import Queue
from threading import Thread, Event

Sentinel used for shutdown
class ActorExit(Exception):
 pass

class Actor:
 def __init__(self):
 self._mailbox = Queue()

 def send(self, msg):
 '''
 Send a message to the actor
 '''
 self._mailbox.put(msg)

 def recv(self):
 '''
 Receive an incoming message
 '''
 msg = self._mailbox.get()
 if msg is ActorExit:
 raise ActorExit()
 return msg

 def close(self):
 '''
 Close the actor, thus shutting it down
 '''
 self.send(ActorExit)

 def start(self):
 '''
 Start concurrent execution
 '''
 self._terminated = Event()
 t = Thread(target=self._bootstrap)

12.10. Defining an Actor Task | 517

 t.daemon = True
 t.start()

 def _bootstrap(self):
 try:
 self.run()
 except ActorExit:
 pass
 finally:
 self._terminated.set()

 def join(self):
 self._terminated.wait()

 def run(self):
 '''
 Run method to be implemented by the user
 '''
 while True:
 msg = self.recv()

Sample ActorTask
class PrintActor(Actor):
 def run(self):
 while True:
 msg = self.recv()
 print('Got:', msg)

Sample use
p = PrintActor()
p.start()
p.send('Hello')
p.send('World')
p.close()
p.join()

In this example, Actor instances are things that you simply send a message to using
their send() method. Under the covers, this places the message on a queue and hands
it off to an internal thread that runs to process the received messages. The close()
method is programmed to shut down the actor by placing a special sentinel value
(ActorExit) on the queue. Users define new actors by inheriting from Actor and re‐
defining the run() method to implement their custom processing. The usage of the
ActorExit exception is such that user-defined code can be programmed to catch the
termination request and handle it if appropriate (the exception is raised by the get()
method and propagated).

If you relax the requirement of concurrent and asynchronous message delivery, actor-
like objects can also be minimally defined by generators. For example:

def print_actor():
 while True:

518 | Chapter 12: Concurrency

 try:
 msg = yield # Get a message
 print('Got:', msg)
 except GeneratorExit:
 print('Actor terminating')

Sample use
p = print_actor()
next(p) # Advance to the yield (ready to receive)
p.send('Hello')
p.send('World')
p.close()

Discussion
Part of the appeal of actors is their underlying simplicity. In practice, there is just one
core operation, send(). Plus, the general concept of a “message” in actor-based systems
is something that can be expanded in many different directions. For example, you could
pass tagged messages in the form of tuples and have actors take different courses of
action like this:

class TaggedActor(Actor):
 def run(self):
 while True:
 tag, *payload = self.recv()
 getattr(self,'do_'+tag)(*payload)

 # Methods correponding to different message tags
 def do_A(self, x):
 print('Running A', x)

 def do_B(self, x, y):
 print('Running B', x, y)

Example
a = TaggedActor()
a.start()
a.send(('A', 1)) # Invokes do_A(1)
a.send(('B', 2, 3)) # Invokes do_B(2,3)

As another example, here is a variation of an actor that allows arbitrary functions to be
executed in a worker and results to be communicated back using a special Result object:

from threading import Event
class Result:
 def __init__(self):
 self._evt = Event()
 self._result = None

 def set_result(self, value):
 self._result = value

12.10. Defining an Actor Task | 519

 self._evt.set()

 def result(self):
 self._evt.wait()
 return self._result

class Worker(Actor):
 def submit(self, func, *args, **kwargs):
 r = Result()
 self.send((func, args, kwargs, r))
 return r

 def run(self):
 while True:
 func, args, kwargs, r = self.recv()
 r.set_result(func(*args, **kwargs))

Example use
worker = Worker()
worker.start()
r = worker.submit(pow, 2, 3)
print(r.result())

Last, but not least, the concept of “sending” a task a message is something that can be
scaled up into systems involving multiple processes or even large distributed systems.
For example, the send() method of an actor-like object could be programmed to trans‐
mit data on a socket connection or deliver it via some kind of messaging infrastructure
(e.g., AMQP, ZMQ, etc.).

12.11. Implementing Publish/Subscribe Messaging
Problem
You have a program based on communicating threads and want them to implement
publish/subscribe messaging.

Solution
To implement publish/subscribe messaging, you typically introduce a separate “ex‐
change” or “gateway” object that acts as an intermediary for all messages. That is, instead
of directly sending a message from one task to another, a message is sent to the exchange
and it delivers it to one or more attached tasks. Here is one example of a very simple
exchange implementation:

from collections import defaultdict

class Exchange:
 def __init__(self):
 self._subscribers = set()

520 | Chapter 12: Concurrency

 def attach(self, task):
 self._subscribers.add(task)

 def detach(self, task):
 self._subscribers.remove(task)

 def send(self, msg):
 for subscriber in self._subscribers:
 subscriber.send(msg)

Dictionary of all created exchanges
_exchanges = defaultdict(Exchange)

Return the Exchange instance associated with a given name
def get_exchange(name):
 return _exchanges[name]

An exchange is really nothing more than an object that keeps a set of active subscribers
and provides methods for attaching, detaching, and sending messages. Each exchange
is identified by a name, and the get_exchange() function simply returns the Ex
change instance associated with a given name.

Here is a simple example that shows how to use an exchange:

Example of a task. Any object with a send() method

class Task:
 ...
 def send(self, msg):
 ...

task_a = Task()
task_b = Task()

Example of getting an exchange
exc = get_exchange('name')

Examples of subscribing tasks to it
exc.attach(task_a)
exc.attach(task_b)

Example of sending messages
exc.send('msg1')
exc.send('msg2')

Example of unsubscribing
exc.detach(task_a)
exc.detach(task_b)

12.11. Implementing Publish/Subscribe Messaging | 521

Although there are many different variations on this theme, the overall idea is the same.
Messages will be delivered to an exchange and the exchange will deliver them to attached
subscribers.

Discussion
The concept of tasks or threads sending messages to one another (often via queues) is
easy to implement and quite popular. However, the benefits of using a public/subscribe
(pub/sub) model instead are often overlooked.

First, the use of an exchange can simplify much of the plumbing involved in setting up
communicating threads. Instead of trying to wire threads together across multiple pro‐
gram modules, you only worry about connecting them to a known exchange. In some
sense, this is similar to how the logging library works. In practice, it can make it easier
to decouple various tasks in the program.

Second, the ability of the exchange to broadcast messages to multiple subscribers opens
up new communication patterns. For example, you could implement systems with re‐
dundant tasks, broadcasting, or fan-out. You could also build debugging and diagnostic
tools that attach themselves to exchanges as ordinary subscribers. For example, here is
a simple diagnostic class that would display sent messages:

class DisplayMessages:
 def __init__(self):
 self.count = 0
 def send(self, msg):
 self.count += 1
 print('msg[{}]: {!r}'.format(self.count, msg))

exc = get_exchange('name')
d = DisplayMessages()
exc.attach(d)

Last, but not least, a notable aspect of the implementation is that it works with a variety
of task-like objects. For example, the receivers of a message could be actors (as described
in Recipe 12.10), coroutines, network connections, or just about anything that imple‐
ments a proper send() method.

One potentially problematic aspect of an exchange concerns the proper attachment and
detachment of subscribers. In order to properly manage resources, every subscriber that
attaches must eventually detach. This leads to a programming model similar to this:

exc = get_exchange('name')
exc.attach(some_task)
try:
 ...
finally:
 exc.detach(some_task)

522 | Chapter 12: Concurrency

In some sense, this is similar to the usage of files, locks, and similar objects. Experience
has shown that it is quite easy to forget the final detach() step. To simplify this, you
might consider the use of the context-management protocol. For example, adding a
subscribe() method to the exchange like this:

from contextlib import contextmanager
from collections import defaultdict

class Exchange:
 def __init__(self):
 self._subscribers = set()

 def attach(self, task):
 self._subscribers.add(task)

 def detach(self, task):
 self._subscribers.remove(task)

 @contextmanager
 def subscribe(self, *tasks):
 for task in tasks:
 self.attach(task)
 try:
 yield
 finally:
 for task in tasks:
 self.detach(task)

 def send(self, msg):
 for subscriber in self._subscribers:
 subscriber.send(msg)

Dictionary of all created exchanges
_exchanges = defaultdict(Exchange)

Return the Exchange instance associated with a given name
def get_exchange(name):
 return _exchanges[name]

Example of using the subscribe() method
exc = get_exchange('name')
with exc.subscribe(task_a, task_b):
 ...
 exc.send('msg1')
 exc.send('msg2')
 ...

task_a and task_b detached here

Finally, it should be noted that there are numerous possible extensions to the exchange
idea. For example, exchanges could implement an entire collection of message channels

12.11. Implementing Publish/Subscribe Messaging | 523

or apply pattern matching rules to exchange names. Exchanges can also be extended
into distributed computing applications (e.g., routing messages to tasks on different
machines, etc.).

12.12. Using Generators As an Alternative to Threads
Problem
You want to implement concurrency using generators (coroutines) as an alternative to
system threads. This is sometimes known as user-level threading or green threading.

Solution
To implement your own concurrency using generators, you first need a fundamental
insight concerning generator functions and the yield statement. Specifically, the fun‐
damental behavior of yield is that it causes a generator to suspend its execution. By
suspending execution, it is possible to write a scheduler that treats generators as a kind
of “task” and alternates their execution using a kind of cooperative task switching.

To illustrate this idea, consider the following two generator functions using a simple
yield:

Two simple generator functions
def countdown(n):
 while n > 0:
 print('T-minus', n)
 yield
 n -= 1
 print('Blastoff!')

def countup(n):
 x = 0
 while x < n:
 print('Counting up', x)
 yield
 x += 1

These functions probably look a bit funny using yield all by itself. However, consider
the following code that implements a simple task scheduler:

from collections import deque

class TaskScheduler:
 def __init__(self):
 self._task_queue = deque()

 def new_task(self, task):
 '''
 Admit a newly started task to the scheduler

524 | Chapter 12: Concurrency

 '''
 self._task_queue.append(task)

 def run(self):
 '''
 Run until there are no more tasks
 '''
 while self._task_queue:
 task = self._task_queue.popleft()
 try:
 # Run until the next yield statement
 next(task)
 self._task_queue.append(task)
 except StopIteration:
 # Generator is no longer executing
 pass

Example use
sched = TaskScheduler()
sched.new_task(countdown(10))
sched.new_task(countdown(5))
sched.new_task(countup(15))
sched.run()

In this code, the TaskScheduler class runs a collection of generators in a round-robin
manner—each one running until they reach a yield statement. For the sample, the
output will be as follows:

T-minus 10
T-minus 5
Counting up 0
T-minus 9
T-minus 4
Counting up 1
T-minus 8
T-minus 3
Counting up 2
T-minus 7
T-minus 2
...

At this point, you’ve essentially implemented the tiny core of an “operating system” if
you will. Generator functions are the tasks and the yield statement is how tasks signal
that they want to suspend. The scheduler simply cycles over the tasks until none are left
executing.

In practice, you probably wouldn’t use generators to implement concurrency for some‐
thing as simple as shown. Instead, you might use generators to replace the use of threads
when implementing actors (see Recipe 12.10) or network servers.

12.12. Using Generators As an Alternative to Threads | 525

The following code illustrates the use of generators to implement a thread-free version
of actors:

from collections import deque

class ActorScheduler:
 def __init__(self):
 self._actors = { } # Mapping of names to actors
 self._msg_queue = deque() # Message queue

 def new_actor(self, name, actor):
 '''
 Admit a newly started actor to the scheduler and give it a name
 '''
 self._msg_queue.append((actor,None))
 self._actors[name] = actor

 def send(self, name, msg):
 '''
 Send a message to a named actor
 '''
 actor = self._actors.get(name)
 if actor:
 self._msg_queue.append((actor,msg))

 def run(self):
 '''
 Run as long as there are pending messages.
 '''
 while self._msg_queue:
 actor, msg = self._msg_queue.popleft()
 try:
 actor.send(msg)
 except StopIteration:
 pass

Example use
if __name__ == '__main__':
 def printer():
 while True:
 msg = yield
 print('Got:', msg)

 def counter(sched):
 while True:
 # Receive the current count
 n = yield
 if n == 0:
 break
 # Send to the printer task
 sched.send('printer', n)
 # Send the next count to the counter task (recursive)

526 | Chapter 12: Concurrency

 sched.send('counter', n-1)

 sched = ActorScheduler()
 # Create the initial actors
 sched.new_actor('printer', printer())
 sched.new_actor('counter', counter(sched))

 # Send an initial message to the counter to initiate
 sched.send('counter', 10000)
 sched.run()

The execution of this code might take a bit of study, but the key is the queue of pending
messages. Essentially, the scheduler runs as long as there are messages to deliver. A
remarkable feature is that the counter generator sends messages to itself and ends up
in a recursive cycle not bound by Python’s recursion limit.

Here is an advanced example showing the use of generators to implement a concurrent
network application:

from collections import deque
from select import select

This class represents a generic yield event in the scheduler
class YieldEvent:
 def handle_yield(self, sched, task):
 pass
 def handle_resume(self, sched, task):
 pass

Task Scheduler
class Scheduler:
 def __init__(self):
 self._numtasks = 0 # Total num of tasks
 self._ready = deque() # Tasks ready to run
 self._read_waiting = {} # Tasks waiting to read
 self._write_waiting = {} # Tasks waiting to write

 # Poll for I/O events and restart waiting tasks
 def _iopoll(self):
 rset,wset,eset = select(self._read_waiting,
 self._write_waiting,[])
 for r in rset:
 evt, task = self._read_waiting.pop(r)
 evt.handle_resume(self, task)
 for w in wset:
 evt, task = self._write_waiting.pop(w)
 evt.handle_resume(self, task)

 def new(self,task):
 '''
 Add a newly started task to the scheduler
 '''

12.12. Using Generators As an Alternative to Threads | 527

 self._ready.append((task, None))
 self._numtasks += 1

 def add_ready(self, task, msg=None):
 '''
 Append an already started task to the ready queue.
 msg is what to send into the task when it resumes.
 '''
 self._ready.append((task, msg))

 # Add a task to the reading set
 def _read_wait(self, fileno, evt, task):
 self._read_waiting[fileno] = (evt, task)

 # Add a task to the write set
 def _write_wait(self, fileno, evt, task):
 self._write_waiting[fileno] = (evt, task)

 def run(self):
 '''
 Run the task scheduler until there are no tasks
 '''
 while self._numtasks:
 if not self._ready:
 self._iopoll()
 task, msg = self._ready.popleft()
 try:
 # Run the coroutine to the next yield
 r = task.send(msg)
 if isinstance(r, YieldEvent):
 r.handle_yield(self, task)
 else:
 raise RuntimeError('unrecognized yield event')
 except StopIteration:
 self._numtasks -= 1

Example implementation of coroutine-based socket I/O
class ReadSocket(YieldEvent):
 def __init__(self, sock, nbytes):
 self.sock = sock
 self.nbytes = nbytes
 def handle_yield(self, sched, task):
 sched._read_wait(self.sock.fileno(), self, task)
 def handle_resume(self, sched, task):
 data = self.sock.recv(self.nbytes)
 sched.add_ready(task, data)

class WriteSocket(YieldEvent):
 def __init__(self, sock, data):
 self.sock = sock
 self.data = data
 def handle_yield(self, sched, task):

528 | Chapter 12: Concurrency

 sched._write_wait(self.sock.fileno(), self, task)
 def handle_resume(self, sched, task):
 nsent = self.sock.send(self.data)
 sched.add_ready(task, nsent)

class AcceptSocket(YieldEvent):
 def __init__(self, sock):
 self.sock = sock
 def handle_yield(self, sched, task):
 sched._read_wait(self.sock.fileno(), self, task)
 def handle_resume(self, sched, task):
 r = self.sock.accept()
 sched.add_ready(task, r)

Wrapper around a socket object for use with yield
class Socket(object):
 def __init__(self, sock):
 self._sock = sock
 def recv(self, maxbytes):
 return ReadSocket(self._sock, maxbytes)
 def send(self, data):
 return WriteSocket(self._sock, data)
 def accept(self):
 return AcceptSocket(self._sock)
 def __getattr__(self, name):
 return getattr(self._sock, name)

if __name__ == '__main__':
 from socket import socket, AF_INET, SOCK_STREAM
 import time

 # Example of a function involving generators. This should
 # be called using line = yield from readline(sock)
 def readline(sock):
 chars = []
 while True:
 c = yield sock.recv(1)
 if not c:
 break
 chars.append(c)
 if c == b'\n':
 break
 return b''.join(chars)

 # Echo server using generators
 class EchoServer:
 def __init__(self,addr,sched):
 self.sched = sched
 sched.new(self.server_loop(addr))

 def server_loop(self,addr):
 s = Socket(socket(AF_INET,SOCK_STREAM))

12.12. Using Generators As an Alternative to Threads | 529

 s.bind(addr)
 s.listen(5)
 while True:
 c,a = yield s.accept()
 print('Got connection from ', a)
 self.sched.new(self.client_handler(Socket(c)))

 def client_handler(self,client):
 while True:
 line = yield from readline(client)
 if not line:
 break
 line = b'GOT:' + line
 while line:
 nsent = yield client.send(line)
 line = line[nsent:]
 client.close()
 print('Client closed')

 sched = Scheduler()
 EchoServer(('',16000),sched)
 sched.run()

This code will undoubtedly require a certain amount of careful study. However, it is
essentially implementing a small operating system. There is a queue of tasks ready to
run and there are waiting areas for tasks sleeping for I/O. Much of the scheduler involves
moving tasks between the ready queue and the I/O waiting area.

Discussion
When building generator-based concurrency frameworks, it is most common to work
with the more general form of yield:

def some_generator():
 ...
 result = yield data
 ...

Functions that use yield in this manner are more generally referred to as “coroutines.”
Within a scheduler, the yield statement gets handled in a loop as follows:

f = some_generator()

Initial result. Is None to start since nothing has been computed
result = None
while True:
 try:
 data = f.send(result)
 result = ... do some calculation ...
 except StopIteration:
 break

530 | Chapter 12: Concurrency

The logic concerning the result is a bit convoluted. However, the value passed to send()
defines what gets returned when the yield statement wakes back up. So, if a yield is
going to return a result in response to data that was previously yielded, it gets returned
on the next send() operation. If a generator function has just started, sending in a value
of None simply makes it advance to the first yield statement.

In addition to sending in values, it is also possible to execute a close() method on a
generator. This causes a silent GeneratorExit exception to be raised at the yield state‐
ment, which stops execution. If desired, a generator can catch this exception and per‐
form cleanup actions. It’s also possible to use the throw() method of a generator to raise
an arbitrary execution at the yield statement. A task scheduler might use this to com‐
municate errors into running generators.

The yield from statement used in the last example is used to implement coroutines
that serve as subroutines or procedures to be called from other generators. Essentially,
control transparently transfers to the new function. Unlike normal generators, a func‐
tion that is called using yield from can return a value that becomes the result of the
yield from statement. More information about yield from can be found in PEP 380.

Finally, if programming with generators, it is important to stress that there are some
major limitations. In particular, you get none of the benefits that threads provide. For
instance, if you execute any code that is CPU bound or which blocks for I/O, it will
suspend the entire task scheduler until the completion of that operation. To work around
this, your only real option is to delegate the operation to a separate thread or process
where it can run independently. Another limitation is that most Python libraries have
not been written to work well with generator-based threading. If you take this approach,
you may find that you need to write replacements for many standard library functions.

As basic background on coroutines and the techniques utilized in this recipe, see PEP
342 and “A Curious Course on Coroutines and Concurrency”.

PEP 3156 also has a modern take on asynchronous I/O involving coroutines. In practice,
it is extremelyunlikely that you will write a low-level coroutine scheduler yourself.
However, ideas surrounding coroutines are the basis for many popular libraries, in‐
cluding gevent, greenlet, Stackless Python, and similar projects.

12.13. Polling Multiple Thread Queues
Problem
You have a collection of thread queues, and you would like to be able to poll them for
incoming items, much in the same way as you might poll a collection of network con‐
nections for incoming data.

12.13. Polling Multiple Thread Queues | 531

http://www.python.org/dev/peps/pep-0380
http://www.python.org/dev/peps/pep-0342
http://www.python.org/dev/peps/pep-0342
http://www.dabeaz.com/coroutines
http://www.python.org/dev/peps/pep-3156
http://www.gevent.org
http://pypi.python.org/pypi/greenlet
http://www.stackless.com

Solution
A common solution to polling problems involves a little-known trick involving a hidden
loopback network connection. Essentially, the idea is as follows: for each queue (or any
object) that you want to poll, you create a pair of connected sockets. You then write on
one of the sockets to signal the presence of data. The other sockect is then passed to
select() or a similar function to poll for the arrival of data. Here is some sample code
that illustrates this idea:

import queue
import socket
import os

class PollableQueue(queue.Queue):
 def __init__(self):
 super().__init__()
 # Create a pair of connected sockets
 if os.name == 'posix':
 self._putsocket, self._getsocket = socket.socketpair()
 else:
 # Compatibility on non-POSIX systems
 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 server.bind(('127.0.0.1', 0))
 server.listen(1)
 self._putsocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 self._putsocket.connect(server.getsockname())
 self._getsocket, _ = server.accept()
 server.close()

 def fileno(self):
 return self._getsocket.fileno()

 def put(self, item):
 super().put(item)
 self._putsocket.send(b'x')

 def get(self):
 self._getsocket.recv(1)
 return super().get()

In this code, a new kind of Queue instance is defined where there is an underlying pair
of connected sockets. The socketpair() function on Unix machines can establish such
sockets easily. On Windows, you have to fake it using code similar to that shown (it
looks a bit weird, but a server socket is created and a client immediately connects to it
afterward). The normal get() and put() methods are then redefined slightly to perform
a small bit of I/O on these sockets. The put() method writes a single byte of data to one
of the sockets after putting data on the queue. The get() method reads a single byte of
data from the other socket when removing an item from the queue.

532 | Chapter 12: Concurrency

The fileno() method is what makes the queue pollable using a function such as se
lect(). Essentially, it just exposes the underlying file descriptor of the socket used by
the get() function.

Here is an example of some code that defines a consumer which monitors multiple
queues for incoming items:

import select
import threading

def consumer(queues):
 '''
 Consumer that reads data on multiple queues simultaneously
 '''
 while True:
 can_read, _, _ = select.select(queues,[],[])
 for r in can_read:
 item = r.get()
 print('Got:', item)

q1 = PollableQueue()
q2 = PollableQueue()
q3 = PollableQueue()
t = threading.Thread(target=consumer, args=([q1,q2,q3],))
t.daemon = True
t.start()

Feed data to the queues
q1.put(1)
q2.put(10)
q3.put('hello')
q2.put(15)
...

If you try it, you’ll find that the consumer indeed receives all of the put items, regardless
of which queues they are placed in.

Discussion
The problem of polling non-file-like objects, such as queues, is often a lot trickier than
it looks. For instance, if you don’t use the socket technique shown, your only option is
to write code that cycles through the queues and uses a timer, like this:

import time
def consumer(queues):
 while True:
 for q in queues:
 if not q.empty():
 item = q.get()
 print('Got:', item)

12.13. Polling Multiple Thread Queues | 533

 # Sleep briefly to avoid 100% CPU
 time.sleep(0.01)

This might work for certain kinds of problems, but it’s clumsy and introduces other
weird performance problems. For example, if new data is added to a queue, it won’t be
detected for as long as 10 milliseconds (an eternity on a modern processor).

You run into even further problems if the preceding polling is mixed with the polling
of other objects, such as network sockets. For example, if you want to poll both sockets
and queues at the same time, you might have to use code like this:

import select

def event_loop(sockets, queues):
 while True:
 # polling with a timeout
 can_read, _, _ = select.select(sockets, [], [], 0.01)
 for r in can_read:
 handle_read(r)
 for q in queues:
 if not q.empty():
 item = q.get()
 print('Got:', item)

The solution shown solves a lot of these problems by simply putting queues on equal
status with sockets. A single select() call can be used to poll for activity on both. It is
not necessary to use timeouts or other time-based hacks to periodically check. More‐
over, if data gets added to a queue, the consumer will be notified almost instantaneously.
Although there is a tiny amount of overhead associated with the underlying I/O, it often
is worth it to have better response time and simplified coding.

12.14. Launching a Daemon Process on Unix
Problem
You would like to write a program that runs as a proper daemon process on Unix or
Unix-like systems.

Solution
Creating a proper daemon process requires a precise sequence of system calls and careful
attention to detail. The following code shows how to define a daemon process along
with the ability to easily stop it once launched:

#!/usr/bin/env python3
daemon.py

import os
import sys

534 | Chapter 12: Concurrency

import atexit
import signal

def daemonize(pidfile, *, stdin='/dev/null',
 stdout='/dev/null',
 stderr='/dev/null'):

 if os.path.exists(pidfile):
 raise RuntimeError('Already running')

 # First fork (detaches from parent)
 try:
 if os.fork() > 0:
 raise SystemExit(0) # Parent exit
 except OSError as e:
 raise RuntimeError('fork #1 failed.')

 os.chdir('/')
 os.umask(0)
 os.setsid()
 # Second fork (relinquish session leadership)
 try:
 if os.fork() > 0:
 raise SystemExit(0)
 except OSError as e:
 raise RuntimeError('fork #2 failed.')

 # Flush I/O buffers
 sys.stdout.flush()
 sys.stderr.flush()

 # Replace file descriptors for stdin, stdout, and stderr
 with open(stdin, 'rb', 0) as f:
 os.dup2(f.fileno(), sys.stdin.fileno())
 with open(stdout, 'ab', 0) as f:
 os.dup2(f.fileno(), sys.stdout.fileno())
 with open(stderr, 'ab', 0) as f:
 os.dup2(f.fileno(), sys.stderr.fileno())

 # Write the PID file
 with open(pidfile,'w') as f:
 print(os.getpid(),file=f)

 # Arrange to have the PID file removed on exit/signal
 atexit.register(lambda: os.remove(pidfile))

 # Signal handler for termination (required)
 def sigterm_handler(signo, frame):
 raise SystemExit(1)

 signal.signal(signal.SIGTERM, sigterm_handler)

12.14. Launching a Daemon Process on Unix | 535

def main():
 import time
 sys.stdout.write('Daemon started with pid {}\n'.format(os.getpid()))
 while True:
 sys.stdout.write('Daemon Alive! {}\n'.format(time.ctime()))
 time.sleep(10)

if __name__ == '__main__':
 PIDFILE = '/tmp/daemon.pid'

 if len(sys.argv) != 2:
 print('Usage: {} [start|stop]'.format(sys.argv[0]), file=sys.stderr)
 raise SystemExit(1)

 if sys.argv[1] == 'start':
 try:
 daemonize(PIDFILE,
 stdout='/tmp/daemon.log',
 stderr='/tmp/dameon.log')
 except RuntimeError as e:
 print(e, file=sys.stderr)
 raise SystemExit(1)

 main()

 elif sys.argv[1] == 'stop':
 if os.path.exists(PIDFILE):
 with open(PIDFILE) as f:
 os.kill(int(f.read()), signal.SIGTERM)
 else:
 print('Not running', file=sys.stderr)
 raise SystemExit(1)

 else:
 print('Unknown command {!r}'.format(sys.argv[1]), file=sys.stderr)
 raise SystemExit(1)

To launch the daemon, the user would use a command like this:

bash % daemon.py start
bash % cat /tmp/daemon.pid
2882
bash % tail -f /tmp/daemon.log
Daemon started with pid 2882
Daemon Alive! Fri Oct 12 13:45:37 2012
Daemon Alive! Fri Oct 12 13:45:47 2012
...

Daemon processes run entirely in the background, so the command returns immedi‐
ately. However, you can view its associated pid file and log, as just shown. To stop the
daemon, use:

536 | Chapter 12: Concurrency

bash % daemon.py stop
bash %

Discussion
This recipe defines a function daemonize() that should be called at program startup to
make the program run as a daemon. The signature to daemonize() is using keyword-
only arguments to make the purpose of the optional arguments more clear when used.
This forces the user to use a call such as this:

daemonize('daemon.pid',
 stdin='/dev/null,
 stdout='/tmp/daemon.log',
 stderr='/tmp/daemon.log')

As opposed to a more cryptic call such as:

Illegal. Must use keyword arguments
daemonize('daemon.pid',
 '/dev/null', '/tmp/daemon.log','/tmp/daemon.log')

The steps involved in creating a daemon are fairly cryptic, but the general idea is as
follows. First, a daemon has to detach itself from its parent process. This is the purpose
of the first os.fork() operation and immediate termination by the parent.

After the child has been orphaned, the call to os.setsid() creates an entirely new
process session and sets the child as the leader. This also sets the child as the leader of
a new process group and makes sure there is no controlling terminal. If this all sounds
a bit too magical, it has to do with getting the daemon to detach properly from the
terminal and making sure that things like signals don’t interfere with its operation.

The calls to os.chdir() and os.umask(0) change the current working directory and
reset the file mode mask. Changing the directory is usually a good idea so that the
daemon is no longer working in the directory from which it was launched.

The second call to os.fork() is by far the more mysterious operation here. This step
makes the daemon process give up the ability to acquire a new controlling terminal and
provides even more isolation (essentially, the daemon gives up its session leadership
and thus no longer has the permission to open controlling terminals). Although you
could probably omit this step, it’s typically recommended.

Once the daemon process has been properly detached, it performs steps to reinitialize
the standard I/O streams to point at files specified by the user. This part is actually
somewhat tricky. References to file objects associated with the standard I/O streams are
found in multiple places in the interpreter (sys.stdout, sys.__stdout__, etc.). Simply
closing sys.stdout and reassigning it is not likely to work correctly, because there’s no
way to know if it will fix all uses of sys.stdout. Instead, a separate file object is opened,
and the os.dup2() call is used to have it replace the file descriptor currently being used

12.14. Launching a Daemon Process on Unix | 537

by sys.stdout. When this happens, the original file for sys.stdout will be closed and
the new one takes its place. It must be emphasized that any file encoding or text handling
already applied to the standard I/O streams will remain in place.

A common practice with daemon processes is to write the process ID of the daemon in
a file for later use by other programs. The last part of the daemonize() function writes
this file, but also arranges to have the file removed on program termination. The atex
it.register() function registers a function to execute when the Python interpreter
terminates. The definition of a signal handler for SIGTERM is also required for a graceful
termination. The signal handler merely raises SystemExit() and nothing more. This
might look unnecessary, but without it, termination signals kill the interpreter without
performing the cleanup actions registered with atexit.register(). An example of
code that kills the daemon can be found in the handling of the stop command at the
end of the program.

More information about writing daemon processes can be found in Advanced Pro‐
gramming in the UNIX Environment, 2nd Edition, by W. Richard Stevens and Stephen
A. Rago (Addison-Wesley, 2005). Although focused on C programming, all of the ma‐
terial is easily adapted to Python, since all of the required POSIX functions are available
in the standard library.

538 | Chapter 12: Concurrency

CHAPTER 13

Utility Scripting and System Administration

A lot of people use Python as a replacement for shell scripts, using it to automate com‐
mon system tasks, such as manipulating files, configuring systems, and so forth. The
main goal of this chapter is to describe features related to common tasks encountered
when writing scripts. For example, parsing command-line options, manipulating files
on the filesystem, getting useful system configuration data, and so forth. Chapter 5 also
contains general information related to files and directories.

13.1. Accepting Script Input via Redirection, Pipes, or
Input Files
Problem
You want a script you’ve written to be able to accept input using whatever mechanism
is easiest for the user. This should include piping output from a command to the script,
redirecting a file into the script, or just passing a filename, or list of filenames, to the
script on the command line.

Solution
Python’s built-in fileinput module makes this very simple and concise. If you have a
script that looks like this:

#!/usr/bin/env python3
import fileinput

with fileinput.input() as f_input:
 for line in f_input:
 print(line, end='')

539

Then you can already accept input to the script in all of the previously mentioned ways.
If you save this script as filein.py and make it executable, you can do all of the following
and get the expected output:

$ ls | ./filein.py # Prints a directory listing to stdout.
$./filein.py /etc/passwd # Reads /etc/passwd to stdout.
$./filein.py < /etc/passwd # Reads /etc/passwd to stdout.

Discussion
The fileinput.input() function creates and returns an instance of the FileInput
class. In addition to containing a few handy helper methods, the instance can also be
used as a context manager. So, to put all of this together, if we wrote a script that expected
to be printing output from several files at once, we might have it include the filename
and line number in the output, like this:

>>> import fileinput
>>> with fileinput.input('/etc/passwd') as f:
>>> for line in f:
... print(f.filename(), f.lineno(), line, end='')
...
/etc/passwd 1 ##
/etc/passwd 2 # User Database
/etc/passwd 3 #

<other output omitted>

Using it as a context manager ensures that the file is closed when it’s no longer being
used, and we leveraged a few handy FileInput helper methods here to get some extra
information in the output.

13.2. Terminating a Program with an Error Message
Problem
You want your program to terminate by printing a message to standard error and re‐
turning a nonzero status code.

Solution
To have a program terminate in this manner, raise a SystemExit exception, but supply
the error message as an argument. For example:

raise SystemExit('It failed!')

This will cause the supplied message to be printed to sys.stderr and the program to
exit with a status code of 1.

540 | Chapter 13: Utility Scripting and System Administration

Discussion
This is a small recipe, but it solves a common problem that arises when writing scripts.
Namely, to terminate a program, you might be inclined to write code like this:

import sys
sys.stderr.write('It failed!\n')
raise SystemExit(1)

None of the extra steps involving import or writing to sys.stderr are neccessary if you
simply supply the message to SystemExit() instead.

13.3. Parsing Command-Line Options
Problem
You want to write a program that parses options supplied on the command line (found
in sys.argv).

Solution
The argparse module can be used to parse command-line options. A simple example
will help to illustrate the essential features:

search.py
'''
Hypothetical command-line tool for searching a collection of
files for one or more text patterns.
'''
import argparse
parser = argparse.ArgumentParser(description='Search some files')

parser.add_argument(dest='filenames',metavar='filename', nargs='*')

parser.add_argument('-p', '--pat',metavar='pattern', required=True,
 dest='patterns', action='append',
 help='text pattern to search for')

parser.add_argument('-v', dest='verbose', action='store_true',
 help='verbose mode')

parser.add_argument('-o', dest='outfile', action='store',
 help='output file')

parser.add_argument('--speed', dest='speed', action='store',
 choices={'slow','fast'}, default='slow',
 help='search speed')

args = parser.parse_args()

13.3. Parsing Command-Line Options | 541

Output the collected arguments
print(args.filenames)
print(args.patterns)
print(args.verbose)
print(args.outfile)
print(args.speed)

This program defines a command-line parser with the following usage:

bash % python3 search.py -h
usage: search.py [-h] [-p pattern] [-v] [-o OUTFILE] [--speed {slow,fast}]
 [filename [filename ...]]

Search some files

positional arguments:
 filename

optional arguments:
 -h, --help show this help message and exit
 -p pattern, --pat pattern
 text pattern to search for
 -v verbose mode
 -o OUTFILE output file
 --speed {slow,fast} search speed

The following session shows how data shows up in the program. Carefully observe the
output of the print() statements.

bash % python3 search.py foo.txt bar.txt
usage: search.py [-h] -p pattern [-v] [-o OUTFILE] [--speed {fast,slow}]
 [filename [filename ...]]
search.py: error: the following arguments are required: -p/--pat

bash % python3 search.py -v -p spam --pat=eggs foo.txt bar.txt
filenames = ['foo.txt', 'bar.txt']
patterns = ['spam', 'eggs']
verbose = True
outfile = None
speed = slow

bash % python3 search.py -v -p spam --pat=eggs foo.txt bar.txt -o results
filenames = ['foo.txt', 'bar.txt']
patterns = ['spam', 'eggs']
verbose = True
outfile = results
speed = slow

bash % python3 search.py -v -p spam --pat=eggs foo.txt bar.txt -o results \
 --speed=fast
filenames = ['foo.txt', 'bar.txt']
patterns = ['spam', 'eggs']
verbose = True
outfile = results
speed = fast

542 | Chapter 13: Utility Scripting and System Administration

Further processing of the options is up to the program. Replace the print() functions
with something more interesting.

Discussion
The argparse module is one of the largest modules in the standard library, and has a
huge number of configuration options. This recipe shows an essential subset that can
be used and extended to get started.

To parse options, you first create an ArgumentParser instance and add declarations for
the options you want to support it using the add_argument() method. In each add_ar
gument() call, the dest argument specifies the name of an attribute where the result of
parsing will be placed. The metavar argument is used when generating help messages.
The action argument specifies the processing associated with the argument and is often
store for storing a value or append for collecting multiple argument values into a list.

The following argument collects all of the extra command-line arguments into a list. It’s
being used to make a list of filenames in the example:

parser.add_argument(dest='filenames',metavar='filename', nargs='*')

The following argument sets a Boolean flag depending on whether or not the argument
was provided:

parser.add_argument('-v', dest='verbose', action='store_true',
 help='verbose mode')

The following argument takes a single value and stores it as a string:

parser.add_argument('-o', dest='outfile', action='store',
 help='output file')

The following argument specification allows an argument to be repeated multiple times
and all of the values append into a list. The required flag means that the argument must
be supplied at least once. The use of -p and --pat mean that either argument name is
acceptable.

parser.add_argument('-p', '--pat',metavar='pattern', required=True,
 dest='patterns', action='append',
 help='text pattern to search for')

Finally, the following argument specification takes a value, but checks it against a set of
possible choices.

parser.add_argument('--speed', dest='speed', action='store',
 choices={'slow','fast'}, default='slow',
 help='search speed')

Once the options have been given, you simply execute the parser.parse() method.
This will process the sys.argv value and return an instance with the results. The results

13.3. Parsing Command-Line Options | 543

for each argument are placed into an attribute with the name given in the dest parameter
to add_argument().

There are several other approaches for parsing command-line options. For example,
you might be inclined to manually process sys.argv yourself or use the getopt module
(which is modeled after a similarly named C library). However, if you take this approach,
you’ll simply end up replicating much of the code that argparse already provides. You
may also encounter code that uses the optparse library to parse options. Although
optparse is very similar to argparse, the latter is more modern and should be preferred
in new projects.

13.4. Prompting for a Password at Runtime
Problem
You’ve written a script that requires a password, but since the script is meant for inter‐
active use, you’d like to prompt the user for a password rather than hardcode it into the
script.

Solution
Python’s getpass module is precisely what you need in this situation. It will allow you
to very easily prompt for a password without having the keyed-in password displayed
on the user’s terminal. Here’s how it’s done:

import getpass

user = getpass.getuser()
passwd = getpass.getpass()

if svc_login(user, passwd): # You must write svc_login()
 print('Yay!')
else:
 print('Boo!')

In this code, the svc_login() function is code that you must write to further process
the password entry. Obviously, the exact handling is application-specific.

Discussion
Note in the preceding code that getpass.getuser() doesn’t prompt the user for their
username. Instead, it uses the current user’s login name, according to the user’s shell
environment, or as a last resort, according to the local system’s password database (on
platforms that support the pwd module).

544 | Chapter 13: Utility Scripting and System Administration

If you want to explicitly prompt the user for their username, which can be more reliable,
use the built-in input function:

user = input('Enter your username: ')

It’s also important to remember that some systems may not support the hiding of the
typed password input to the getpass() method. In this case, Python does all it can to
forewarn you of problems (i.e., it alerts you that passwords will be shown in cleartext)
before moving on.

13.5. Getting the Terminal Size
Problem
You need to get the terminal size in order to properly format the output of your program.

Solution
Use the os.get_terminal_size() function to do this:

>>> import os
>>> sz = os.get_terminal_size()
>>> sz
os.terminal_size(columns=80, lines=24)
>>> sz.columns
80
>>> sz.lines
24
>>>

Discussion
There are many other possible approaches for obtaining the terminal size, ranging from
reading environment variables to executing low-level system calls involving ioctl()
and TTYs. Frankly, why would you bother with that when this one simple call will
suffice?

13.6. Executing an External Command and Getting Its
Output
Problem
You want to execute an external command and collect its output as a Python string.

13.5. Getting the Terminal Size | 545

Solution
Use the subprocess.check_output() function. For example:

import subprocess
out_bytes = subprocess.check_output(['netstat','-a'])

This runs the specified command and returns its output as a byte string. If you need to
interpret the resulting bytes as text, add a further decoding step. For example:

out_text = out_bytes.decode('utf-8')

If the executed command returns a nonzero exit code, an exception is raised. Here is
an example of catching errors and getting the output created along with the exit code:

try:
 out_bytes = subprocess.check_output(['cmd','arg1','arg2'])
except subprocess.CalledProcessError as e:
 out_bytes = e.output # Output generated before error
 code = e.returncode # Return code

By default, check_output() only returns output written to standard output. If you want
both standard output and error collected, use the stderr argument:

out_bytes = subprocess.check_output(['cmd','arg1','arg2'],
 stderr=subprocess.STDOUT)

If you need to execute a command with a timeout, use the timeout argument:

try:
 out_bytes = subprocess.check_output(['cmd','arg1','arg2'], timeout=5)
except subprocess.TimeoutExpired as e:
 ...

Normally, commands are executed without the assistance of an underlying shell (e.g.,
sh, bash, etc.). Instead, the list of strings supplied are given to a low-level system com‐
mand, such as os.execve(). If you want the command to be interpreted by a shell,
supply it using a simple string and give the shell=True argument. This is sometimes
useful if you’re trying to get Python to execute a complicated shell command involving
pipes, I/O redirection, and other features. For example:

out_bytes = subprocess.check_output('grep python | wc > out', shell=True)

Be aware that executing commands under the shell is a potential security risk if argu‐
ments are derived from user input. The shlex.quote() function can be used to properly
quote arguments for inclusion in shell commands in this case.

Discussion
The check_output() function is the easiest way to execute an external command and
get its output. However, if you need to perform more advanced communication with a

546 | Chapter 13: Utility Scripting and System Administration

subprocess, such as sending it input, you’ll need to take a difference approach. For that,
use the subprocess.Popen class directly. For example:

import subprocess

Some text to send
text = b'''
hello world
this is a test
goodbye
'''

Launch a command with pipes
p = subprocess.Popen(['wc'],
 stdout = subprocess.PIPE,
 stdin = subprocess.PIPE)

Send the data and get the output
stdout, stderr = p.communicate(text)

To interpret as text, decode
out = stdout.decode('utf-8')
err = stderr.decode('utf-8')

The subprocess module is not suitable for communicating with external commands
that expect to interact with a proper TTY. For example, you can’t use it to automate tasks
that ask the user to enter a password (e.g., a ssh session). For that, you would need to
turn to a third-party module, such as those based on the popular “expect” family of tools
(e.g., pexpect or similar).

13.7. Copying or Moving Files and Directories
Problem
You need to copy or move files and directories around, but you don’t want to do it by
calling out to shell commands.

Solution
The shutil module has portable implementations of functions for copying files and
directories. The usage is extremely straightforward. For example:

import shutil

Copy src to dst. (cp src dst)
shutil.copy(src, dst)

Copy files, but preserve metadata (cp -p src dst)
shutil.copy2(src, dst)

13.7. Copying or Moving Files and Directories | 547

Copy directory tree (cp -R src dst)
shutil.copytree(src, dst)

Move src to dst (mv src dst)
shutil.move(src, dst)

The arguments to these functions are all strings supplying file or directory names. The
underlying semantics try to emulate that of similar Unix commands, as shown in the
comments.

By default, symbolic links are followed by these commands. For example, if the source
file is a symbolic link, then the destination file will be a copy of the file the link points
to. If you want to copy the symbolic link instead, supply the follow_symlinks keyword
argument like this:

shutil.copy2(src, dst, follow_symlinks=False)

If you want to preserve symbolic links in copied directories, do this:

shutil.copytree(src, dst, symlinks=True)

The copytree() optionally allows you to ignore certain files and directories during the
copy process. To do this, you supply an ignore function that takes a directory name
and filename listing as input, and returns a list of names to ignore as a result. For ex‐
ample:

def ignore_pyc_files(dirname, filenames):
 return [name in filenames if name.endswith('.pyc')]

shutil.copytree(src, dst, ignore=ignore_pyc_files)

Since ignoring filename patterns is common, a utility function ignore_patterns() has
already been provided to do it. For example:

shutil.copytree(src, dst, ignore=shutil.ignore_patterns('*~','*.pyc'))

Discussion
Using shutil to copy files and directories is mostly straightforward. However, one
caution concerning file metadata is that functions such as copy2() only make a best
effort in preserving this data. Basic information, such as access times, creation times,
and permissions, will always be preserved, but preservation of owners, ACLs, resource
forks, and other extended file metadata may or may not work depending on the un‐
derlying operating system and the user’s own access permissions. You probably wouldn’t
want to use a function like shutil.copytree() to perform system backups.

When working with filenames, make sure you use the functions in os.path for the
greatest portability (especially if working with both Unix and Windows). For example:

548 | Chapter 13: Utility Scripting and System Administration

>>> filename = '/Users/guido/programs/spam.py'
>>> import os.path
>>> os.path.basename(filename)
'spam.py'
>>> os.path.dirname(filename)
'/Users/guido/programs'
>>> os.path.split(filename)
('/Users/guido/programs', 'spam.py')
>>> os.path.join('/new/dir', os.path.basename(filename))
'/new/dir/spam.py'
>>> os.path.expanduser('~/guido/programs/spam.py')
'/Users/guido/programs/spam.py'
>>>

One tricky bit about copying directories with copytree() is the handling of errors. For
example, in the process of copying, the function might encounter broken symbolic links,
files that can’t be accessed due to permission problems, and so on. To deal with this, all
exceptions encountered are collected into a list and grouped into a single exception that
gets raised at the end of the operation. Here is how you would handle it:

try:
 shutil.copytree(src, dst)
except shutil.Error as e:
 for src, dst, msg in e.args[0]:
 # src is source name
 # dst is destination name
 # msg is error message from exception
 print(dst, src, msg)

If you supply the ignore_dangling_symlinks=True keyword argument, then copy
tree() will ignore dangling symlinks.

The functions shown in this recipe are probably the most commonly used. However,
shutil has many more operations related to copying data. The documentation is def‐
initely worth a further look. See the Python documentation.

13.8. Creating and Unpacking Archives
Problem
You need to create or unpack archives in common formats (e.g., .tar, .tgz, or .zip).

Solution
The shutil module has two functions—make_archive() and unpack_archive()—that
do exactly what you want. For example:

>>> import shutil
>>> shutil.unpack_archive('Python-3.3.0.tgz')

13.8. Creating and Unpacking Archives | 549

http://docs.python.org/3/library/shutil.html

>>> shutil.make_archive('py33','zip','Python-3.3.0')
'/Users/beazley/Downloads/py33.zip'
>>>

The second argument to make_archive() is the desired output format. To get a list of
supported archive formats, use get_archive_formats(). For example:

>>> shutil.get_archive_formats()
[('bztar', "bzip2'ed tar-file"), ('gztar', "gzip'ed tar-file"),
 ('tar', 'uncompressed tar file'), ('zip', 'ZIP file')]
>>>

Discussion
Python has other library modules for dealing with the low-level details of various archive
formats (e.g., tarfile, zipfile, gzip, bz2, etc.). However, if all you’re trying to do is
make or extract an archive, there’s really no need to go so low level. You can just use
these high-level functions in shutil instead.

The functions have a variety of additional options for logging, dryruns, file permissions,
and so forth. Consult the shutil library documentation for further details.

13.9. Finding Files by Name
Problem
You need to write a script that involves finding files, like a file renaming script or a log
archiver utility, but you’d rather not have to call shell utilities from within your Python
script, or you want to provide specialized behavior not easily available by “shelling out.”

Solution
To search for files, use the os.walk() function, supplying it with the top-level directory.
Here is an example of a function that finds a specific filename and prints out the full
path of all matches:

#!/usr/bin/env python3.3
import os

def findfile(start, name):
 for relpath, dirs, files in os.walk(start):
 if name in files:
 full_path = os.path.join(start, relpath, name)
 print(os.path.normpath(os.path.abspath(full_path)))

if __name__ == '__main__':
 findfile(sys.argv[1], sys.argv[2])

550 | Chapter 13: Utility Scripting and System Administration

Save this script as findfile.py and run it from the command line, feeding in the starting
point and the name as positional arguments, like this:

bash % ./findfile.py . myfile.txt

Discussion
The os.walk() method traverses the directory hierarchy for us, and for each directory
it enters, it returns a 3-tuple, containing the relative path to the directory it’s inspecting,
a list containing all of the directory names in that directory, and a list of filenames in
that directory.

For each tuple, you simply check if the target filename is in the files list. If it is,
os.path.join() is used to put together a path. To avoid the possibility of weird looking
paths like ././foo//bar, two additional functions are used to fix the result. The first is
os.path.abspath(), which takes a path that might be relative and forms the absolute
path, and the second is os.path.normpath(), which will normalize the path, thereby
resolving issues with double slashes, multiple references to the current directory, and
so on.

Although this script is pretty simple compared to the features of the find utility found
on UNIX platforms, it has the benefit of being cross-platform. Furthermore, a lot of
additional functionality can be added in a portable manner without much more work.
To illustrate, here is a function that prints out all of the files that have a recent modifi‐
cation time:

#!/usr/bin/env python3.3

import os
import time

def modified_within(top, seconds):
 now = time.time()
 for path, dirs, files in os.walk(top):
 for name in files:
 fullpath = os.path.join(path, name)
 if os.path.exists(fullpath):
 mtime = os.path.getmtime(fullpath)
 if mtime > (now - seconds):
 print(fullpath)

if __name__ == '__main__':
 import sys
 if len(sys.argv) != 3:
 print('Usage: {} dir seconds'.format(sys.argv[0]))
 raise SystemExit(1)

 modified_within(sys.argv[1], float(sys.argv[2]))

13.9. Finding Files by Name | 551

It wouldn’t take long for you to build far more complex operations on top of this little
function using various features of the os, os.path, glob, and similar modules. See Rec‐
ipes 5.11 and 5.13 for related recipes.

13.10. Reading Configuration Files
Problem
You want to read configuration files written in the common .ini configuration file
format.

Solution
The configparser module can be used to read configuration files. For example, suppose
you have this configuration file:

; config.ini
; Sample configuration file

[installation]
library=%(prefix)s/lib
include=%(prefix)s/include
bin=%(prefix)s/bin
prefix=/usr/local

Setting related to debug configuration
[debug]
log_errors=true
show_warnings=False

[server]
port: 8080
nworkers: 32
pid-file=/tmp/spam.pid
root=/www/root
signature:
 =================================
 Brought to you by the Python Cookbook
 =================================

Here is an example of how to read it and extract values:

>>> from configparser import ConfigParser
>>> cfg = ConfigParser()
>>> cfg.read('config.ini')
['config.ini']
>>> cfg.sections()
['installation', 'debug', 'server']
>>> cfg.get('installation','library')
'/usr/local/lib'
>>> cfg.getboolean('debug','log_errors')

552 | Chapter 13: Utility Scripting and System Administration

True
>>> cfg.getint('server','port')
8080
>>> cfg.getint('server','nworkers')
32
>>> print(cfg.get('server','signature'))

=================================
Brought to you by the Python Cookbook
=================================
>>>

If desired, you can also modify the configuration and write it back to a file using the
cfg.write() method. For example:

>>> cfg.set('server','port','9000')
>>> cfg.set('debug','log_errors','False')
>>> import sys
>>> cfg.write(sys.stdout)
[installation]
library = %(prefix)s/lib
include = %(prefix)s/include
bin = %(prefix)s/bin
prefix = /usr/local

[debug]
log_errors = False
show_warnings = False

[server]
port = 9000
nworkers = 32
pid-file = /tmp/spam.pid
root = /www/root
signature =
 =================================
 Brought to you by the Python Cookbook
 =================================
>>>

Discussion
Configuration files are well suited as a human-readable format for specifying configu‐
ration data to your program. Within each config file, values are grouped into different
sections (e.g., “installation,” “debug,” and “server,” in the example). Each section then
specifies values for various variables in that section.

There are several notable differences between a config file and using a Python source
file for the same purpose. First, the syntax is much more permissive and “sloppy.” For
example, both of these assignments are equivalent:

13.10. Reading Configuration Files | 553

prefix=/usr/local
prefix: /usr/local

The names used in a config file are also assumed to be case-insensitive. For example:

>>> cfg.get('installation','PREFIX')
'/usr/local'
>>> cfg.get('installation','prefix')
'/usr/local'
>>>

When parsing values, methods such as getboolean() look for any reasonable value.
For example, these are all equivalent:

 log_errors = true
 log_errors = TRUE
 log_errors = Yes
 log_errors = 1

Perhaps the most significant difference between a config file and Python code is that,
unlike scripts, configuration files are not executed in a top-down manner. Instead, the
file is read in its entirety. If variable substitutions are made, they are done after the fact.
For example, in this part of the config file, it doesn’t matter that the prefix variable is
assigned after other variables that happen to use it:

 [installation]
 library=%(prefix)s/lib
 include=%(prefix)s/include
 bin=%(prefix)s/bin
 prefix=/usr/local

An easily overlooked feature of ConfigParser is that it can read multiple configuration
files together and merge their results into a single configuration. For example, suppose
a user made their own configuration file that looked like this:

 ; ~/.config.ini
 [installation]
 prefix=/Users/beazley/test

 [debug]
 log_errors=False

This file can be merged with the previous configuration by reading it separately. For
example:

>>> # Previously read configuration
>>> cfg.get('installation', 'prefix')
'/usr/local'

>>> # Merge in user-specific configuration
>>> import os
>>> cfg.read(os.path.expanduser('~/.config.ini'))
['/Users/beazley/.config.ini']

554 | Chapter 13: Utility Scripting and System Administration

>>> cfg.get('installation', 'prefix')
'/Users/beazley/test'
>>> cfg.get('installation', 'library')
'/Users/beazley/test/lib'
>>> cfg.getboolean('debug', 'log_errors')
False
>>>

Observe how the override of the prefix variable affects other related variables, such as
the setting of library. This works because variable interpolation is performed as late
as possible. You can see this by trying the following experiment:

>>> cfg.get('installation','library')
'/Users/beazley/test/lib'
>>> cfg.set('installation','prefix','/tmp/dir')
>>> cfg.get('installation','library')
'/tmp/dir/lib'
>>>

Finally, it’s important to note that Python does not support the full range of features you
might find in an .ini file used by other programs (e.g., applications on Windows). Make
sure you consult the configparser documentation for the finer details of the syntax
and supported features.

13.11. Adding Logging to Simple Scripts
Problem
You want scripts and simple programs to write diagnostic information to log files.

Solution
The easiest way to add logging to simple programs is to use the logging module. For
example:

import logging

def main():
 # Configure the logging system
 logging.basicConfig(
 filename='app.log',
 level=logging.ERROR
)

 # Variables (to make the calls that follow work)
 hostname = 'www.python.org'
 item = 'spam'
 filename = 'data.csv'
 mode = 'r'

13.11. Adding Logging to Simple Scripts | 555

 # Example logging calls (insert into your program)
 logging.critical('Host %s unknown', hostname)
 logging.error("Couldn't find %r", item)
 logging.warning('Feature is deprecated')
 logging.info('Opening file %r, mode=%r', filename, mode)
 logging.debug('Got here')

if __name__ == '__main__':
 main()

The five logging calls (critical(), error(), warning(), info(), debug()) represent
different severity levels in decreasing order. The level argument to basicConfig() is
a filter. All messages issued at a level lower than this setting will be ignored.

The argument to each logging operation is a message string followed by zero or more
arguments. When making the final log message, the % operator is used to format the
message string using the supplied arguments.

If you run this program, the contents of the file app.log will be as follows:

 CRITICAL:root:Host www.python.org unknown
 ERROR:root:Could not find 'spam'

If you want to change the output or level of output, you can change the parameters to
the basicConfig() call. For example:

logging.basicConfig(
 filename='app.log',
 level=logging.WARNING,
 format='%(levelname)s:%(asctime)s:%(message)s')

As a result, the output changes to the following:

 CRITICAL:2012-11-20 12:27:13,595:Host www.python.org unknown
 ERROR:2012-11-20 12:27:13,595:Could not find 'spam'
 WARNING:2012-11-20 12:27:13,595:Feature is deprecated

As shown, the logging configuration is hardcoded directly into the program. If you want
to configure it from a configuration file, change the basicConfig() call to the following:

import logging
import logging.config

def main():
 # Configure the logging system
 logging.config.fileConfig('logconfig.ini')
 ...

556 | Chapter 13: Utility Scripting and System Administration

Now make a configuration file logconfig.ini that looks like this:

 [loggers]
 keys=root

 [handlers]
 keys=defaultHandler

 [formatters]
 keys=defaultFormatter

 [logger_root]
 level=INFO
 handlers=defaultHandler
 qualname=root

 [handler_defaultHandler]
 class=FileHandler
 formatter=defaultFormatter
 args=('app.log', 'a')

 [formatter_defaultFormatter]
 format=%(levelname)s:%(name)s:%(message)s

If you want to make changes to the configuration, you can simply edit the logcon‐
fig.ini file as appropriate.

Discussion
Ignoring for the moment that there are about a million advanced configuration options
for the logging module, this solution is quite sufficient for simple programs and scripts.
Simply make sure that you execute the basicConfig() call prior to making any logging
calls, and your program will generate logging output.

If you want the logging messages to route to standard error instead of a file, don’t supply
any filename information to basicConfig(). For example, simply do this:

logging.basicConfig(level=logging.INFO)

One subtle aspect of basicConfig() is that it can only be called once in your program.
If you later need to change the configuration of the logging module, you need to obtain
the root logger and make changes to it directly. For example:

logging.getLogger().level = logging.DEBUG

It must be emphasized that this recipe only shows a basic use of the logging module.
There are significantly more advanced customizations that can be made. An excellent
resource for such customization is the “Logging Cookbook”.

13.11. Adding Logging to Simple Scripts | 557

http://docs.python.org/3/howto/logging-cookbook.html

13.12. Adding Logging to Libraries
Problem
You would like to add a logging capability to a library, but don’t want it to interfere with
programs that don’t use logging.

Solution
For libraries that want to perform logging, you should create a dedicated logger object,
and initially configure it as follows:

somelib.py

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

Example function (for testing)
def func():
 log.critical('A Critical Error!')
 log.debug('A debug message')

With this configuration, no logging will occur by default. For example:

>>> import somelib
>>> somelib.func()
>>>

However, if the logging system gets configured, log messages will start to appear. For
example:

>>> import logging
>>> logging.basicConfig()
>>> somelib.func()
CRITICAL:somelib:A Critical Error!
>>>

Discussion
Libraries present a special problem for logging, since information about the environ‐
ment in which they are used isn’t known. As a general rule, you should never write
library code that tries to configure the logging system on its own or which makes as‐
sumptions about an already existing logging configuration. Thus, you need to take great
care to provide isolation.

The call to getLogger(__name__) creates a logger module that has the same name as
the calling module. Since all modules are unique, this creates a dedicated logger that is
likely to be separate from other loggers.

558 | Chapter 13: Utility Scripting and System Administration

The log.addHandler(logging.NullHandler()) operation attaches a null handler to
the just created logger object. A null handler ignores all logging messages by default.
Thus, if the library is used and logging is never configured, no messages or warnings
will appear.

One subtle feature of this recipe is that the logging of individual libraries can be inde‐
pendently configured, regardless of other logging settings. For example, consider the
following code:

>>> import logging
>>> logging.basicConfig(level=logging.ERROR)
>>> import somelib
>>> somelib.func()
CRITICAL:somelib:A Critical Error!

>>> # Change the logging level for 'somelib' only
>>> logging.getLogger('somelib').level=logging.DEBUG
>>> somelib.func()
CRITICAL:somelib:A Critical Error!
DEBUG:somelib:A debug message
>>>

Here, the root logger has been configured to only output messages at the ERROR level or
higher. However, the level of the logger for somelib has been separately configured to
output debugging messages. That setting takes precedence over the global setting.

The ability to change the logging settings for a single module like this can be a useful
debugging tool, since you don’t have to change any of the global logging settings—simply
change the level for the one module where you want more output.

The “Logging HOWTO” has more information about configuring the logging module
and other useful tips.

13.13. Making a Stopwatch Timer
Problem
You want to be able to record the time it takes to perform various tasks.

Solution
The time module contains various functions for performing timing-related functions.
However, it’s often useful to put a higher-level interface on them that mimics a stop
watch. For example:

13.13. Making a Stopwatch Timer | 559

http://docs.python.org/3/howto/logging.html

import time

class Timer:
 def __init__(self, func=time.perf_counter):
 self.elapsed = 0.0
 self._func = func
 self._start = None

 def start(self):
 if self._start is not None:
 raise RuntimeError('Already started')
 self._start = self._func()

 def stop(self):
 if self._start is None:
 raise RuntimeError('Not started')
 end = self._func()
 self.elapsed += end - self._start
 self._start = None

 def reset(self):
 self.elapsed = 0.0

 @property
 def running(self):
 return self._start is not None

 def __enter__(self):
 self.start()
 return self

 def __exit__(self, *args):
 self.stop()

This class defines a timer that can be started, stopped, and reset as needed by the user.
It keeps track of the total elapsed time in the elapsed attribute. Here is an example that
shows how it can be used:

def countdown(n):
 while n > 0:
 n -= 1

Use 1: Explicit start/stop
t = Timer()
t.start()
countdown(1000000)
t.stop()
print(t.elapsed)

Use 2: As a context manager
with t:
 countdown(1000000)

560 | Chapter 13: Utility Scripting and System Administration

print(t.elapsed)

with Timer() as t2:
 countdown(1000000)
print(t2.elapsed)

Discussion
This recipe provides a simple yet very useful class for making timing measurements and
tracking elapsed time. It’s also a nice illustration of how to support the context-
management protocol and the with statement.

One issue in making timing measurements concerns the underlying time function used
to do it. As a general rule, the accuracy of timing measurements made with functions
such as time.time() or time.clock() varies according to the operating system. In
contrast, the time.perf_counter() function always uses the highest-resolution timer
available on the system.

As shown, the time recorded by the Timer class is made according to wall-clock time,
and includes all time spent sleeping. If you only want the amount of CPU time used by
the process, use time.process_time() instead. For example:

t = Timer(time.process_time)
with t:
 countdown(1000000)
print(t.elapsed)

Both the time.perf_counter() and time.process_time() return a “time” in fractional
seconds. However, the actual value of the time doesn’t have any particular meaning. To
make sense of the results, you have to call the functions twice and compute a time
difference.

More examples of timing and profiling are given in Recipe 14.13.

13.14. Putting Limits on Memory and CPU Usage
Problem
You want to place some limits on the memory or CPU use of a program running on
Unix system.

Solution
The resource module can be used to perform both tasks. For example, to restrict CPU
time, do the following:

13.14. Putting Limits on Memory and CPU Usage | 561

import signal
import resource
import os

def time_exceeded(signo, frame):
 print("Time's up!")
 raise SystemExit(1)

def set_max_runtime(seconds):
 # Install the signal handler and set a resource limit
 soft, hard = resource.getrlimit(resource.RLIMIT_CPU)
 resource.setrlimit(resource.RLIMIT_CPU, (seconds, hard))
 signal.signal(signal.SIGXCPU, time_exceeded)

if __name__ == '__main__':
 set_max_runtime(15)
 while True:
 pass

When this runs, the SIGXCPU signal is generated when the time expires. The program
can then clean up and exit.

To restrict memory use, put a limit on the total address space in use. For example:

import resource

def limit_memory(maxsize):
 soft, hard = resource.getrlimit(resource.RLIMIT_AS)
 resource.setrlimit(resource.RLIMIT_AS, (maxsize, hard))

With a memory limit in place, programs will start generating MemoryError exceptions
when no more memory is available.

Discussion
In this recipe, the setrlimit() function is used to set a soft and hard limit on a particular
resource. The soft limit is a value upon which the operating system will typically restrict
or notify the process via a signal. The hard limit represents an upper bound on the values
that may be used for the soft limit. Typically, this is controlled by a system-wide pa‐
rameter set by the system administrator. Although the hard limit can be lowered, it can
never be raised by user processes (even if the process lowered itself).

The setrlimit() function can additionally be used to set limits on things such as the
number of child processes, number of open files, and similar system resources. Consult
the documentation for the resource module for further details.

Be aware that this recipe only works on Unix systems, and that it might not work on all
of them. For example, when tested, it works on Linux but not on OS X.

562 | Chapter 13: Utility Scripting and System Administration

13.15. Launching a Web Browser
Problem
You want to launch a browser from a script and have it point to some URL that you
specify.

Solution
The webbrowser module can be used to launch a browser in a platform-independent
manner. For example:

>>> import webbrowser
>>> webbrowser.open('http://www.python.org')
True
>>>

This opens the requested page using the default browser. If you want a bit more control
over how the page gets opened, you can use one of the following functions:

>>> # Open the page in a new browser window
>>> webbrowser.open_new('http://www.python.org')
True
>>>

>>> # Open the page in a new browser tab
>>> webbrowser.open_new_tab('http://www.python.org')
True
>>>

These will try to open the page in a new browser window or tab, if possible and supported
by the browser.

If you want to open a page in a specific browser, you can use the webbrowser.get()
function to specify a particular browser. For example:

>>> c = webbrowser.get('firefox')
>>> c.open('http://www.python.org')
True
>>> c.open_new_tab('http://docs.python.org')
True
>>>

A full list of supported browser names can be found in the Python documentation.

13.15. Launching a Web Browser | 563

http://docs.python.org/3/library/webbrowser.html

Discussion
Being able to easily launch a browser can be a useful operation in many scripts. For
example, maybe a script performs some kind of deployment to a server and you’d like
to have it quickly launch a browser so you can verify that it’s working. Or maybe a
program writes data out in the form of HTML pages and you’d just like to fire up a
browser to see the result. Either way, the webbrowser module is a simple solution.

564 | Chapter 13: Utility Scripting and System Administration

CHAPTER 14

Testing, Debugging, and Exceptions

Testing rocks, but debugging? Not so much. The fact that there’s no compiler to analyze
your code before Python executes it makes testing a critical part of development. The
goal of this chapter is to discuss some common problems related to testing, debugging,
and exception handling. It is not meant to be a gentle introduction to test-driven de‐
velopment or the unittest module. Thus, some familiarity with testing concepts is
assumed.

14.1. Testing Output Sent to stdout
Problem
You have a program that has a method whose output goes to standard Output
(sys.stdout). This almost always means that it emits text to the screen. You’d like to
write a test for your code to prove that, given the proper input, the proper output is
displayed.

Solution
Using the unittest.mock module’s patch() function, it’s pretty simple to mock out
sys.stdout for just a single test, and put it back again, without messy temporary vari‐
ables or leaking mocked-out state between test cases.

Consider, as an example, the following function in a module mymodule:

mymodule.py

def urlprint(protocol, host, domain):
 url = '{}://{}.{}'.format(protocol, host, domain)
 print(url)

565

The built-in print function, by default, sends output to sys.stdout. In order to test
that output is actually getting there, you can mock it out using a stand-in object, and
then make assertions about what happened. Using the unittest.mock module’s patch()
method makes it convenient to replace objects only within the context of a running test,
returning things to their original state immediately after the test is complete. Here’s the
test code for mymodule:

from io import StringIO
from unittest import TestCase
from unittest.mock import patch
import mymodule

class TestURLPrint(TestCase):
 def test_url_gets_to_stdout(self):
 protocol = 'http'
 host = 'www'
 domain = 'example.com'
 expected_url = '{}://{}.{}\n'.format(protocol, host, domain)

 with patch('sys.stdout', new=StringIO()) as fake_out:
 mymodule.urlprint(protocol, host, domain)
 self.assertEqual(fake_out.getvalue(), expected_url)

Discussion
The urlprint() function takes three arguments, and the test starts by setting up dummy
arguments for each one. The expected_url variable is set to a string containing the
expected output.

To run the test, the unittest.mock.patch() function is used as a context manager to
replace the value of sys.stdout with a StringIO object as a substitute. The fake_out
variable is the mock object that’s created in this process. This can be used inside the
body of the with statement to perform various checks. When the with statement com‐
pletes, patch conveniently puts everything back the way it was before the test ever ran.

It’s worth noting that certain C extensions to Python may write directly to standard
output, bypassing the setting of sys.stdout. This recipe won’t help with that scenario,
but it should work fine with pure Python code (if you need to capture I/O from such C
extensions, you can do it by opening a temporary file and performing various tricks
involving file descriptors to have standard output temporarily redirected to that file).

More information about capturing IO in a string and StringIO objects can be found in
Recipe 5.6.

566 | Chapter 14: Testing, Debugging, and Exceptions

14.2. Patching Objects in Unit Tests
Problem
You’re writing unit tests and need to apply patches to selected objects in order to make
assertions about how they were used in the test (e.g., assertions about being called with
certain parameters, access to selected attributes, etc.).

Solution
The unittest.mock.patch() function can be used to help with this problem. It’s a little
unusual, but patch() can be used as a decorator, a context manager, or stand-alone. For
example, here’s an example of how it’s used as a decorator:

from unittest.mock import patch
import example

@patch('example.func')
def test1(x, mock_func):
 example.func(x) # Uses patched example.func
 mock_func.assert_called_with(x)

It can also be used as a context manager:

with patch('example.func') as mock_func:
 example.func(x) # Uses patched example.func
 mock_func.assert_called_with(x)

Last, but not least, you can use it to patch things manually:

p = patch('example.func')
mock_func = p.start()
example.func(x)
mock_func.assert_called_with(x)
p.stop()

If necessary, you can stack decorators and context managers to patch multiple objects.
For example:

@patch('example.func1')
@patch('example.func2')
@patch('example.func3')
def test1(mock1, mock2, mock3):
 ...

def test2():
 with patch('example.patch1') as mock1, \
 patch('example.patch2') as mock2, \
 patch('example.patch3') as mock3:
 ...

14.2. Patching Objects in Unit Tests | 567

Discussion
patch() works by taking an existing object with the fully qualified name that you pro‐
vide and replacing it with a new value. The original value is then restored after the
completion of the decorated function or context manager. By default, values are replaced
with MagicMock instances. For example:

>>> x = 42
>>> with patch('__main__.x'):
... print(x)
...
<MagicMock name='x' id='4314230032'>
>>> x
42
>>>

However, you can actually replace the value with anything that you wish by supplying
it as a second argument to patch():

>>> x
42
>>> with patch('__main__.x', 'patched_value'):
... print(x)
...
patched_value
>>> x
42
>>>

The MagicMock instances that are normally used as replacement values are meant to
mimic callables and instances. They record information about usage and allow you to
make assertions. For example:

>>> from unittest.mock import MagicMock
>>> m = MagicMock(return_value = 10)
>>> m(1, 2, debug=True)
10
>>> m.assert_called_with(1, 2, debug=True)
>>> m.assert_called_with(1, 2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File ".../unittest/mock.py", line 726, in assert_called_with
 raise AssertionError(msg)
AssertionError: Expected call: mock(1, 2)
Actual call: mock(1, 2, debug=True)
>>>

>>> m.upper.return_value = 'HELLO'
>>> m.upper('hello')
'HELLO'
>>> assert m.upper.called

568 | Chapter 14: Testing, Debugging, and Exceptions

>>> m.split.return_value = ['hello', 'world']
>>> m.split('hello world')
['hello', 'world']
>>> m.split.assert_called_with('hello world')
>>>

>>> m['blah']
<MagicMock name='mock.__getitem__()' id='4314412048'>
>>> m.__getitem__.called
True
>>> m.__getitem__.assert_called_with('blah')
>>>

Typically, these kinds of operations are carried out in a unit test. For example, suppose
you have some function like this:

example.py
from urllib.request import urlopen
import csv

def dowprices():
 u = urlopen('http://finance.yahoo.com/d/quotes.csv?s=@^DJI&f=sl1')
 lines = (line.decode('utf-8') for line in u)
 rows = (row for row in csv.reader(lines) if len(row) == 2)
 prices = { name:float(price) for name, price in rows }
 return prices

Normally, this function uses urlopen() to go fetch data off the Web and parse it. To
unit test it, you might want to give it a more predictable dataset of your own creation,
however. Here’s an example using patching:

import unittest
from unittest.mock import patch
import io
import example

sample_data = io.BytesIO(b'''\
"IBM",91.1\r
"AA",13.25\r
"MSFT",27.72\r
\r
''')

class Tests(unittest.TestCase):
 @patch('example.urlopen', return_value=sample_data)
 def test_dowprices(self, mock_urlopen):
 p = example.dowprices()
 self.assertTrue(mock_urlopen.called)
 self.assertEqual(p,
 {'IBM': 91.1,
 'AA': 13.25,
 'MSFT' : 27.72})

14.2. Patching Objects in Unit Tests | 569

if __name__ == '__main__':
 unittest.main()

In this example, the urlopen() function in the example module is replaced with a mock
object that returns a BytesIO() containing sample data as a substitute.

An important but subtle facet of this test is the patching of example.urlopen instead of
urllib.request.urlopen. When you are making patches, you have to use the names
as they are used in the code being tested. Since the example code uses from urllib.re
quest import urlopen, the urlopen() function used by the dowprices() function is
actually located in example.

This recipe has really only given a very small taste of what’s possible with the uni
ttest.mock module. The official documentation is a must-read for more advanced
features.

14.3. Testing for Exceptional Conditions in Unit Tests
Problem
You want to write a unit test that cleanly tests if an exception is raised.

Solution
To test for exceptions, use the assertRaises() method. For example, if you want to test
that a function raised a ValueError exception, use this code:

import unittest

A simple function to illustrate
def parse_int(s):
 return int(s)

class TestConversion(unittest.TestCase):
 def test_bad_int(self):
 self.assertRaises(ValueError, parse_int, 'N/A')

If you need to test the exception’s value in some way, then a different approach is needed.
For example:

import errno

class TestIO(unittest.TestCase):
 def test_file_not_found(self):
 try:
 f = open('/file/not/found')
 except IOError as e:
 self.assertEqual(e.errno, errno.ENOENT)

570 | Chapter 14: Testing, Debugging, and Exceptions

http://docs.python.org/3/library/unittest.mock

 else:
 self.fail('IOError not raised')

Discussion
The assertRaises() method provides a convenient way to test for the presence of an
exception. A common pitfall is to write tests that manually try to do things with excep‐
tions on their own. For instance:

class TestConversion(unittest.TestCase):
 def test_bad_int(self):
 try:
 r = parse_int('N/A')
 except ValueError as e:
 self.assertEqual(type(e), ValueError)

The problem with such approaches is that it is easy to forget about corner cases, such
as that when no exception is raised at all. To do that, you need to add an extra check for
that situation, as shown here:

class TestConversion(unittest.TestCase):
 def test_bad_int(self):
 try:
 r = parse_int('N/A')
 except ValueError as e:
 self.assertEqual(type(e), ValueError)
 else:
 self.fail('ValueError not raised')

The assertRaises() method simply takes care of these details, so you should prefer to
use it.

The one limitation of assertRaises() is that it doesn’t provide a means for testing the
value of the exception object that’s created. To do that, you have to manually test it, as
shown. Somewhere in between these two extremes, you might consider using the as
sertRaisesRegex() method, which allows you to test for an exception and perform a
regular expression match against the exception’s string representation at the same time.
For example:

class TestConversion(unittest.TestCase):
 def test_bad_int(self):
 self.assertRaisesRegex(ValueError, 'invalid literal .*',
 parse_int, 'N/A')

A little-known fact about assertRaises() and assertRaisesRegex() is that they can
also be used as context managers:

class TestConversion(unittest.TestCase):
 def test_bad_int(self):
 with self.assertRaisesRegex(ValueError, 'invalid literal .*'):
 r = parse_int('N/A')

14.3. Testing for Exceptional Conditions in Unit Tests | 571

This form can be useful if your test involves multiple steps (e.g., setup) besides that of
simply executing a callable.

14.4. Logging Test Output to a File
Problem
You want the results of running unit tests written to a file instead of printed to standard
output.

Solution
A very common technique for running unit tests is to include a small code fragment
like this at the bottom of your testing file:

import unittest

class MyTest(unittest.TestCase):
 ...

if __name__ == '__main__':
 unittest.main()

This makes the test file executable, and prints the results of running tests to standard
output. If you would like to redirect this output, you need to unwind the main() call a
bit and write your own main() function like this:

import sys
def main(out=sys.stderr, verbosity=2):
 loader = unittest.TestLoader()
 suite = loader.loadTestsFromModule(sys.modules[__name__])
 unittest.TextTestRunner(out,verbosity=verbosity).run(suite)

if __name__ == '__main__':
 with open('testing.out', 'w') as f:
 main(f)

Discussion
The interesting thing about this recipe is not so much the task of getting test results
redirected to a file, but the fact that doing so exposes some notable inner workings of
the unittest module.

At a basic level, the unittest module works by first assembling a test suite. This test
suite consists of the different testing methods you defined. Once the suite has been
assembled, the tests it contains are executed.

572 | Chapter 14: Testing, Debugging, and Exceptions

These two parts of unit testing are separate from each other. The unittest.TestLoad
er instance created in the solution is used to assemble a test suite. The loadTestsFrom
Module() is one of several methods it defines to gather tests. In this case, it scans a
module for TestCase classes and extracts test methods from them. If you want some‐
thing more fine-grained, the loadTestsFromTestCase() method (not shown) can be
used to pull test methods from an individual class that inherits from TestCase.

The TextTestRunner class is an example of a test runner class. The main purpose of
this class is to execute the tests contained in a test suite. This class is the same test runner
that sits behind the unittest.main() function. However, here we’re giving it a bit of
low-level configuration, including an output file and an elevated verbosity level.

Although this recipe only consists of a few lines of code, it gives a hint as to how you
might further customize the unittest framework. To customize how test suites are
assembled, you would perform various operations using the TestLoader class. To cus‐
tomize how tests execute, you could make custom test runner classes that emulate the
functionality of TextTestRunner. Both topics are beyond the scope of what can be cov‐
ered here. However, documentation for the unittest module has extensive coverage
of the underlying protocols.

14.5. Skipping or Anticipating Test Failures
Problem
You want to skip or mark selected tests as an anticipated failure in your unit tests.

Solution
The unittest module has decorators that can be applied to selected test methods to
control their handling. For example:

import unittest
import os
import platform

class Tests(unittest.TestCase):
 def test_0(self):
 self.assertTrue(True)

 @unittest.skip('skipped test')
 def test_1(self):
 self.fail('should have failed!')

 @unittest.skipIf(os.name=='posix', 'Not supported on Unix')
 def test_2(self):
 import winreg

14.5. Skipping or Anticipating Test Failures | 573

 @unittest.skipUnless(platform.system() == 'Darwin', 'Mac specific test')
 def test_3(self):
 self.assertTrue(True)

 @unittest.expectedFailure
 def test_4(self):
 self.assertEqual(2+2, 5)

if __name__ == '__main__':
 unittest.main()

If you run this code on a Mac, you’ll get this output:

 bash % python3 testsample.py -v
 test_0 (__main__.Tests) ... ok
 test_1 (__main__.Tests) ... skipped 'skipped test'
 test_2 (__main__.Tests) ... skipped 'Not supported on Unix'
 test_3 (__main__.Tests) ... ok
 test_4 (__main__.Tests) ... expected failure

 --
 Ran 5 tests in 0.002s

 OK (skipped=2, expected failures=1)

Discussion
The skip() decorator can be used to skip over a test that you don’t want to run at all.
skipIf() and skipUnless() can be a useful way to write tests that only apply to certain
platforms or Python versions, or which have other dependencies. Use the @expected
Failure decorator to mark tests that are known failures, but for which you don’t want
the test framework to report more information.

The decorators for skipping methods can also be applied to entire testing classes. For
example:

@unittest.skipUnless(platform.system() == 'Darwin', 'Mac specific tests')
class DarwinTests(unittest.TestCase):
 ...

14.6. Handling Multiple Exceptions
Problem
You have a piece of code that can throw any of several different exceptions, and you
need to account for all of the potential exceptions that could be raised without creating
duplicate code or long, meandering code passages.

574 | Chapter 14: Testing, Debugging, and Exceptions

Solution
If you can handle different exceptions all using a single block of code, they can be
grouped together in a tuple like this:

try:
 client_obj.get_url(url)
except (URLError, ValueError, SocketTimeout):
 client_obj.remove_url(url)

In the preceding example, the remove_url() method will be called if any one of the
listed exceptions occurs. If, on the other hand, you need to handle one of the exceptions
differently, put it into its own except clause:

try:
 client_obj.get_url(url)
except (URLError, ValueError):
 client_obj.remove_url(url)
except SocketTimeout:
 client_obj.handle_url_timeout(url)

Many exceptions are grouped into an inheritance hierarchy. For such exceptions, you
can catch all of them by simply specifying a base class. For example, instead of writing
code like this:

try:
 f = open(filename)
except (FileNotFoundError, PermissionError):
 ...

you could rewrite the except statement as:

try:
 f = open(filename)
except OSError:
 ...

This works because OSError is a base class that’s common to both the FileNotFound
Errorand PermissionError exceptions.

Discussion
Although it’s not specific to handling multiple exceptions per se, it’s worth noting that
you can get a handle to the thrown exception using the as keyword:

try:
 f = open(filename)
except OSError as e:
 if e.errno == errno.ENOENT:
 logger.error('File not found')
 elif e.errno == errno.EACCES:
 logger.error('Permission denied')

14.6. Handling Multiple Exceptions | 575

 else:
 logger.error('Unexpected error: %d', e.errno)

In this example, the e variable holds an instance of the raised OSError. This is useful if
you need to inspect the exception further, such as processing it based on the value of an
additional status code.

Be aware that except clauses are checked in the order listed and that the first match
executes. It may be a bit pathological, but you can easily create situations where multiple
except clauses might match. For example:

>>> f = open('missing')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
FileNotFoundError: [Errno 2] No such file or directory: 'missing'
>>> try:
... f = open('missing')
... except OSError:
... print('It failed')
... except FileNotFoundError:
... print('File not found')
...
It failed
>>>

Here the except FileNotFoundError clause doesn’t execute because the OSError is
more general, matches the FileNotFoundError exception, and was listed first.

As a debugging tip, if you’re not entirely sure about the class hierarchy of a particular
exception, you can quickly view it by inspecting the exception’s __mro__ attribute. For
example:

>>> FileNotFoundError.__mro__
(<class 'FileNotFoundError'>, <class 'OSError'>, <class 'Exception'>,
 <class 'BaseException'>, <class 'object'>)
>>>

Any one of the listed classes up to BaseException can be used with the except statement.

14.7. Catching All Exceptions
Problem
You want to write code that catches all exceptions.

Solution
To catch all exceptions, write an exception handler for Exception, as shown here:

576 | Chapter 14: Testing, Debugging, and Exceptions

try:
 ...
except Exception as e:
 ...
 log('Reason:', e) # Important!

This will catch all exceptions save SystemExit, KeyboardInterrupt, and GeneratorEx
it. If you also want to catch those exceptions, change Exception to BaseException.

Discussion
Catching all exceptions is sometimes used as a crutch by programmers who can’t re‐
member all of the possible exceptions that might occur in complicated operations. As
such, it is also a very good way to write undebuggable code if you are not careful.

Because of this, if you choose to catch all exceptions, it is absolutely critical to log or
report the actual reason for the exception somewhere (e.g., log file, error message print‐
ed to screen, etc.). If you don’t do this, your head will likely explode at some point.
Consider this example:

def parse_int(s):
 try:
 n = int(v)
 except Exception:
 print("Couldn't parse")

If you try this function, it behaves like this:

>>> parse_int('n/a')
Couldn't parse
>>> parse_int('42')
Couldn't parse
>>>

At this point, you might be left scratching your head as to why it doesn’t work. Now
suppose the function had been written like this:

def parse_int(s):
 try:
 n = int(v)
 except Exception as e:
 print("Couldn't parse")
 print('Reason:', e)

In this case, you get the following output, which indicates that a programming mistake
has been made:

>>> parse_int('42')
Couldn't parse
Reason: global name 'v' is not defined
>>>

14.7. Catching All Exceptions | 577

All things being equal, it’s probably better to be as precise as possible in your exception
handling. However, if you must catch all exceptions, just make sure you give good di‐
agnostic information or propagate the exception so that cause doesn’t get lost.

14.8. Creating Custom Exceptions
Problem
You’re building an application and would like to wrap lower-level exceptions with cus‐
tom ones that have more meaning in the context of your application.

Solution
Creating new exceptions is easy—just define them as classes that inherit from Excep
tion (or one of the other existing exception types if it makes more sense). For example,
if you are writing code related to network programming, you might define some custom
exceptions like this:

class NetworkError(Exception):
 pass

class HostnameError(NetworkError):
 pass

class TimeoutError(NetworkError):
 pass

class ProtocolError(NetworkError):
 pass

Users could then use these exceptions in the normal way. For example:

try:
 msg = s.recv()
except TimeoutError as e:
 ...
except ProtocolError as e:
 ...

Discussion
Custom exception classes should almost always inherit from the built-in Exception
class, or inherit from some locally defined base exception that itself inherits from Ex
ception. Although all exceptions also derive from BaseException, you should not use
this as a base class for new exceptions. BaseException is reserved for system-exiting
exceptions, such as KeyboardInterrupt or SystemExit, and other exceptions that
should signal the application to exit. Therefore, catching these exceptions is not the

578 | Chapter 14: Testing, Debugging, and Exceptions

intended use case. Assuming you follow this convention, it follows that inheriting from
BaseException causes your custom exceptions to not be caught and to signal an im‐
minent application shutdown!

Having custom exceptions in your application and using them as shown makes your
application code tell a more coherent story to whoever may need to read the code. One
design consideration involves the grouping of custom exceptions via inheritance. In
complicated applications, it may make sense to introduce further base classes that group
different classes of exceptions together. This gives the user a choice of catching a nar‐
rowly specified error, such as this:

try:
 s.send(msg)
except ProtocolError:
 ...

It also gives the ability to catch a broad range of errors, such as the following:

try:
 s.send(msg)
except NetworkError:
 ...

If you are going to define a new exception that overrides the __init__() method of
Exception, make sure you always call Exception.__init__() with all of the passed
arguments. For example:

class CustomError(Exception):
 def __init__(self, message, status):
 super().__init__(message, status)
 self.message = message
 self.status = status

This might look a little weird, but the default behavior of Exception is to accept all
arguments passed and to store them in the .args attribute as a tuple. Various other
libraries and parts of Python expect all exceptions to have the .args attribute, so if you
skip this step, you might find that your new exception doesn’t behave quite right in
certain contexts. To illustrate the use of .args, consider this interactive session with the
built-in RuntimeError exception, and notice how any number of arguments can be used
with the raise statement:

>>> try:
... raise RuntimeError('It failed')
... except RuntimeError as e:
... print(e.args)
...
('It failed',)
>>> try:
... raise RuntimeError('It failed', 42, 'spam')
... except RuntimeError as e:

14.8. Creating Custom Exceptions | 579

... print(e.args)

...
('It failed', 42, 'spam')
>>>

For more information on creating your own exceptions, see the Python documentation.

14.9. Raising an Exception in Response to Another
Exception
Problem
You want to raise an exception in response to catching a different exception, but want
to include information about both exceptions in the traceback.

Solution
To chain exceptions, use the raise from statement instead of a simple raise statement.
This will give you information about both errors. For example:

>>> def example():
... try:
... int('N/A')
... except ValueError as e:
... raise RuntimeError('A parsing error occurred') from e...
>>>
example()
Traceback (most recent call last):
 File "<stdin>", line 3, in example
ValueError: invalid literal for int() with base 10: 'N/A'

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 5, in example
RuntimeError: A parsing error occurred
>>>

As you can see in the traceback, both exceptions are captured. To catch such an excep‐
tion, you would use a normal except statement. However, you can look at the __cause__
attribute of the exception object to follow the exception chain should you wish. For
example:

try:
 example()
except RuntimeError as e:
 print("It didn't work:", e)

580 | Chapter 14: Testing, Debugging, and Exceptions

http://docs.python.org/3/tutorial/errors.html

 if e.__cause__:
 print('Cause:', e.__cause__)

An implicit form of chained exceptions occurs when another exception gets raised in‐
side an except block. For example:

>>> def example2():
... try:
... int('N/A')
... except ValueError as e:
... print("Couldn't parse:", err)
...
>>>
>>> example2()
Traceback (most recent call last):
 File "<stdin>", line 3, in example2
ValueError: invalid literal for int() with base 10: 'N/A'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 5, in example2
NameError: global name 'err' is not defined
>>>

In this example, you get information about both exceptions, but the interpretation is a
bit different. In this case, the NameError exception is raised as the result of a program‐
ming error, not in direct response to the parsing error. For this case, the __cause__
attribute of an exception is not set. Instead, a __context__ attribute is set to the prior
exception.

If, for some reason, you want to suppress chaining, use raise from None:

>>> def example3():
... try:
... int('N/A')
... except ValueError:
... raise RuntimeError('A parsing error occurred') from None...
>>>
example3()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 5, in example3
RuntimeError: A parsing error occurred
>>>

14.9. Raising an Exception in Response to Another Exception | 581

Discussion
In designing code, you should give careful attention to use of the raise statement inside
of other except blocks. In most cases, such raise statements should probably be
changed to raise from statements. That is, you should prefer this style:

try:
 ...
except SomeException as e:
 raise DifferentException() from e

The reason for doing this is that you are explicitly chaining the causes together. That is,
the DifferentException is being raised in direct response to getting a SomeExcep
tion. This relationship will be explicitly stated in the resulting traceback.

If you write your code in the following style, you still get a chained exception, but it’s
often not clear if the exception chain was intentional or the result of an unforeseen
programming error:

try:
 ...
except SomeException:
 raise DifferentException()

When you use raise from, you’re making it clear that you meant to raise the second
exception.

Resist the urge to suppress exception information, as shown in the last example. Al‐
though suppressing exception information can lead to smaller tracebacks, it also dis‐
cards information that might be useful for debugging. All things being equal, it’s often
best to keep as much information as possible.

14.10. Reraising the Last Exception
Problem
You caught an exception in an except block, but now you want to reraise it.

Solution
Simply use the raise statement all by itself. For example:

>>> def example():
... try:
... int('N/A')
... except ValueError:
... print("Didn't work")
... raise
...

582 | Chapter 14: Testing, Debugging, and Exceptions

>>> example()
Didn't work
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in example
ValueError: invalid literal for int() with base 10: 'N/A'
>>>

Discussion
This problem typically arises when you need to take some kind of action in response to
an exception (e.g., logging, cleanup, etc.), but afterward, you simply want to propagate
the exception along. A very common use might be in catch-all exception handlers:

try:
 ...
except Exception as e:
 # Process exception information in some way
 ...

 # Propagate the exception
 raise

14.11. Issuing Warning Messages
Problem
You want to have your program issue warning messages (e.g., about deprecated features
or usage problems).

Solution
To have your program issue a warning message, use the warnings.warn() function. For
example:

import warnings

def func(x, y, logfile=None, debug=False):
 if logfile is not None:
 warnings.warn('logfile argument deprecated', DeprecationWarning)
 ...

The arguments to warn() are a warning message along with a warning class, which is
typically one of the following: UserWarning, DeprecationWarning, SyntaxWarning,
RuntimeWarning, ResourceWarning, or FutureWarning.

The handling of warnings depends on how you have executed the interpreter and other
configuration. For example, if you run Python with the -W all option, you’ll get output
such as the following:

14.11. Issuing Warning Messages | 583

 bash % python3 -W all example.py
 example.py:5: DeprecationWarning: logfile argument is deprecated
 warnings.warn('logfile argument is deprecated', DeprecationWarning)

Normally, warnings just produce output messages on standard error. If you want to turn
warnings into exceptions, use the -W error option:

 bash % python3 -W error example.py
 Traceback (most recent call last):
 File "example.py", line 10, in <module>
 func(2, 3, logfile='log.txt')
 File "example.py", line 5, in func
 warnings.warn('logfile argument is deprecated', DeprecationWarning)
 DeprecationWarning: logfile argument is deprecated
 bash %

Discussion
Issuing a warning message is often a useful technique for maintaining software and
assisting users with issues that don’t necessarily rise to the level of being a full-fledged
exception. For example, if you’re going to change the behavior of a library or framework,
you can start issuing warning messages for the parts that you’re going to change while
still providing backward compatibility for a time. You can also warn users about prob‐
lematic usage issues in their code.

As another example of a warning in the built-in library, here is an example of a warning
message generated by destroying a file without closing it:

>>> import warnings
>>> warnings.simplefilter('always')
>>> f = open('/etc/passwd')
>>> del f
__main__:1: ResourceWarning: unclosed file <_io.TextIOWrapper name='/etc/passwd'
 mode='r' encoding='UTF-8'>
>>>

By default, not all warning messages appear. The -W option to Python can control the
output of warning messages. -W all will output all warning messages, -W ignore
ignores all warnings, and -W error turns warnings into exceptions. As an alternative,
you can can use the warnings.simplefilter() function to control output, as just
shown. An argument of always makes all warning messages appear, ignore ignores all
warnings, and error turns warnings into exceptions.

For simple cases, this is all you really need to issue warning messages. The warnings
module provides a variety of more advanced configuration options related to the fil‐
tering and handling of warning messages. See the Python documentation for more
information.

584 | Chapter 14: Testing, Debugging, and Exceptions

http://docs.python.org/3/library/warnings.html

14.12. Debugging Basic Program Crashes
Problem
Your program is broken and you’d like some simple strategies for debugging it.

Solution
If your program is crashing with an exception, running your program as python3 -i
someprogram.py can be a useful tool for simply looking around. The -i option starts
an interactive shell as soon as a program terminates. From there, you can explore the
environment. For example, suppose you have this code:

sample.py

def func(n):
 return n + 10

func('Hello')

Running python3 -i produces the following:

bash % python3 -i sample.py
Traceback (most recent call last):
 File "sample.py", line 6, in <module>
 func('Hello')
 File "sample.py", line 4, in func
 return n + 10
TypeError: Can't convert 'int' object to str implicitly
>>> func(10)
20
>>>

If you don’t see anything obvious, a further step is to launch the Python debugger after
a crash. For example:

>>> import pdb
>>> pdb.pm()
> sample.py(4)func()
-> return n + 10
(Pdb) w
 sample.py(6)<module>()
-> func('Hello')
> sample.py(4)func()
-> return n + 10
(Pdb) print n
'Hello'
(Pdb) q
>>>

14.12. Debugging Basic Program Crashes | 585

If your code is deeply buried in an environment where it is difficult to obtain an inter‐
active shell (e.g., in a server), you can often catch errors and produce tracebacks yourself.
For example:

import traceback
import sys

try:
 func(arg)
except:
 print('**** AN ERROR OCCURRED ****')
 traceback.print_exc(file=sys.stderr)

If your program isn’t crashing, but it’s producing wrong answers or you’re mystified by
how it works, there is often nothing wrong with just injecting a few print() calls in
places of interest. However, if you’re going to do that, there are a few related techniques
of interest. First, the traceback.print_stack() function will create a stack track of
your program immediately at that point. For example:

>>> def sample(n):
... if n > 0:
... sample(n-1)
... else:
... traceback.print_stack(file=sys.stderr)
...
>>> sample(5)
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in sample
 File "<stdin>", line 3, in sample
 File "<stdin>", line 3, in sample
 File "<stdin>", line 3, in sample
 File "<stdin>", line 3, in sample
 File "<stdin>", line 5, in sample
>>>

Alternatively, you can also manually launch the debugger at any point in your program
using pdb.set_trace() like this:

import pdb

def func(arg):
 ...
 pdb.set_trace()
 ...

This can be a useful technique for poking around in the internals of a large program
and answering questions about the control flow or arguments to functions. For instance,
once the debugger starts, you can inspect variables using print or type a command such
as w to get the stack traceback.

586 | Chapter 14: Testing, Debugging, and Exceptions

Discussion
Don’t make debugging more complicated than it needs to be. Simple errors can often
be resolved by merely knowing how to read program tracebacks (e.g., the actual error
is usually the last line of the traceback). Inserting a few selected print() functions in
your code can also work well if you’re in the process of developing it and you simply
want some diagnostics (just remember to remove the statements later).

A common use of the debugger is to inspect variables inside a function that has crashed.
Knowing how to enter the debugger after such a crash has occurred is a useful skill to
know.

Inserting statements such as pdb.set_trace() can be useful if you’re trying to unravel
an extremely complicated program where the underlying control flow isn’t obvious.
Essentially, the program will run until it hits the set_trace() call, at which point it will
immediately enter the debugger. From there, you can try to make more sense of it.

If you’re using an IDE for Python development, the IDE will typically provide its own
debugging interface on top of or in place of pdb. Consult the manual for your IDE for
more information.

14.13. Profiling and Timing Your Program
Problem
You would like to find out where your program spends its time and make timing
measurements.

Solution
If you simply want to time your whole program, it’s usually easy enough to use something
like the Unix time command. For example:

bash % time python3 someprogram.py
real 0m13.937s
user 0m12.162s
sys 0m0.098s
bash %

On the other extreme, if you want a detailed report showing what your program is doing,
you can use the cProfile module:

14.13. Profiling and Timing Your Program | 587

bash % python3 -m cProfile someprogram.py
 859647 function calls in 16.016 CPU seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)
 263169 0.080 0.000 0.080 0.000 someprogram.py:16(frange)
 513 0.001 0.000 0.002 0.000 someprogram.py:30(generate_mandel)
 262656 0.194 0.000 15.295 0.000 someprogram.py:32(<genexpr>)
 1 0.036 0.036 16.077 16.077 someprogram.py:4(<module>)
 262144 15.021 0.000 15.021 0.000 someprogram.py:4(in_mandelbrot)
 1 0.000 0.000 0.000 0.000 os.py:746(urandom)
 1 0.000 0.000 0.000 0.000 png.py:1056(_readable)
 1 0.000 0.000 0.000 0.000 png.py:1073(Reader)
 1 0.227 0.227 0.438 0.438 png.py:163(<module>)
 512 0.010 0.000 0.010 0.000 png.py:200(group)
 ...
bash %

More often than not, profiling your code lies somewhere in between these two extremes.
For example, you may already know that your code spends most of its time in a few
selected functions. For selected profiling of functions, a short decorator can be useful.
For example:

timethis.py

import time
from functools import wraps

def timethis(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 start = time.perf_counter()
 r = func(*args, **kwargs)
 end = time.perf_counter()
 print('{}.{} : {}'.format(func.__module__, func.__name__, end - start))
 return r
 return wrapper

To use this decorator, you simply place it in front of a function definition to get timings
from it. For example:

>>> @timethis
... def countdown(n):
... while n > 0:
... n -= 1
...
>>> countdown(10000000)
__main__.countdown : 0.803001880645752
>>>

To time a block of statements, you can define a context manager. For example:

588 | Chapter 14: Testing, Debugging, and Exceptions

from contextlib import contextmanager

@contextmanager
def timeblock(label):
 start = time.perf_counter()
 try:
 yield
 finally:
 end = time.perf_counter()
 print('{} : {}'.format(label, end - start))

Here is an example of how the context manager works:

>>> with timeblock('counting'):
... n = 10000000
... while n > 0:
... n -= 1
...
counting : 1.5551159381866455
>>>

For studying the performance of small code fragments, the timeit module can be useful.
For example:

>>> from timeit import timeit
>>> timeit('math.sqrt(2)', 'import math')
0.1432319980012835
>>> timeit('sqrt(2)', 'from math import sqrt')
0.10836604500218527
>>>

timeit works by executing the statement specified in the first argument a million times
and measuring the time. The second argument is a setup string that is executed to set
up the environment prior to running the test. If you need to change the number of
iterations, supply a number argument like this:

>>> timeit('math.sqrt(2)', 'import math', number=10000000)
1.434852126003534
>>> timeit('sqrt(2)', 'from math import sqrt', number=10000000)
1.0270336690009572
>>>

Discussion
When making performance measurements, be aware that any results you get are ap‐
proximations. The time.perf_counter() function used in the solution provides the
highest-resolution timer possible on a given platform. However, it still measures wall-
clock time, and can be impacted by many different factors, such as machine load.

If you are interested in process time as opposed to wall-clock time, use time.pro
cess_time() instead. For example:

14.13. Profiling and Timing Your Program | 589

from functools import wraps
def timethis(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 start = time.process_time()
 r = func(*args, **kwargs)
 end = time.process_time()
 print('{}.{} : {}'.format(func.__module__, func.__name__, end - start))
 return r
 return wrapper

Last, but not least, if you’re going to perform detailed timing analysis, make sure to read
the documentation for the time, timeit, and other associated modules, so that you have
an understanding of important platform-related differences and other pitfalls.

See Recipe 13.13 for a related recipe on creating a stopwatch timer class.

14.14. Making Your Programs Run Faster
Problem
Your program runs too slow and you’d like to speed it up without the assistance of more
extreme solutions, such as C extensions or a just-in-time (JIT) compiler.

Solution
While the first rule of optimization might be to “not do it,” the second rule is almost
certainly “don’t optimize the unimportant.” To that end, if your program is running slow,
you might start by profiling your code as discussed in Recipe 14.13.

More often than not, you’ll find that your program spends its time in a few hotspots,
such as inner data processing loops. Once you’ve identified those locations, you can use
the no-nonsense techniques presented in the following sections to make your program
run faster.

Use functions
A lot of programmers start using Python as a language for writing simple scripts. When
writing scripts, it is easy to fall into a practice of simply writing code with very little
structure. For example:

somescript.py

import sys
import csv

with open(sys.argv[1]) as f:
 for row in csv.reader(f):

590 | Chapter 14: Testing, Debugging, and Exceptions

 # Some kind of processing
 ...

A little-known fact is that code defined in the global scope like this runs slower than
code defined in a function. The speed difference has to do with the implementation of
local versus global variables (operations involving locals are faster). So, if you want to
make the program run faster, simply put the scripting statements in a function:

somescript.py
import sys
import csv

def main(filename):
 with open(filename) as f:
 for row in csv.reader(f):
 # Some kind of processing
 ...

main(sys.argv[1])

The speed difference depends heavily on the processing being performed, but in our
experience, speedups of 15-30% are not uncommon.

Selectively eliminate attribute access
Every use of the dot (.) operator to access attributes comes with a cost. Under the covers,
this triggers special methods, such as __getattribute__() and __getattr__(), which
often lead to dictionary lookups.

You can often avoid attribute lookups by using the from module import name form of
import as well as making selected use of bound methods. To illustrate, consider the
following code fragment:

import math

def compute_roots(nums):
 result = []
 for n in nums:
 result.append(math.sqrt(n))
 return result

Test
nums = range(1000000)
for n in range(100):
 r = compute_roots(nums)

When tested on our machine, this program runs in about 40 seconds. Now change the
compute_roots() function as follows:

from math import sqrt

def compute_roots(nums):

14.14. Making Your Programs Run Faster | 591

 result = []
 result_append = result.append
 for n in nums:
 result_append(sqrt(n))
 return result

This version runs in about 29 seconds. The only difference between the two versions of
code is the elimination of attribute access. Instead of using math.sqrt(), the code uses
sqrt(). The result.append() method is additionally placed into a local variable re
sult_append and reused in the inner loop.

However, it must be emphasized that these changes only make sense in frequently ex‐
ecuted code, such as loops. So, this optimization really only makes sense in carefully
selected places.

Understand locality of variables
As previously noted, local variables are faster than global variables. For frequently ac‐
cessed names, speedups can be obtained by making those names as local as possible.
For example, consider this modified version of the compute_roots() function just
discussed:

import math

def compute_roots(nums):
 sqrt = math.sqrt
 result = []
 result_append = result.append
 for n in nums:
 result_append(sqrt(n))
 return result

In this version, sqrt has been lifted from the math module and placed into a local
variable. If you run this code, it now runs in about 25 seconds (an improvement over
the previous version, which took 29 seconds). That additional speedup is due to a local
lookup of sqrt being a bit faster than a global lookup of sqrt.

Locality arguments also apply when working in classes. In general, looking up a value
such as self.name will be considerably slower than accessing a local variable. In inner
loops, it might pay to lift commonly accessed attributes into a local variable. For example:

Slower
class SomeClass:
 ...
 def method(self):
 for x in s:
 op(self.value)

Faster
class SomeClass:

592 | Chapter 14: Testing, Debugging, and Exceptions

 ...
 def method(self):
 value = self.value
 for x in s:
 op(value)

Avoid gratuitous abstraction
Any time you wrap up code with extra layers of processing, such as decorators, prop‐
erties, or descriptors, you’re going to make it slower. As an example, consider this class:

class A:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 @property
 def y(self):
 return self._y
 @y.setter
 def y(self, value):
 self._y = value

Now, try a simple timing test:

>>> from timeit import timeit
>>> a = A(1,2)
>>> timeit('a.x', 'from __main__ import a')
0.07817923510447145
>>> timeit('a.y', 'from __main__ import a')
0.35766440676525235
>>>

As you can observe, accessing the property y is not just slightly slower than a simple
attribute x, it’s about 4.5 times slower. If this difference matters, you should ask yourself
if the definition of y as a property was really necessary. If not, simply get rid of it and
go back to using a simple attribute instead. Just because it might be common for pro‐
grams in another programming language to use getter/setter functions, that doesn’t
mean you should adopt that programming style for Python.

Use the built-in containers
Built-in data types such as strings, tuples, lists, sets, and dicts are all implemented in C,
and are rather fast. If you’re inclined to make your own data structures as a replacement
(e.g., linked lists, balanced trees, etc.), it may be rather difficult if not impossible to match
the speed of the built-ins. Thus, you’re often better off just using them.

Avoid making unnecessary data structures or copies
Sometimes programmers get carried away with making unnecessary data structures
when they just don’t have to. For example, someone might write code like this:

14.14. Making Your Programs Run Faster | 593

values = [x for x in sequence]
squares = [x*x for x in values]

Perhaps the thinking here is to first collect a bunch of values into a list and then to start
applying operations such as list comprehensions to it. However, the first list is com‐
pletely unnecessary. Simply write the code like this:

squares = [x*x for x in sequence]

Related to this, be on the lookout for code written by programmers who are overly
paranoid about Python’s sharing of values. Overuse of functions such as copy.deep
copy() may be a sign of code that’s been written by someone who doesn’t fully under‐
stand or trust Python’s memory model. In such code, it may be safe to eliminate many
of the copies.

Discussion
Before optimizing, it’s usually worthwhile to study the algorithms that you’re using first.
You’ll get a much bigger speedup by switching to an O(n log n) algorithm than by
trying to tweak the implementation of an an O(n**2) algorithm.

If you’ve decided that you still must optimize, it pays to consider the big picture. As a
general rule, you don’t want to apply optimizations to every part of your program,
because such changes are going to make the code hard to read and understand. Instead,
focus only on known performance bottlenecks, such as inner loops.

You need to be especially wary interpreting the results of micro-optimizations. For
example, consider these two techniques for creating a dictionary:

a = {
 'name' : 'AAPL',
 'shares' : 100,
 'price' : 534.22
}

b = dict(name='AAPL', shares=100, price=534.22)

The latter choice has the benefit of less typing (you don’t need to quote the key names).
However, if you put the two code fragments in a head-to-head performance battle, you’ll
find that using dict() runs three times slower! With this knowledge, you might be
inclined to scan your code and replace every use of dict() with its more verbose al‐
ternative. However, a smart programmer will only focus on parts of a program where
it might actually matter, such as an inner loop. In other places, the speed difference just
isn’t going to matter at all.

If, on the other hand, your performance needs go far beyond the simple techniques in
this recipe, you might investigate the use of tools based on just-in-time (JIT) compilation
techniques. For example, the PyPy project is an alternate implementation of the Python

594 | Chapter 14: Testing, Debugging, and Exceptions

http://pypy.org

interpreter that analyzes the execution of your program and generates native machine
code for frequently executed parts. It can sometimes make Python programs run an
order of magnitude faster, often approaching (or even exceeding) the speed of code
written in C. Unfortunately, as of this writing, PyPy does not yet fully support Python
3. So, that is something to look for in the future. You might also consider the Numba
project. Numba is a dynamic compiler where you annotate selected Python functions
that you want to optimize with a decorator. Those functions are then compiled into
native machine code through the use of LLVM. It too can produce signficant perfor‐
mance gains. However, like PyPy, support for Python 3 should be viewed as somewhat
experimental.

Last, but not least, the words of John Ousterhout come to mind: “The best performance
improvement is the transition from the nonworking to the working state.” Don’t worry
about optimization until you need to. Making sure your program works correctly is
usually more important than making it run fast (at least initially).

14.14. Making Your Programs Run Faster | 595

http://numba.pydata.org
http://numba.pydata.org
http://llvm.org

CHAPTER 15

C Extensions

This chapter looks at the problem of accessing C code from Python. Many of Python’s
built-in libraries are written in C, and accessing C is an important part of making Python
talk to existing libraries. It’s also an area that might require the most study if you’re faced
with the problem of porting extension code from Python 2 to 3.

Although Python provides an extensive C programming API, there are actually many
different approaches for dealing with C. Rather than trying to give an exhaustive ref‐
erence for every possible tool or technique, the approach is to focus on a small fragment
of C code along with some representative examples of how to work with the code. The
goal is to provide a series of programming templates that experienced programmers
can expand upon for their own use.

Here is the C code we will work with in most of the recipes:

/* sample.c */_method
#include <math.h>

/* Compute the greatest common divisor */
int gcd(int x, int y) {
 int g = y;
 while (x > 0) {
 g = x;
 x = y % x;
 y = g;
 }
 return g;
}

/* Test if (x0,y0) is in the Mandelbrot set or not */
int in_mandel(double x0, double y0, int n) {
 double x=0,y=0,xtemp;
 while (n > 0) {
 xtemp = x*x - y*y + x0;
 y = 2*x*y + y0;

597

 x = xtemp;
 n -= 1;
 if (x*x + y*y > 4) return 0;
 }
 return 1;
}

/* Divide two numbers */
int divide(int a, int b, int *remainder) {
 int quot = a / b;
 *remainder = a % b;
 return quot;
}

/* Average values in an array */
double avg(double *a, int n) {
 int i;
 double total = 0.0;
 for (i = 0; i < n; i++) {
 total += a[i];
 }
 return total / n;
}

/* A C data structure */
typedef struct Point {
 double x,y;
} Point;

/* Function involving a C data structure */
double distance(Point *p1, Point *p2) {
 return hypot(p1->x - p2->x, p1->y - p2->y);
}

This code contains a number of different C programming features. First, there are a few
simple functions such as gcd() and is_mandel(). The divide() function is an example
of a C function returning multiple values, one through a pointer argument. The avg()
function performs a data reduction across a C array. The Point and distance() function
involve C structures.

For all of the recipes that follow, assume that the preceding code is found in a file named
sample.c, that definitions are found in a file named sample.h and that it has been com‐
piled into a library libsample that can be linked to other C code. The exact details of
compilation and linking vary from system to system, but that is not the primary focus.
It is assumed that if you’re working with C code, you’ve already figured that out.

598 | Chapter 15: C Extensions

15.1. Accessing C Code Using ctypes
Problem
You have a small number of C functions that have been compiled into a shared library
or DLL. You would like to call these functions purely from Python without having to
write additional C code or using a third-party extension tool.

Solution
For small problems involving C code, it is often easy enough to use the ctypes module
that is part of Python’s standard library. In order to use ctypes, you must first make
sure the C code you want to access has been compiled into a shared library that is
compatible with the Python interpreter (e.g., same architecture, word size, compiler,
etc.). For the purposes of this recipe, assume that a shared library, libsample.so, has
been created and that it contains nothing more than the code shown in the chapter
introduction. Further assume that the libsample.so file has been placed in the same
directory as the sample.py file shown next.

To access the resulting library, you make a Python module that wraps around it, such
as the following:

sample.py
import ctypes
import os

Try to locate the .so file in the same directory as this file
_file = 'libsample.so'
_path = os.path.join(*(os.path.split(__file__)[:-1] + (_file,)))
_mod = ctypes.cdll.LoadLibrary(_path)

int gcd(int, int)
gcd = _mod.gcd
gcd.argtypes = (ctypes.c_int, ctypes.c_int)
gcd.restype = ctypes.c_int

int in_mandel(double, double, int)
in_mandel = _mod.in_mandel
in_mandel.argtypes = (ctypes.c_double, ctypes.c_double, ctypes.c_int)
in_mandel.restype = ctypes.c_int

int divide(int, int, int *)
_divide = _mod.divide
_divide.argtypes = (ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_int))
_divide.restype = ctypes.c_int

def divide(x, y):
 rem = ctypes.c_int()
 quot = _divide(x, y, rem)

15.1. Accessing C Code Using ctypes | 599

 return quot,rem.value

void avg(double *, int n)
Define a special type for the 'double *' argument
class DoubleArrayType:
 def from_param(self, param):
 typename = type(param).__name__
 if hasattr(self, 'from_' + typename):
 return getattr(self, 'from_' + typename)(param)
 elif isinstance(param, ctypes.Array):
 return param
 else:
 raise TypeError("Can't convert %s" % typename)

 # Cast from array.array objects
 def from_array(self, param):
 if param.typecode != 'd':
 raise TypeError('must be an array of doubles')
 ptr, _ = param.buffer_info()
 return ctypes.cast(ptr, ctypes.POINTER(ctypes.c_double))

 # Cast from lists/tuples
 def from_list(self, param):
 val = ((ctypes.c_double)*len(param))(*param)
 return val

 from_tuple = from_list

 # Cast from a numpy array
 def from_ndarray(self, param):
 return param.ctypes.data_as(ctypes.POINTER(ctypes.c_double))

DoubleArray = DoubleArrayType()
_avg = _mod.avg
_avg.argtypes = (DoubleArray, ctypes.c_int)
_avg.restype = ctypes.c_double

def avg(values):
 return _avg(values, len(values))

struct Point { }
class Point(ctypes.Structure):
 fields = [('x', ctypes.c_double),
 ('y', ctypes.c_double)]

double distance(Point *, Point *)
distance = _mod.distance
distance.argtypes = (ctypes.POINTER(Point), ctypes.POINTER(Point))
distance.restype = ctypes.c_double

If all goes well, you should be able to load the module and use the resulting C functions.
For example:

600 | Chapter 15: C Extensions

>>> import sample
>>> sample.gcd(35,42)
7
>>> sample.in_mandel(0,0,500)
1
>>> sample.in_mandel(2.0,1.0,500)
0
>>> sample.divide(42,8)
(5, 2)
>>> sample.avg([1,2,3])
2.0
>>> p1 = sample.Point(1,2)
>>> p2 = sample.Point(4,5)
>>> sample.distance(p1,p2)
4.242640687119285
>>>

Discussion
There are several aspects of this recipe that warrant some discussion. The first issue
concerns the overall packaging of C and Python code together. If you are using ctypes
to access C code that you have compiled yourself, you will need to make sure that the
shared library gets placed in a location where the sample.py module can find it. One
possibility is to put the resulting .so file in the same directory as the supporting Python
code. This is what’s shown at the first part of this recipe—sample.py looks at the __file__
variable to see where it has been installed, and then constructs a path that points to a
libsample.so file in the same directory.

If the C library is going to be installed elsewhere, then you’ll have to adjust the path
accordingly. If the C library is installed as a standard library on your machine, you might
be able to use the ctypes.util.find_library() function. For example:

>>> from ctypes.util import find_library
>>> find_library('m')
'/usr/lib/libm.dylib'
>>> find_library('pthread')
'/usr/lib/libpthread.dylib'
>>> find_library('sample')
'/usr/local/lib/libsample.so'
>>>

Again, ctypes won’t work at all if it can’t locate the library with the C code. Thus, you’ll
need to spend a few minutes thinking about how you want to install things.

Once you know where the C library is located, you use ctypes.cdll.LoadLibrary()
to load it. The following statement in the solution does this where _path is the full
pathname to the shared library:

_mod = ctypes.cdll.LoadLibrary(_path)

15.1. Accessing C Code Using ctypes | 601

Once a library has been loaded, you need to write statements that extract specific sym‐
bols and put type signatures on them. This is what’s happening in code fragments such
as this:

int in_mandel(double, double, int)
in_mandel = _mod.in_mandel
in_mandel.argtypes = (ctypes.c_double, ctypes.c_double, ctypes.c_int)
in_mandel.restype = ctypes.c_int

In this code, the .argtypes attribute is a tuple containing the input arguments to a
function, and .restype is the return type. ctypes defines a variety of type objects (e.g.,
c_double, c_int, c_short, c_float, etc.) that represent common C data types. Attach‐
ing the type signatures is critical if you want to make Python pass the right kinds of
arguments and convert data correctly (if you don’t do this, not only will the code not
work, but you might cause the entire interpreter process to crash).

A somewhat tricky part of using ctypes is that the original C code may use idioms that
don’t map cleanly to Python. The divide() function is a good example because it returns
a value through one of its arguments. Although that’s a common C technique, it’s often
not clear how it’s supposed to work in Python. For example, you can’t do anything
straightforward like this:

>>> divide = _mod.divide
>>> divide.argtypes = (ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_int))
>>> x = 0
>>> divide(10, 3, x)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ctypes.ArgumentError: argument 3: <class 'TypeError'>: expected LP_c_int
instance instead of int
>>>

Even if this did work, it would violate Python’s immutability of integers and probably
cause the entire interpreter to be sucked into a black hole. For arguments involving
pointers, you usually have to construct a compatible ctypes object and pass it in like
this:

>>> x = ctypes.c_int()
>>> divide(10, 3, x)
3
>>> x.value
1
>>>

Here an instance of a ctypes.c_int is created and passed in as the pointer object. Unlike
a normal Python integer, a c_int object can be mutated. The .value attribute can be
used to either retrieve or change the value as desired.

602 | Chapter 15: C Extensions

For cases where the C calling convention is “un-Pythonic,” it is common to write a small
wrapper function. In the solution, this code makes the divide() function return the
two results using a tuple instead:

int divide(int, int, int *)
_divide = _mod.divide
_divide.argtypes = (ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_int))
_divide.restype = ctypes.c_int

def divide(x, y):
 rem = ctypes.c_int()
 quot = _divide(x,y,rem)
 return quot, rem.value

The avg() function presents a new kind of challenge. The underlying C code expects
to receive a pointer and a length representing an array. However, from the Python side,
we must consider the following questions: What is an array? Is it a list? A tuple? An
array from the array module? A numpy array? Is it all of these? In practice, a Python
“array” could take many different forms, and maybe you would like to support multiple
possibilities.

The DoubleArrayType class shows how to handle this situation. In this class, a single
method from_param() is defined. The role of this method is to take a single parameter
and narrow it down to a compatible ctypes object (a pointer to a ctypes.c_double, in
the example). Within from_param(), you are free to do anything that you wish. In the
solution, the typename of the parameter is extracted and used to dispatch to a more
specialized method. For example, if a list is passed, the typename is list and a method
from_list() is invoked.

For lists and tuples, the from_list() method performs a conversion to a ctypes array
object. This looks a little weird, but here is an interactive example of converting a list to
a ctypes array:

>>> nums = [1, 2, 3]
>>> a = (ctypes.c_double * len(nums))(*nums)
>>> a
<__main__.c_double_Array_3 object at 0x10069cd40>
>>> a[0]
1.0
>>> a[1]
2.0
>>> a[2]
3.0
>>>

For array objects, the from_array() method extracts the underlying memory pointer
and casts it to a ctypes pointer object. For example:

15.1. Accessing C Code Using ctypes | 603

>>> import array
>>> a = array.array('d',[1,2,3])
>>> a
array('d', [1.0, 2.0, 3.0])
>>> ptr_ = a.buffer_info()
>>> ptr
4298687200
>>> ctypes.cast(ptr, ctypes.POINTER(ctypes.c_double))
<__main__.LP_c_double object at 0x10069cd40>
>>>

The from_ndarray() shows comparable conversion code for numpy arrays.

By defining the DoubleArrayType class and using it in the type signature of avg(), as
shown, the function can accept a variety of different array-like inputs:

>>> import sample
>>> sample.avg([1,2,3])
2.0
>>> sample.avg((1,2,3))
2.0
>>> import array
>>> sample.avg(array.array('d',[1,2,3]))
2.0
>>> import numpy
>>> sample.avg(numpy.array([1.0,2.0,3.0]))
2.0
>>>

The last part of this recipe shows how to work with a simple C structure. For structures,
you simply define a class that contains the appropriate fields and types like this:

class Point(ctypes.Structure):
 fields = [('x', ctypes.c_double),
 ('y', ctypes.c_double)]

Once defined, you can use the class in type signatures as well as in code that needs to
instantiate and work with the structures. For example:

>>> p1 = sample.Point(1,2)
>>> p2 = sample.Point(4,5)
>>> p1.x
1.0
>>> p1.y
2.0
>>> sample.distance(p1,p2)
4.242640687119285
>>>

A few final comments: ctypes is a useful library to know about if all you’re doing is
accessing a few C functions from Python. However, if you’re trying to access a large
library, you might want to look at alternative approaches, such as Swig (described in
Recipe 15.9) or Cython (described in Recipe 15.10).

604 | Chapter 15: C Extensions

The main problem with a large library is that since ctypes isn’t entirely automatic, you’ll
have to spend a fair bit of time writing out all of the type signatures, as shown in the
example. Depending on the complexity of the library, you might also have to write a
large number of small wrapper functions and supporting classes. Also, unless you fully
understand all of the low-level details of the C interface, including memory management
and error handling, it is often quite easy to make Python catastrophically crash with a
segmentation fault, access violation, or some similar error.

As an alternative to ctypes, you might also look at CFFI. CFFI provides much of the
same functionality, but uses C syntax and supports more advanced kinds of C code. As
of this writing, CFFI is still a relatively new project, but its use has been growing rapidly.
There has even been some discussion of including it in the Python standard library in
some future release. Thus, it’s definitely something to keep an eye on.

15.2. Writing a Simple C Extension Module
Problem
You want to write a simple C extension module directly using Python’s extension API
and no other tools.

Solution
For simple C code, it is straightforward to make a handcrafted extension module. As a
preliminary step, you probably want to make sure your C code has a proper header file.
For example,

/* sample.h */

#include <math.h>

extern int gcd(int, int);
extern int in_mandel(double x0, double y0, int n);
extern int divide(int a, int b, int *remainder);
extern double avg(double *a, int n);

typedef struct Point {
 double x,y;
} Point;

extern double distance(Point *p1, Point *p2);

15.2. Writing a Simple C Extension Module | 605

http://cffi.readthedocs.org/en/latest

Typically, this header would correspond to a library that has been compiled separately.
With that assumption, here is a sample extension module that illustrates the basics of
writing extension functions:

#include "Python.h"
#include "sample.h"

/* int gcd(int, int) */
static PyObject *py_gcd(PyObject *self, PyObject *args) {
 int x, y, result;

 if (!PyArg_ParseTuple(args,"ii", &x, &y)) {
 return NULL;
 }
 result = gcd(x,y);
 return Py_BuildValue("i", result);
}

/* int in_mandel(double, double, int) */
static PyObject *py_in_mandel(PyObject *self, PyObject *args) {
 double x0, y0;
 int n;
 int result;

 if (!PyArg_ParseTuple(args, "ddi", &x0, &y0, &n)) {
 return NULL;
 }
 result = in_mandel(x0,y0,n);
 return Py_BuildValue("i", result);
}

/* int divide(int, int, int *) */
static PyObject *py_divide(PyObject *self, PyObject *args) {
 int a, b, quotient, remainder;
 if (!PyArg_ParseTuple(args, "ii", &a, &b)) {
 return NULL;
 }
 quotient = divide(a,b, &remainder);
 return Py_BuildValue("(ii)", quotient, remainder);
}

/* Module method table */
static PyMethodDef SampleMethods[] = {
 {"gcd", py_gcd, METH_VARARGS, "Greatest common divisor"},
 {"in_mandel", py_in_mandel, METH_VARARGS, "Mandelbrot test"},
 {"divide", py_divide, METH_VARARGS, "Integer division"},
 { NULL, NULL, 0, NULL}
};

/* Module structure */
static struct PyModuleDef samplemodule = {
 PyModuleDef_HEAD_INIT,

606 | Chapter 15: C Extensions

 "sample", /* name of module */
 "A sample module", /* Doc string (may be NULL) */
 -1, /* Size of per-interpreter state or -1 */
 SampleMethods /* Method table */
};

/* Module initialization function */
PyMODINIT_FUNC
PyInit_sample(void) {
 return PyModule_Create(&samplemodule);
}

For building the extension module, create a setup.py file that looks like this:

setup.py
from distutils.core import setup, Extension

setup(name='sample',
 ext_modules=[
 Extension('sample',
 ['pysample.c'],
 include_dirs = ['/some/dir'],
 define_macros = [('FOO','1')],
 undef_macros = ['BAR'],
 library_dirs = ['/usr/local/lib'],
 libraries = ['sample']
)
]
)

Now, to build the resulting library, simply use python3 buildlib.py build_ext --
inplace. For example:

bash % python3 setup.py build_ext --inplace
running build_ext
building 'sample' extension
gcc -fno-strict-aliasing -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes
 -I/usr/local/include/python3.3m -c pysample.c
 -o build/temp.macosx-10.6-x86_64-3.3/pysample.o
gcc -bundle -undefined dynamic_lookup
build/temp.macosx-10.6-x86_64-3.3/pysample.o \
 -L/usr/local/lib -lsample -o sample.so
bash %

As shown, this creates a shared library called sample.so. When compiled, you should
be able to start importing it as a module:

>>> import sample
>>> sample.gcd(35, 42)
7
>>> sample.in_mandel(0, 0, 500)
1
>>> sample.in_mandel(2.0, 1.0, 500)

15.2. Writing a Simple C Extension Module | 607

0
>>> sample.divide(42, 8)
(5, 2)
>>>

If you are attempting these steps on Windows, you may need to spend some time fiddling
with your environment and the build environment to get extension modules to build
correctly. Binary distributions of Python are typically built using Microsoft Visual
Studio. To get extensions to work, you may have to compile them using the same or
compatible tools. See the Python documentation.

Discussion
Before attempting any kind of handwritten extension, it is absolutely critical that you
consult Python’s documentation on “Extending and Embedding the Python Interpret‐
er”. Python’s C extension API is large, and repeating all of it here is simply not practical.
However, the most important parts can be easily discussed.

First, in extension modules, functions that you write are all typically written with a
common prototype such as this:

static PyObject *py_func(PyObject *self, PyObject *args) {
 ...
}

PyObject is the C data type that represents any Python object. At a very high level, an
extension function is a C function that receives a tuple of Python objects (in PyObject
*args) and returns a new Python object as a result. The self argument to the function
is unused for simple extension functions, but comes into play should you want to define
new classes or object types in C (e.g., if the extension function were a method of a class,
then self would hold the instance).

The PyArg_ParseTuple() function is used to convert values from Python to a C rep‐
resentation. As input, it takes a format string that indicates the required values, such as
“i” for integer and “d” for double, as well as the addresses of C variables in which to place
the converted results. PyArg_ParseTuple() performs a variety of checks on the number
and type of arguments. If there is any mismatch with the format string, an exception is
raised and NULL is returned. By checking for this and simply returning NULL, an ap‐
propriate exception will have been raised in the calling code.

The Py_BuildValue() function is used to create Python objects from C data types. It
also accepts a format code to indicate the desired type. In the extension functions, it is
used to return results back to Python. One feature of Py_BuildValue() is that it can
build more complicated kinds of objects, such as tuples and dictionaries. In the code
for py_divide(), an example showing the return of a tuple is shown. However, here are
a few more examples:

608 | Chapter 15: C Extensions

http://docs.python.org/3/extending/windows.html
http://docs.python.org/3/extending/index.html
http://docs.python.org/3/extending/index.html

return Py_BuildValue("i", 34); // Return an integer
return Py_BuildValue("d", 3.4); // Return a double
return Py_BuildValue("s", "Hello"); // Null-terminated UTF-8 string
return Py_BuildValue("(ii)", 3, 4); // Tuple (3, 4)

Near the bottom of any extension module, you will find a function table such as the
SampleMethods table shown in this recipe. This table lists C functions, the names to use
in Python, as well as doc strings. All modules are required to specify such a table, as it
gets used in the initialization of the module.

The final function PyInit_sample() is the module initialization function that executes
when the module is first imported. The primary job of this function is to register the
module object with the interpreter.

As a final note, it must be stressed that there is considerably more to extending Python
with C functions than what is shown here (in fact, the C API contains well over 500
functions in it). You should view this recipe simply as a stepping stone for getting started.
To do more, start with the documentation on the PyArg_ParseTuple() and Py_Build
Value() functions, and expand from there.

15.3. Writing an Extension Function That Operates on
Arrays
Problem
You want to write a C extension function that operates on contiguous arrays of data, as
might be created by the array module or libraries like NumPy. However, you would like
your function to be general purpose and not specific to any one array library.

Solution
To receive and process arrays in a portable manner, you should write code that uses the
Buffer Protocol. Here is an example of a handwritten C extension function that receives
array data and calls the avg(double *buf, int len) function from this chapter’s in‐
troduction:

/* Call double avg(double *, int) */
static PyObject *py_avg(PyObject *self, PyObject *args) {
 PyObject *bufobj;
 Py_buffer view;
 double result;
 /* Get the passed Python object */
 if (!PyArg_ParseTuple(args, "O", &bufobj)) {
 return NULL;
 }

 /* Attempt to extract buffer information from it */

15.3. Writing an Extension Function That Operates on Arrays | 609

http://docs.python.org/3/c-api/buffer.html

 if (PyObject_GetBuffer(bufobj, &view,
 PyBUF_ANY_CONTIGUOUS | PyBUF_FORMAT) == -1) {
 return NULL;
 }

 if (view.ndim != 1) {
 PyErr_SetString(PyExc_TypeError, "Expected a 1-dimensional array");
 PyBuffer_Release(&view);
 return NULL;
 }

 /* Check the type of items in the array */
 if (strcmp(view.format,"d") != 0) {
 PyErr_SetString(PyExc_TypeError, "Expected an array of doubles");
 PyBuffer_Release(&view);
 return NULL;
 }

 /* Pass the raw buffer and size to the C function */
 result = avg(view.buf, view.shape[0]);

 /* Indicate we're done working with the buffer */
 PyBuffer_Release(&view);
 return Py_BuildValue("d", result);
}

Here is an example that shows how this extension function works:

>>> import array
>>> avg(array.array('d',[1,2,3]))
2.0
>>> import numpy
>>> avg(numpy.array([1.0,2.0,3.0]))
2.0
>>> avg([1,2,3])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'list' does not support the buffer interface
>>> avg(b'Hello')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Expected an array of doubles
>>> a = numpy.array([[1.,2.,3.],[4.,5.,6.]])
>>> avg(a[:,2])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: ndarray is not contiguous
>>> sample.avg(a)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Expected a 1-dimensional array
>>> sample.avg(a[0])

610 | Chapter 15: C Extensions

2.0
>>>

Discussion
Passing array objects to C functions might be one of the most common things you would
want to do with a extension function. A large number of Python applications, ranging
from image processing to scientific computing, are based on high-performance array
processing. By writing code that can accept and operate on arrays, you can write cus‐
tomized code that plays nicely with those applications as opposed to having some sort
of custom solution that only works with your own code.

The key to this code is the PyBuffer_GetBuffer() function. Given an arbitrary Python
object, it tries to obtain information about the underlying memory representation. If
it’s not possible, as is the case with most normal Python objects, it simply raises an
exception and returns -1. The special flags passed to PyBuffer_GetBuffer() give
additional hints about the kind of memory buffer that is requested. For example,
PyBUF_ANY_CONTIGUOUS specifies that a contiguous region of memory is required.

For arrays, byte strings, and other similar objects, a Py_buffer structure is filled with
information about the underlying memory. This includes a pointer to the memory, size,
itemsize, format, and other details. Here is the definition of this structure:

typedef struct bufferinfo {
 void *buf; /* Pointer to buffer memory */
 PyObject *obj; /* Python object that is the owner */
 Py_ssize_t len; /* Total size in bytes */
 Py_ssize_t itemsize; /* Size in bytes of a single item */
 int readonly; /* Read-only access flag */
 int ndim; /* Number of dimensions */
 char *format; /* struct code of a single item */
 Py_ssize_t *shape; /* Array containing dimensions */
 Py_ssize_t *strides; /* Array containing strides */
 Py_ssize_t *suboffsets; /* Array containing suboffsets */
} Py_buffer;

In this recipe, we are simply concerned with receiving a contiguous array of doubles.
To check if items are a double, the format attribute is checked to see if the string is
"d". This is the same code that the struct module uses when encoding binary values.
As a general rule, format could be any format string that’s compatible with the struct
module and might include multiple items in the case of arrays containing C structures.

Once we have verified the underlying buffer information, we simply pass it to the C
function, which treats it as a normal C array. For all practical purposes, it is not con‐
cerned with what kind of array it is or what library created it. This is how the function
is able to work with arrays created by the array module or by numpy.

15.3. Writing an Extension Function That Operates on Arrays | 611

Before returning a final result, the underlying buffer view must be released using
PyBuffer_Release(). This step is required to properly manage reference counts of
objects.

Again, this recipe only shows a tiny fragment of code that receives an array. If working
with arrays, you might run into issues with multidimensional data, strided data, different
data types, and more that will require study. Make sure you consult the official docu‐
mentation to get more details.

If you need to write many extensions involving array handling, you may find it easier
to implement the code in Cython. See Recipe 15.11.

15.4. Managing Opaque Pointers in C Extension Modules
Problem
You have an extension module that needs to handle a pointer to a C data structure, but
you don’t want to expose any internal details of the structure to Python.

Solution
Opaque data structures are easily handled by wrapping them inside capsule objects.
Consider this fragment of C code from our sample code:

typedef struct Point {
 double x,y;
} Point;

extern double distance(Point *p1, Point *p2);

Here is an example of extension code that wraps the Point structure and distance()
function using capsules:

/* Destructor function for points */
static void del_Point(PyObject *obj) {
 free(PyCapsule_GetPointer(obj,"Point"));
}

/* Utility functions */
static Point *PyPoint_AsPoint(PyObject *obj) {
 return (Point *) PyCapsule_GetPointer(obj, "Point");
}

static PyObject *PyPoint_FromPoint(Point *p, int must_free) {
 return PyCapsule_New(p, "Point", must_free ? del_Point : NULL);
}

/* Create a new Point object */
static PyObject *py_Point(PyObject *self, PyObject *args) {

612 | Chapter 15: C Extensions

http://docs.python.org/3/c-api/buffer.html
http://docs.python.org/3/c-api/buffer.html

 Point *p;
 double x,y;
 if (!PyArg_ParseTuple(args,"dd",&x,&y)) {
 return NULL;
 }
 p = (Point *) malloc(sizeof(Point));
 p->x = x;
 p->y = y;
 return PyPoint_FromPoint(p, 1);
}

static PyObject *py_distance(PyObject *self, PyObject *args) {
 Point *p1, *p2;
 PyObject *py_p1, *py_p2;
 double result;

 if (!PyArg_ParseTuple(args,"OO",&py_p1, &py_p2)) {
 return NULL;
 }
 if (!(p1 = PyPoint_AsPoint(py_p1))) {
 return NULL;
 }
 if (!(p2 = PyPoint_AsPoint(py_p2))) {
 return NULL;
 }
 result = distance(p1,p2);
 return Py_BuildValue("d", result);
}

Using these functions from Python looks like this:

>>> import sample
>>> p1 = sample.Point(2,3)
>>> p2 = sample.Point(4,5)
>>> p1
<capsule object "Point" at 0x1004ea330>
>>> p2
<capsule object "Point" at 0x1005d1db0>
>>> sample.distance(p1,p2)
2.8284271247461903
>>>

Discussion
Capsules are similar to a typed C pointer. Internally, they hold a generic pointer along
with an identifying name and can be easily created using the PyCapsule_New() function.
In addition, an optional destructor function can be attached to a capsule to release the
underlying memory when the capsule object is garbage collected.

15.4. Managing Opaque Pointers in C Extension Modules | 613

To extract the pointer contained inside a capsule, use the PyCapsule_GetPointer()
function and specify the name. If the supplied name doesn’t match that of the capsule
or some other error occurs, an exception is raised and NULL is returned.

In this recipe, a pair of utility functions—PyPoint_FromPoint() and PyPoint_As
Point()—have been written to deal with the mechanics of creating and unwinding
Point instances from capsule objects. In any extension functions, we’ll use these func‐
tions instead of working with capsules directly. This design choice makes it easier to
deal with possible changes to the wrapping of Point objects in the future. For example,
if you decided to use something other than a capsule later, you would only have to change
these two functions.

One tricky part about capsules concerns garbage collection and memory management.
The PyPoint_FromPoint() function accepts a must_free argument that indicates
whether the underlying Point * structure is to be collected when the capsule is de‐
stroyed. When working with certain kinds of C code, ownership issues can be difficult
to handle (e.g., perhaps a Point structure is embedded within a larger data structure
that is managed separately). Rather than making a unilateral decision to garbage collect,
this extra argument gives control back to the programmer. It should be noted that the
destructor associated with an existing capsule can also be changed using the PyCap
sule_SetDestructor() function.

Capsules are a sensible solution to interfacing with certain kinds of C code involving
structures. For instance, sometimes you just don’t care about exposing the internals of
a structure or turning it into a full-fledged extension type. With a capsule, you can put
a lightweight wrapper around it and easily pass it around to other extension functions.

15.5. Defining and Exporting C APIs from Extension
Modules
Problem
You have a C extension module that internally defines a variety of useful functions that
you would like to export as a public C API for use elsewhere. You would like to use these
functions inside other extension modules, but don’t know how to link them together,
and doing it with the C compiler/linker seems excessively complicated (or impossible).

Solution
This recipe focuses on the code written to handle Point objects, which were presented
in Recipe 15.4. If you recall, that C code included some utility functions like this:

/* Destructor function for points */
static void del_Point(PyObject *obj) {

614 | Chapter 15: C Extensions

 free(PyCapsule_GetPointer(obj,"Point"));
}

/* Utility functions */
static Point *PyPoint_AsPoint(PyObject *obj) {
 return (Point *) PyCapsule_GetPointer(obj, "Point");
}

static PyObject *PyPoint_FromPoint(Point *p, int must_free) {
 return PyCapsule_New(p, "Point", must_free ? del_Point : NULL);
}

The problem now addressed is how to export the PyPoint_AsPoint() and Py
Point_FromPoint() functions as an API that other extension modules could use and
link to (e.g., if you have other extensions that also want to use the wrapped Point
objects).

To solve this problem, start by introducing a new header file for the “sample” extension
called pysample.h. Put the following code in it:

/* pysample.h */
#include "Python.h"
#include "sample.h"
#ifdef __cplusplus
extern "C" {
#endif

/* Public API Table */
typedef struct {
 Point *(*aspoint)(PyObject *);
 PyObject *(*frompoint)(Point *, int);
} _PointAPIMethods;

#ifndef PYSAMPLE_MODULE
/* Method table in external module */
static _PointAPIMethods *_point_api = 0;

/* Import the API table from sample */
static int import_sample(void) {
 _point_api = (_PointAPIMethods *) PyCapsule_Import("sample._point_api",0);
 return (_point_api != NULL) ? 1 : 0;
}

/* Macros to implement the programming interface */
#define PyPoint_AsPoint(obj) (_point_api->aspoint)(obj)
#define PyPoint_FromPoint(obj) (_point_api->frompoint)(obj)
#endif

#ifdef __cplusplus
}
#endif

15.5. Defining and Exporting C APIs from Extension Modules | 615

The most important feature here is the _PointAPIMethods table of function pointers. It
will be initialized in the exporting module and found by importing modules.

Change the original extension module to populate the table and export it as follows:

/* pysample.c */

#include "Python.h"
#define PYSAMPLE_MODULE
#include "pysample.h"

...
/* Destructor function for points */
static void del_Point(PyObject *obj) {
 printf("Deleting point\n");
 free(PyCapsule_GetPointer(obj,"Point"));
}

/* Utility functions */
static Point *PyPoint_AsPoint(PyObject *obj) {
 return (Point *) PyCapsule_GetPointer(obj, "Point");
}

static PyObject *PyPoint_FromPoint(Point *p, int free) {
 return PyCapsule_New(p, "Point", free ? del_Point : NULL);
}

static _PointAPIMethods _point_api = {
 PyPoint_AsPoint,
 PyPoint_FromPoint
};
...

/* Module initialization function */
PyMODINIT_FUNC
PyInit_sample(void) {
 PyObject *m;
 PyObject *py_point_api;

 m = PyModule_Create(&samplemodule);
 if (m == NULL)
 return NULL;

 /* Add the Point C API functions */
 py_point_api = PyCapsule_New((void *) &_point_api, "sample._point_api", NULL);
 if (py_point_api) {
 PyModule_AddObject(m, "_point_api", py_point_api);
 }
 return m;
}

616 | Chapter 15: C Extensions

Finally, here is an example of a new extension module that loads and uses these API
functions:

/* ptexample.c */

/* Include the header associated with the other module */
#include "pysample.h"

/* An extension function that uses the exported API */
static PyObject *print_point(PyObject *self, PyObject *args) {
 PyObject *obj;
 Point *p;
 if (!PyArg_ParseTuple(args,"O", &obj)) {
 return NULL;
 }

 /* Note: This is defined in a different module */
 p = PyPoint_AsPoint(obj);
 if (!p) {
 return NULL;
 }
 printf("%f %f\n", p->x, p->y);
 return Py_BuildValue("");
}

static PyMethodDef PtExampleMethods[] = {
 {"print_point", print_point, METH_VARARGS, "output a point"},
 { NULL, NULL, 0, NULL}
};

static struct PyModuleDef ptexamplemodule = {
 PyModuleDef_HEAD_INIT,
 "ptexample", /* name of module */
 "A module that imports an API", /* Doc string (may be NULL) */
 -1, /* Size of per-interpreter state or -1 */
 PtExampleMethods /* Method table */
};

/* Module initialization function */
PyMODINIT_FUNC
PyInit_ptexample(void) {
 PyObject *m;

 m = PyModule_Create(&ptexamplemodule);
 if (m == NULL)
 return NULL;

 /* Import sample, loading its API functions */
 if (!import_sample()) {
 return NULL;
 }

15.5. Defining and Exporting C APIs from Extension Modules | 617

 return m;
}

When compiling this new module, you don’t even need to bother to link against any of
the libraries or code from the other module. For example, you can just make a simple
setup.py file like this:

setup.py
from distutils.core import setup, Extension

setup(name='ptexample',
 ext_modules=[
 Extension('ptexample',
 ['ptexample.c'],
 include_dirs = [], # May need pysample.h directory
)
]
)

If it all works, you’ll find that your new extension function works perfectly with the C
API functions defined in the other module:

>>> import sample
>>> p1 = sample.Point(2,3)
>>> p1
<capsule object "Point *" at 0x1004ea330>
>>> import ptexample
>>> ptexample.print_point(p1)
2.000000 3.000000
>>>

Discussion
This recipe relies on the fact that capsule objects can hold a pointer to anything you
wish. In this case, the defining module populates a structure of function pointers, creates
a capsule that points to it, and saves the capsule in a module-level attribute (e.g., sam
ple._point_api).

Other modules can be programmed to pick up this attribute when imported and extract
the underlying pointer. In fact, Python provides the PyCapsule_Import() utility func‐
tion, which takes care of all the steps for you. You simply give it the name of the attribute
(e.g., sample._point_api), and it will find the capsule and extract the pointer all in one
step.

There are some C programming tricks involved in making exported functions look
normal in other modules. In the pysample.h file, a pointer _point_api is used to point
to the method table that was initialized in the exporting module. A related function
import_sample() is used to perform the required capsule import and initialize this
pointer. This function must be called before any functions are used. Normally, it would

618 | Chapter 15: C Extensions

be called in during module initialization. Finally, a set of C preprocessor macros have
been defined to transparently dispatch the API functions through the method table.
The user just uses the original function names, but doesn’t know about the extra indi‐
rection through these macros.

Finally, there is another important reason why you might use this technique to link
modules together—it’s actually easier and it keeps modules more cleanly decoupled. If
you didn’t want to use this recipe as shown, you might be able to cross-link modules
using advanced features of shared libraries and the dynamic loader. For example, putting
common API functions into a shared library and making sure that all extension modules
link against that shared library. Yes, this works, but it can be tremendously messy in
large systems. Essentially, this recipe cuts out all of that magic and allows modules to
link to one another through Python’s normal import mechanism and just a tiny number
of capsule calls. For compilation of modules, you only need to worry about header files,
not the hairy details of shared libraries.

Further information about providing C APIs for extension modules can be found in the
Python documentation.

15.6. Calling Python from C
Problem
You want to safely execute a Python callable from C and return a result back to C. For
example, perhaps you are writing C code that wants to use a Python function as a
callback.

Solution
Calling Python from C is mostly straightforward, but involves a number of tricky parts.
The following C code shows an example of how to do it safely:

#include <Python.h>

/* Execute func(x,y) in the Python interpreter. The
 arguments and return result of the function must
 be Python floats */

double call_func(PyObject *func, double x, double y) {
 PyObject *args;
 PyObject *kwargs;
 PyObject *result = 0;
 double retval;

 /* Make sure we own the GIL */
 PyGILState_STATE state = PyGILState_Ensure();

15.6. Calling Python from C | 619

http://docs.python.org/3/extending/extending.html
http://docs.python.org/3/extending/extending.html

 /* Verify that func is a proper callable */
 if (!PyCallable_Check(func)) {
 fprintf(stderr,"call_func: expected a callable\n");
 goto fail;
 }
 /* Build arguments */
 args = Py_BuildValue("(dd)", x, y);
 kwargs = NULL;

 /* Call the function */
 result = PyObject_Call(func, args, kwargs);
 Py_DECREF(args);
 Py_XDECREF(kwargs);

 /* Check for Python exceptions (if any) */
 if (PyErr_Occurred()) {
 PyErr_Print();
 goto fail;
 }

 /* Verify the result is a float object */
 if (!PyFloat_Check(result)) {
 fprintf(stderr,"call_func: callable didn't return a float\n");
 goto fail;
 }

 /* Create the return value */
 retval = PyFloat_AsDouble(result);
 Py_DECREF(result);

 /* Restore previous GIL state and return */
 PyGILState_Release(state);
 return retval;

fail:
 Py_XDECREF(result);
 PyGILState_Release(state);
 abort(); // Change to something more appropriate
}

To use this function, you need to have obtained a reference to an existing Python callable
to pass in. There are many ways that you can go about doing that, such as having a
callable object passed into an extension module or simply writing C code to extract a
symbol from an existing module.

Here is a simple example that shows calling a function from an embedded Python
interpreter:

#include <Python.h>

/* Definition of call_func() same as above */
...

620 | Chapter 15: C Extensions

/* Load a symbol from a module */
PyObject *import_name(const char *modname, const char *symbol) {
 PyObject *u_name, *module;
 u_name = PyUnicode_FromString(modname);
 module = PyImport_Import(u_name);
 Py_DECREF(u_name);
 return PyObject_GetAttrString(module, symbol);
}

/* Simple embedding example */
int main() {
 PyObject *pow_func;
 double x;

 Py_Initialize();
 /* Get a reference to the math.pow function */
 pow_func = import_name("math","pow");

 /* Call it using our call_func() code */
 for (x = 0.0; x < 10.0; x += 0.1) {
 printf("%0.2f %0.2f\n", x, call_func(pow_func,x,2.0));
 }
 /* Done */
 Py_DECREF(pow_func);
 Py_Finalize();
 return 0;
}

To build this last example, you’ll need to compile the C and link against the Python
interpreter. Here is a Makefile that shows how you might do it (this is something that
might require some amount of fiddling with on your machine):

all::
 cc -g embed.c -I/usr/local/include/python3.3m \
 -L/usr/local/lib/python3.3/config-3.3m -lpython3.3m

Compiling and running the resulting executable should produce output similar to this:

0.00 0.00
0.10 0.01
0.20 0.04
0.30 0.09
0.40 0.16
...

Here is a slightly different example that shows an extension function that receives a
callable and some arguments and passes them to call_func() for the purposes of
testing:

/* Extension function for testing the C-Python callback */
PyObject *py_call_func(PyObject *self, PyObject *args) {
 PyObject *func;

15.6. Calling Python from C | 621

 double x, y, result;
 if (!PyArg_ParseTuple(args,"Odd", &func,&x,&y)) {
 return NULL;
 }
 result = call_func(func, x, y);
 return Py_BuildValue("d", result);
}

Using this extension function, you could test it as follows:

>>> import sample
>>> def add(x,y):
... return x+y
...
>>> sample.call_func(add,3,4)
7.0
>>>

Discussion
If you are calling Python from C, the most important thing to keep in mind is that C is
generally going to be in charge. That is, C has the responsibility of creating the argu‐
ments, calling the Python function, checking for exceptions, checking types, extracting
return values, and more.

As a first step, it is critical that you have a Python object representing the callable that
you’re going to invoke. This could be a function, class, method, built-in method, or
anything that implements the __call__() operation. To verify that it’s callable, use
PyCallable_Check() as shown in this code fragment:

double call_func(PyObject *func, double x, double y) {
 ...
 /* Verify that func is a proper callable */
 if (!PyCallable_Check(func)) {
 fprintf(stderr,"call_func: expected a callable\n");
 goto fail;
 }
 ...

As an aside, handling errors in the C code is something that you will need to carefully
study. As a general rule, you can’t just raise a Python exception. Instead, errors will have
to be handled in some other manner that makes sense to your C code. In the solution,
we’re using goto to transfer control to an error handling block that calls abort(). This
causes the whole program to die, but in real code you would probably want to do some‐
thing more graceful (e.g., return a status code). Keep in mind that C is in charge here,
so there isn’t anything comparable to just raising an exception. Error handling is some‐
thing you’ll have to engineer into the program somehow.

Calling a function is relatively straightforward—simply use PyObject_Call(), supply‐
ing it with the callable object, a tuple of arguments, and an optional dictionary of

622 | Chapter 15: C Extensions

keyword arguments. To build the argument tuple or dictionary, you can use Py_Build
Value(), as shown.

double call_func(PyObject *func, double x, double y) {
 PyObject *args;
 PyObject *kwargs;

 ...
 /* Build arguments */
 args = Py_BuildValue("(dd)", x, y);
 kwargs = NULL;

 /* Call the function */
 result = PyObject_Call(func, args, kwargs);
 Py_DECREF(args);
 Py_XDECREF(kwargs);
 ...

If there are no keyword arguments, you can pass NULL, as shown. After making the
function call, you need to make sure that you clean up the arguments using Py_DE
CREF() or Py_XDECREF(). The latter function safely allows the NULL pointer to be
passed (which is ignored), which is why we’re using it for cleaning up the optional
keyword arguments.

After calling the Python function, you must check for the presence of exceptions. The
PyErr_Occurred() function can be used to do this. Knowing what to do in response to
an exception is tricky. Since you’re working from C, you really don’t have the exception
machinery that Python has. Thus, you would have to set an error status code, log the
error, or do some kind of sensible processing. In the solution, abort() is called for lack
of a simpler alternative (besides, hardened C programmers will appreciate the abrupt
crash):

 ...
 /* Check for Python exceptions (if any) */
 if (PyErr_Occurred()) {
 PyErr_Print();
 goto fail;
 }
 ...
fail:
 PyGILState_Release(state);
 abort();

Extracting information from the return value of calling a Python function is typically
going to involve some kind of type checking and value extraction. To do this, you may
have to use functions in the Python concrete objects layer. In the solution, the code
checks for and extracts the value of a Python float using PyFloat_Check() and Py
Float_AsDouble().

15.6. Calling Python from C | 623

http://docs.python.org/3/c-api/concrete.html

A final tricky part of calling into Python from C concerns the management of Python’s
global interpreter lock (GIL). Whenever Python is accessed from C, you need to make
sure that the GIL is properly acquired and released. Otherwise, you run the risk of having
the interpreter corrupt data or crash. The calls to PyGILState_Ensure() and PyGIL
State_Release() make sure that it’s done correctly:

double call_func(PyObject *func, double x, double y) {
 ...
 double retval;

 /* Make sure we own the GIL */
 PyGILState_STATE state = PyGILState_Ensure();
 ...
 /* Code that uses Python C API functions */
 ...
 /* Restore previous GIL state and return */
 PyGILState_Release(state);
 return retval;

fail:
 PyGILState_Release(state);
 abort();
}

Upon return, PyGILState_Ensure() always guarantees that the calling thread has ex‐
clusive access to the Python interpreter. This is true even if the calling C code is running
a different thread that is unknown to the interpreter. At this point, the C code is free to
use any Python C-API functions that it wants. Upon successful completion, PyGIL
State_Release() is used to restore the interpreter back to its original state.

It is critical to note that every PyGILState_Ensure() call must be followed by a matching
PyGILState_Release() call—even in cases where errors have occurred. In the solution,
the use of a goto statement might look like a horrible design, but we’re actually using it
to transfer control to a common exit block that performs this required step. Think of
the code after the fail: lable as serving the same purpose as code in a Python final
ly: block.

If you write your C code using all of these conventions including management of the
GIL, checking for exceptions, and thorough error checking, you’ll find that you can
reliably call into the Python interpreter from C—even in very complicated programs
that utilize advanced programming techniques such as multithreading.

624 | Chapter 15: C Extensions

15.7. Releasing the GIL in C Extensions
Problem
You have C extension code in that you want to execute concurrently with other threads
in the Python interpreter. To do this, you need to release and reacquire the global in‐
terpreter lock (GIL).

Solution
In C extension code, the GIL can be released and reacquired by inserting the following
macros in the code:

#include "Python.h"
...

PyObject *pyfunc(PyObject *self, PyObject *args) {
 ...
 Py_BEGIN_ALLOW_THREADS
 // Threaded C code. Must not use Python API functions
 ...
 Py_END_ALLOW_THREADS
 ...
 return result;
}

Discussion
The GIL can only safely be released if you can guarantee that no Python C API functions
will be executed in the C code. Typical examples where the GIL might be released are
in computationally intensive code that performs calculations on C arrays (e.g., in ex‐
tensions such as numpy) or in code where blocking I/O operations are going to be per‐
formed (e.g., reading or writing on a file descriptor).

While the GIL is released, other Python threads are allowed to execute in the interpreter.
The Py_END_ALLOW_THREADS macro blocks execution until the calling threads reacquires
the GIL in the interpreter.

15.8. Mixing Threads from C and Python
Problem
You have a program that involves a mix of C, Python, and threads, but some of the
threads are created from C outside the control of the Python interpreter. Moreover,
certain threads utilize functions in the Python C API.

15.7. Releasing the GIL in C Extensions | 625

Solution
If you’re going to mix C, Python, and threads together, you need to make sure you
properly initialize and manage Python’s global interpreter lock (GIL). To do this, include
the following code somewhere in your C code and make sure it’s called prior to creation
of any threads:

#include <Python.h>

 ...
 if (!PyEval_ThreadsInitialized()) {
 PyEval_InitThreads();
 }
 ...

For any C code that involves Python objects or the Python C API, make sure you prop‐
erly acquire and release the GIL first. This is done using PyGILState_Ensure() and
PyGILState_Release(), as shown in the following:

 ...
 /* Make sure we own the GIL */
 PyGILState_STATE state = PyGILState_Ensure();

 /* Use functions in the interpreter */
 ...
 /* Restore previous GIL state and return */
 PyGILState_Release(state);
 ...

Every call to PyGILState_Ensure() must have a matching call to PyGILState_Re
lease().

Discussion
In advanced applications involving C and Python, it is not uncommon to have many
things going on at once—possibly involving a mix of a C code, Python code, C threads,
and Python threads. As long as you diligently make sure the interpreter is properly
initialized and that C code involving the interpreter has the proper GIL management
calls, it all should work.

Be aware that the PyGILState_Ensure() call does not immediately preempt or interrupt
the interpreter. If other code is currently executing, this function will block until that
code decides to release the GIL. Internally, the interpreter performs periodic thread
switching, so even if another thread is executing, the caller will eventually get to run
(although it may have to wait for a while first).

626 | Chapter 15: C Extensions

15.9. Wrapping C Code with Swig
Problem
You have existing C code that you would like to access as a C extension module. You
would like to do this using the Swig wrapper generator.

Solution
Swig operates by parsing C header files and automatically creating extension code. To
use it, you first need to have a C header file. For example, this header file for our sample
code:

/* sample.h */

#include <math.h>
extern int gcd(int, int);
extern int in_mandel(double x0, double y0, int n);
extern int divide(int a, int b, int *remainder);
extern double avg(double *a, int n);

typedef struct Point {
 double x,y;
} Point;

extern double distance(Point *p1, Point *p2);

Once you have the header files, the next step is to write a Swig “interface” file. By con‐
vention, these files have a .i suffix and might look similar to the following:

// sample.i - Swig interface
%module sample
%{
#include "sample.h"
%}

/* Customizations */
%extend Point {
 /* Constructor for Point objects */
 Point(double x, double y) {
 Point *p = (Point *) malloc(sizeof(Point));
 p->x = x;
 p->y = y;
 return p;
 };
};

/* Map int *remainder as an output argument */
%include typemaps.i
%apply int *OUTPUT { int * remainder };

15.9. Wrapping C Code with Swig | 627

http://www.swig.org

/* Map the argument pattern (double *a, int n) to arrays */
%typemap(in) (double *a, int n)(Py_buffer view) {
 view.obj = NULL;
 if (PyObject_GetBuffer($input, &view, PyBUF_ANY_CONTIGUOUS | PyBUF_FORMAT) == -1) {
 SWIG_fail;
 }
 if (strcmp(view.format,"d") != 0) {
 PyErr_SetString(PyExc_TypeError, "Expected an array of doubles");
 SWIG_fail;
 }
 $1 = (double *) view.buf;
 $2 = view.len / sizeof(double);
}

%typemap(freearg) (double *a, int n) {
 if (view$argnum.obj) {
 PyBuffer_Release(&view$argnum);
 }
}

/* C declarations to be included in the extension module */

extern int gcd(int, int);
extern int in_mandel(double x0, double y0, int n);
extern int divide(int a, int b, int *remainder);
extern double avg(double *a, int n);

typedef struct Point {
 double x,y;
} Point;

extern double distance(Point *p1, Point *p2);

Once you have written the interface file, Swig is invoked as a command-line tool:

bash % swig -python -py3 sample.i
bash %

The output of swig is two files, sample_wrap.c and sample.py. The latter file is what
users import. The sample_wrap.c file is C code that needs to be compiled into a sup‐
porting module called _sample. This is done using the same techniques as for normal
extension modules. For example, you create a setup.py file like this:

setup.py
from distutils.core import setup, Extension

setup(name='sample',
 py_modules=['sample.py'],
 ext_modules=[
 Extension('_sample',
 ['sample_wrap.c'],
 include_dirs = [],
 define_macros = [],

628 | Chapter 15: C Extensions

 undef_macros = [],
 library_dirs = [],
 libraries = ['sample']
)
]
)

To compile and test, run python3 on the setup.py file like this:

bash % python3 setup.py build_ext --inplace
running build_ext
building '_sample' extension
gcc -fno-strict-aliasing -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes
-I/usr/local/include/python3.3m -c sample_wrap.c
 -o build/temp.macosx-10.6-x86_64-3.3/sample_wrap.o
sample_wrap.c: In function ‘SWIG_InitializeModule’:
sample_wrap.c:3589: warning: statement with no effect
gcc -bundle -undefined dynamic_lookup build/temp.macosx-10.6-x86_64-3.3/sample.o
 build/temp.macosx-10.6-x86_64-3.3/sample_wrap.o -o _sample.so -lsample
bash %

If all of this works, you’ll find that you can use the resulting C extension module in a
straightforward way. For example:

>>> import sample
>>> sample.gcd(42,8)
2
>>> sample.divide(42,8)
[5, 2]
>>> p1 = sample.Point(2,3)
>>> p2 = sample.Point(4,5)
>>> sample.distance(p1,p2)
2.8284271247461903
>>> p1.x
2.0
>>> p1.y
3.0
>>> import array
>>> a = array.array('d',[1,2,3])
>>> sample.avg(a)
2.0
>>>

Discussion
Swig is one of the oldest tools for building extension modules, dating back to Python
1.4. However, recent versions currently support Python 3. The primary users of Swig
tend to have large existing bases of C that they are trying to access using Python as a
high-level control language. For instance, a user might have C code containing thou‐
sands of functions and various data structures that they would like to access from
Python. Swig can automate much of the wrapper generation process.

15.9. Wrapping C Code with Swig | 629

All Swig interfaces tend to start with a short preamble like this:

%module sample
%{
#include "sample.h"
%}

This merely declares the name of the extension module and specifies C header files that
must be included to make everything compile (the code enclosed in %{ and %} is pasted
directly into the output code so this is where you put all included files and other defi‐
nitions needed for compilation).

The bottom part of a Swig interface is a listing of C declarations that you want to be
included in the extension. This is often just copied from the header files. In our example,
we just pasted in the header file directly like this:

%module sample
%{
#include "sample.h"
%}
...
extern int gcd(int, int);
extern int in_mandel(double x0, double y0, int n);
extern int divide(int a, int b, int *remainder);
extern double avg(double *a, int n);

typedef struct Point {
 double x,y;
} Point;

extern double distance(Point *p1, Point *p2);

It is important to stress that these declarations are telling Swig what you want to include
in the Python module. It is quite common to edit the list of declarations or to make
modifications as appropriate. For example, if you didn’t want certain declarations to be
included, you would remove them from the declaration list.

The most complicated part of using Swig is the various customizations that it can apply
to the C code. This is a huge topic that can’t be covered in great detail here, but a number
of such customizations are shown in this recipe.

The first customization involving the %extend directive allows methods to be attached
to existing structure and class definitions. In the example, this is used to add a con‐
structor method to the Point structure. This customization makes it possible to use the
structure like this:

>>> p1 = sample.Point(2,3)
>>>

If omitted, then Point objects would have to be created in a much more clumsy manner
like this:

630 | Chapter 15: C Extensions

>>> # Usage if %extend Point is omitted
>>> p1 = sample.Point()
>>> p1.x = 2.0
>>> p1.y = 3

The second customization involving the inclusion of the typemaps.i library and the
%apply directive is instructing Swig that the argument signature int *remainder is to
be treated as an output value. This is actually a pattern matching rule. In all declarations
that follow, any time int *remainder is encountered, it is handled as output. This
customization is what makes the divide() function return two values:

>>> sample.divide(42,8)
[5, 2]
>>>

The last customization involving the %typemap directive is probably the most advanced
feature shown here. A typemap is a rule that gets applied to specific argument patterns
in the input. In this recipe, a typemap has been written to match the argument pattern
(double *a, int n). Inside the typemap is a fragment of C code that tells Swig how
to convert a Python object into the associated C arguments. The code in this recipe has
been written using Python’s buffer protocol in an attempt to match any input argument
that looks like an array of doubles (e.g., NumPy arrays, arrays created by the array
module, etc.). See Recipe 15.3.

Within the typemap code, substitutions such as $1 and $2 refer to variables that hold
the converted values of the C arguments in the typemap pattern (e.g., $1 maps to double
*a and $2 maps to int n). $input refers to a PyObject * argument that was supplied
as an input argument. $argnum is the argument number.

Writing and understanding typemaps is often the bane of programmers using Swig. Not
only is the code rather cryptic, but you need to understand the intricate details of both
the Python C API and the way in which Swig interacts with it. The Swig documentation
has many more examples and detailed information.

Nevertheless, if you have a lot of a C code to expose as an extension module, Swig can
be a very powerful tool for doing it. The key thing to keep in mind is that Swig is basically
a compiler that processes C declarations, but with a powerful pattern matching and
customization component that lets you change the way in which specific declarations
and types get processed. More information can be found at Swig’s website, including
Python-specific documentation.

15.9. Wrapping C Code with Swig | 631

http://www.swig.org
http://www.swig.org/Doc2.0/Python.html

15.10. Wrapping Existing C Code with Cython
Problem
You want to use Cython to make a Python extension module that wraps around an
existing C library.

Solution
Making an extension module with Cython looks somewhat similar to writing a hand‐
written extension, in that you will be creating a collection of wrapper functions. How‐
ever, unlike previous recipes, you won’t be doing this in C—the code will look a lot more
like Python.

As preliminaries, assume that the sample code shown in the introduction to this chapter
has been compiled into a C library called libsample. Start by creating a file named
csample.pxd that looks like this:

csample.pxd
#
Declarations of "external" C functions and structures

cdef extern from "sample.h":
 int gcd(int, int)
 bint in_mandel(double, double, int)
 int divide(int, int, int *)
 double avg(double *, int) nogil

 ctypedef struct Point:
 double x
 double y

 double distance(Point *, Point *)

This file serves the same purpose in Cython as a C header file. The initial declaration
cdef extern from "sample.h" declares the required C header file. Declarations
that follow are taken from that header. The name of this file is csample.pxd, not sam‐
ple.pxd—this is important.

Next, create a file named sample.pyx. This file will define wrappers that bridge the
Python interpreter to the underlying C code declared in the csample.pxd file:

sample.pyx

Import the low-level C declarations
cimport csample

Import some functionality from Python and the C stdlib
from cpython.pycapsule cimport *

632 | Chapter 15: C Extensions

http://cython.org

from libc.stdlib cimport malloc, free

Wrappers
def gcd(unsigned int x, unsigned int y):
 return csample.gcd(x, y)

def in_mandel(x, y, unsigned int n):
 return csample.in_mandel(x, y, n)

def divide(x, y):
 cdef int rem
 quot = csample.divide(x, y, &rem)
 return quot, rem

def avg(double[:] a):
 cdef:
 int sz
 double result

 sz = a.size
 with nogil:
 result = csample.avg(<double *> &a[0], sz)
 return result

Destructor for cleaning up Point objects
cdef del_Point(object obj):
 pt = <csample.Point *> PyCapsule_GetPointer(obj,"Point")
 free(<void *> pt)

Create a Point object and return as a capsule
def Point(double x,double y):
 cdef csample.Point *p
 p = <csample.Point *> malloc(sizeof(csample.Point))
 if p == NULL:
 raise MemoryError("No memory to make a Point")
 p.x = x
 p.y = y
 return PyCapsule_New(<void *>p,"Point",<PyCapsule_Destructor>del_Point)

def distance(p1, p2):
 pt1 = <csample.Point *> PyCapsule_GetPointer(p1,"Point")
 pt2 = <csample.Point *> PyCapsule_GetPointer(p2,"Point")
 return csample.distance(pt1,pt2)

Various details of this file will be covered further in the discussion section. Finally, to
build the extension module, create a setup.py file that looks like this:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [
 Extension('sample',

15.10. Wrapping Existing C Code with Cython | 633

 ['sample.pyx'],
 libraries=['sample'],
 library_dirs=['.'])]
setup(
 name = 'Sample extension module',
 cmdclass = {'build_ext': build_ext},
 ext_modules = ext_modules
)

To build the resulting module for experimentation, type this:

bash % python3 setup.py build_ext --inplace
running build_ext
cythoning sample.pyx to sample.c
building 'sample' extension
gcc -fno-strict-aliasing -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes
 -I/usr/local/include/python3.3m -c sample.c
 -o build/temp.macosx-10.6-x86_64-3.3/sample.o
gcc -bundle -undefined dynamic_lookup build/temp.macosx-10.6-x86_64-3.3/sample.o
 -L. -lsample -o sample.so
bash %

If it works, you should have an extension module sample.so that can be used as shown
in the following example:

>>> import sample
>>> sample.gcd(42,10)
2
>>> sample.in_mandel(1,1,400)
False
>>> sample.in_mandel(0,0,400)
True
>>> sample.divide(42,10)
(4, 2)
>>> import array
>>> a = array.array('d',[1,2,3])
>>> sample.avg(a)
2.0
>>> p1 = sample.Point(2,3)
>>> p2 = sample.Point(4,5)
>>> p1
<capsule object "Point" at 0x1005d1e70>
>>> p2
<capsule object "Point" at 0x1005d1ea0>
>>> sample.distance(p1,p2)
2.8284271247461903
>>>

634 | Chapter 15: C Extensions

Discussion
This recipe incorporates a number of advanced features discussed in prior recipes, in‐
cluding manipulation of arrays, wrapping opaque pointers, and releasing the GIL. Each
of these parts will be discussed in turn, but it may help to review earlier recipes first.

At a high level, using Cython is modeled after C. The .pxd files merely contain C defi‐
nitions (similar to .h files) and the .pyx files contain implementation (similar to a .c file).
The cimport statement is used by Cython to import definitions from a .pxd file. This is
different than using a normal Python import statement, which would load a regular
Python module.

Although .pxd files contain definitions, they are not used for the purpose of automati‐
cally creating extension code. Thus, you still have to write simple wrapper functions.
For example, even though the csample.pxd file declares int gcd(int, int) as a func‐
tion, you still have to write a small wrapper for it in sample.pyx. For instance:

cimport csample

def gcd(unsigned int x, unsigned int y):
 return csample.gcd(x,y)

For simple functions, you don’t have to do too much. Cython will generate wrapper code
that properly converts the arguments and return value. The C data types attached to the
arguments are optional. However, if you include them, you get additional error checking
for free. For example, if someone calls this function with negative values, an exception
is generated:

>>> sample.gcd(-10,2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "sample.pyx", line 7, in sample.gcd (sample.c:1284)
 def gcd(unsigned int x,unsigned int y):
OverflowError: can't convert negative value to unsigned int
>>>

If you want to add additional checking to the wrapper, just use additional wrapper code.
For example:

def gcd(unsigned int x, unsigned int y):
 if x <= 0:
 raise ValueError("x must be > 0")
 if y <= 0:
 raise ValueError("y must be > 0")
 return csample.gcd(x,y)

The declaration of in_mandel() in the csample.pxd file has an interesting, but subtle
definition. In that file, the function is declared as returning a bint instead of an int.
This causes the function to create a proper Boolean value from the result instead of a
simple integer. So, a return value of 0 gets mapped to False and 1 to True.

15.10. Wrapping Existing C Code with Cython | 635

Within the Cython wrappers, you have the option of declaring C data types in addition
to using all of the usual Python objects. The wrapper for divide() shows an example
of this as well as how to handle a pointer argument.

def divide(x,y):
 cdef int rem
 quot = csample.divide(x,y,&rem)
 return quot, rem

Here, the rem variable is explicitly declared as a C int variable. When passed to the
underlying divide() function, &rem makes a pointer to it just as in C.

The code for the avg() function illustrates some more advanced features of Cython.
First the declaration def avg(double[:] a) declares avg() as taking a one-dimensional
memoryview of double values. The amazing part about this is that the resulting function
will accept any compatible array object, including those created by libraries such as
numpy. For example:

>>> import array
>>> a = array.array('d',[1,2,3])
>>> import numpy
>>> b = numpy.array([1., 2., 3.])
>>> import sample
>>> sample.avg(a)
2.0
>>> sample.avg(b)
2.0
>>>

In the wrapper, a.size and &a[0] refer to the number of array items and underlying
pointer, respectively. The syntax <double *> &a[0] is how you type cast pointers to a
different type if necessary. This is needed to make sure the C avg() receives a pointer
of the correct type. Refer to the next recipe for some more advanced usage of Cython
memoryviews.

In addition to working with general arrays, the avg() example also shows how to work
with the global interpreter lock. The statement with nogil: declares a block of code as
executing without the GIL. Inside this block, it is illegal to work with any kind of normal
Python object—only objects and functions declared as cdef can be used. In addition to
that, external functions must explicitly declare that they can execute without the GIL.
Thus, in the csample.pxd file, the avg() is declared as double avg(double *, int)
nogil.

The handling of the Point structure presents a special challenge. As shown, this recipe
treats Point objects as opaque pointers using capsule objects, as described in
Recipe 15.4. However, to do this, the underlying Cython code is a bit more complicated.
First, the following imports are being used to bring in definitions of functions from the
C library and Python C API:

636 | Chapter 15: C Extensions

from cpython.pycapsule cimport *
from libc.stdlib cimport malloc, free

The function del_Point() and Point() use this functionality to create a capsule object
that wraps around a Point * pointer. The declaration cdef del_Point() declares
del_Point() as a function that is only accessible from Cython and not Python. Thus,
this function will not be visible to the outside—instead, it’s used as a callback function
to clean up memory allocated by the capsule. Calls to functions such as PyCap
sule_New(), PyCapsule_GetPointer() are directly from the Python C API and are used
in the same way.

The distance() function has been written to extract pointers from the capsule objects
created by Point(). One notable thing here is that you simply don’t have to worry about
exception handling. If a bad object is passed, PyCapsule_GetPointer() raises an ex‐
ception, but Cython already knows to look for it and propagate it out of the dis
tance() function if it occurs.

A downside to the handling of Point structures is that they will be completely opaque
in this implementation. You won’t be able to peek inside or access any of their attributes.
There is an alternative approach to wrapping, which is to define an extension type, as
shown in this code:

sample.pyx

cimport csample
from libc.stdlib cimport malloc, free
...

cdef class Point:
 cdef csample.Point *_c_point
 def __cinit__(self, double x, double y):
 self._c_point = <csample.Point *> malloc(sizeof(csample.Point))
 self._c_point.x = x
 self._c_point.y = y

 def __dealloc__(self):
 free(self._c_point)

 property x:
 def __get__(self):
 return self._c_point.x
 def __set__(self, value):
 self._c_point.x = value

 property y:
 def __get__(self):
 return self._c_point.y
 def __set__(self, value):
 self._c_point.y = value

15.10. Wrapping Existing C Code with Cython | 637

def distance(Point p1, Point p2):
 return csample.distance(p1._c_point, p2._c_point)

Here, the cdef class Point is declaring Point as an extension type. The class variable
cdef csample.Point *_c_point is declaring an instance variable that holds a pointer
to an underlying Point structure in C. The __cinit__() and __dealloc__() methods
create and destroy the underlying C structure using malloc() and free() calls. The
property x and property y declarations give code that gets and sets the underlying
structure attributes. The wrapper for distance() has also been suitably modified to
accept instances of the Point extension type as arguments, but pass the underlying
pointer to the C function.

Making this change, you will find that the code for manipulating Point objects is more
natural:

>>> import sample
>>> p1 = sample.Point(2,3)
>>> p2 = sample.Point(4,5)
>>> p1
<sample.Point object at 0x100447288>
>>> p2
<sample.Point object at 0x1004472a0>
>>> p1.x
2.0
>>> p1.y
3.0
>>> sample.distance(p1,p2)
2.8284271247461903
>>>

This recipe has illustrated many of Cython’s core features that you might be able to
extrapolate to more complicated kinds of wrapping. However, you will definitely want
to read more of the official documentation to do more.

The next few recipes also illustrate a few additional Cython features.

15.11. Using Cython to Write High-Performance Array
Operations
Problem
You would like to write some high-performance array processing functions to operate
on arrays from libraries such as NumPy. You’ve heard that tools such as Cython can
make this easier, but aren’t sure how to do it.

638 | Chapter 15: C Extensions

http://docs.cython.org

Solution
As an example, consider the following code which shows a Cython function for clipping
the values in a simple one-dimensional array of doubles:

sample.pyx (Cython)

cimport cython

@cython.boundscheck(False)
@cython.wraparound(False)
cpdef clip(double[:] a, double min, double max, double[:] out):
 '''
 Clip the values in a to be between min and max. Result in out
 '''
 if min > max:
 raise ValueError("min must be <= max")
 if a.shape[0] != out.shape[0]:
 raise ValueError("input and output arrays must be the same size")
 for i in range(a.shape[0]):
 if a[i] < min:
 out[i] = min
 elif a[i] > max:
 out[i] = max
 else:
 out[i] = a[i]

To compile and build the extension, you’ll need a setup.py file such as the following (use
python3 setup.py build_ext --inplace to build it):

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [
 Extension('sample',
 ['sample.pyx'])
]

setup(
 name = 'Sample app',
 cmdclass = {'build_ext': build_ext},
 ext_modules = ext_modules
)

You will find that the resulting function clips arrays, and that it works with many dif‐
ferent kinds of array objects. For example:

>>> # array module example
>>> import sample
>>> import array
>>> a = array.array('d',[1,-3,4,7,2,0])
>>> a

15.11. Using Cython to Write High-Performance Array Operations | 639

array('d', [1.0, -3.0, 4.0, 7.0, 2.0, 0.0])
>>> sample.clip(a,1,4,a)
>>> a
array('d', [1.0, 1.0, 4.0, 4.0, 2.0, 1.0])

>>> # numpy example
>>> import numpy
>>> b = numpy.random.uniform(-10,10,size=1000000)
>>> b
array([-9.55546017, 7.45599334, 0.69248932, ..., 0.69583148,
 -3.86290931, 2.37266888])
>>> c = numpy.zeros_like(b)
>>> c
array([0., 0., 0., ..., 0., 0., 0.])
>>> sample.clip(b,-5,5,c)
>>> c
array([-5. , 5. , 0.69248932, ..., 0.69583148,
 -3.86290931, 2.37266888])
>>> min(c)
-5.0
>>> max(c)
5.0
>>>

You will also find that the resulting code is fast. The following session puts our imple‐
mentation in a head-to-head battle with the clip() function already present in numpy:

>>> timeit('numpy.clip(b,-5,5,c)','from __main__ import b,c,numpy',number=1000)
8.093049556000551
>>> timeit('sample.clip(b,-5,5,c)','from __main__ import b,c,sample',
... number=1000)
3.760528204000366
>>>

As you can see, it’s quite a bit faster—an interesting result considering the core of the
NumPy version is written in C.

Discussion
This recipe utilizes Cython typed memoryviews, which greatly simplify code that op‐
erates on arrays. The declaration cpdef clip() declares clip() as both a C-level and
Python-level function. In Cython, this is useful, because it means that the function call
is more efficently called by other Cython functions (e.g., if you want to invoke clip()
from a different Cython function).

The typed parameters double[:] a and double[:] out declare those parameters as
one-dimensional arrays of doubles. As input, they will access any array object that
properly implements the memoryview interface, as described in PEP 3118. This includes
arrays from NumPy and from the built-in array library.

640 | Chapter 15: C Extensions

http://www.python.org/dev/peps/pep-3118

When writing code that produces a result that is also an array, you should follow the
convention shown of having an output parameter as shown. This places the responsi‐
bility of creating the output array on the caller and frees the code from having to know
too much about the specific details of what kinds of arrays are being manipulated (it
just assumes the arrays are already in-place and only needs to perform a few basic sanity
checks such as making sure their sizes are compatible). In libraries such as NumPy, it
is relatively easy to create output arrays using functions such as numpy.zeros() or
numpy.zeros_like(). Alternatively, to create uninitialized arrays, you can use num
py.empty() or numpy.empty_like(). This will be slightly faster if you’re about to over‐
write the array contents with a result.

In the implementation of your function, you simply write straightforward looking array
processing code using indexing and array lookups (e.g., a[i], out[i], and so forth).
Cython will take steps to make sure these produce efficient code.

The two decorators that precede the definition of clip() are a few optional performance
optimizations. @cython.boundscheck(False) eliminates all array bounds checking and
can be used if you know the indexing won’t go out of range. @cython.wrap
around(False) eliminates the handling of negative array indices as wrapping around
to the end of the array (like with Python lists). The inclusion of these decorators can
make the code run substantially faster (almost 2.5 times faster on this example when
tested).

Whenever working with arrays, careful study and experimentation with the underlying
algorithm can also yield large speedups. For example, consider this variant of the clip()
function that uses conditional expressions:

@cython.boundscheck(False)
@cython.wraparound(False)
cpdef clip(double[:] a, double min, double max, double[:] out):
 if min > max:
 raise ValueError("min must be <= max")
 if a.shape[0] != out.shape[0]:
 raise ValueError("input and output arrays must be the same size")
 for i in range(a.shape[0]):
 out[i] = (a[i] if a[i] < max else max) if a[i] > min else min

When tested, this version of the code runs over 50% faster (2.44s versus 3.76s on the
timeit() test shown earlier).

At this point, you might be wondering how this code would stack up against a hand‐
written C version. For example, perhaps you write the following C function and craft a
handwritten extension to using techniques shown in earlier recipes:

void clip(double *a, int n, double min, double max, double *out) {
 double x;
 for (; n >= 0; n--, a++, out++) {
 x = *a;

15.11. Using Cython to Write High-Performance Array Operations | 641

 *out = x > max ? max : (x < min ? min : x);
 }
}

The extension code for this isn’t shown, but after experimenting, we found that a hand‐
crafted C extension ran more than 10% slower than the version created by Cython. The
bottom line is that the code runs a lot faster than you might think.

There are several extensions that can be made to the solution code. For certain kinds of
array operations, it might make sense to release the GIL so that multiple threads can
run in parallel. To do that, modify the code to include the with nogil: statement:

@cython.boundscheck(False)
@cython.wraparound(False)
cpdef clip(double[:] a, double min, double max, double[:] out):
 if min > max:
 raise ValueError("min must be <= max")
 if a.shape[0] != out.shape[0]:
 raise ValueError("input and output arrays must be the same size")
 with nogil:
 for i in range(a.shape[0]):
 out[i] = (a[i] if a[i] < max else max) if a[i] > min else min

If you want to write a version of the code that operates on two-dimensional arrays, here
is what it might look like:

@cython.boundscheck(False)
@cython.wraparound(False)
cpdef clip2d(double[:,:] a, double min, double max, double[:,:] out):
 if min > max:
 raise ValueError("min must be <= max")
 for n in range(a.ndim):
 if a.shape[n] != out.shape[n]:
 raise TypeError("a and out have different shapes")
 for i in range(a.shape[0]):
 for j in range(a.shape[1]):
 if a[i,j] < min:
 out[i,j] = min
 elif a[i,j] > max:
 out[i,j] = max
 else:
 out[i,j] = a[i,j]

Hopefully it’s not lost on the reader that all of the code in this recipe is not tied to any
specific array library (e.g., NumPy). That gives the code a great deal of flexibility. How‐
ever, it’s also worth noting that dealing with arrays can be significantly more complicated
once multiple dimensions, strides, offsets, and other factors are introduced. Those top‐
ics are beyond the scope of this recipe, but more information can be found in PEP
3118. The Cython documentation on “typed memoryviews” is also essential reading.

642 | Chapter 15: C Extensions

http://www.python.org/dev/peps/pep-3118
http://www.python.org/dev/peps/pep-3118
http://docs.cython.org/src/userguide/memoryviews.html

15.12. Turning a Function Pointer into a Callable
Problem
You have (somehow) obtained the memory address of a compiled function, but want
to turn it into a Python callable that you can use as an extension function.

Solution
The ctypes module can be used to create Python callables that wrap around arbitrary
memory addresses. The following example shows how to obtain the raw, low-level ad‐
dress of a C function and how to turn it back into a callable object:

>>> import ctypes
>>> lib = ctypes.cdll.LoadLibrary(None)
>>> # Get the address of sin() from the C math library
>>> addr = ctypes.cast(lib.sin, ctypes.c_void_p).value
>>> addr
140735505915760

>>> # Turn the address into a callable function
>>> functype = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
>>> func = functype(addr)
>>> func
<CFunctionType object at 0x1006816d0>

>>> # Call the resulting function
>>> func(2)
0.9092974268256817
>>> func(0)
0.0
>>>

Discussion
To make a callable, you must first create a CFUNCTYPE instance. The first argument to
CFUNCTYPE() is the return type. Subsequent arguments are the types of the arguments.
Once you have defined the function type, you wrap it around an integer memory address
to create a callable object. The resulting object is used like any normal function accessed
through ctypes.

This recipe might look rather cryptic and low level. However, it is becoming increasingly
common for programs and libraries to utilize advanced code generation techniques like
just in-time compilation, as found in libraries such as LLVM.

For example, here is a simple example that uses the llvmpy extension to make a small
assembly function, obtain a function pointer to it, and turn it into a Python callable:

15.12. Turning a Function Pointer into a Callable | 643

http://www.llvmpy.org

>>> from llvm.core import Module, Function, Type, Builder
>>> mod = Module.new('example')
>>> f = Function.new(mod,Type.function(Type.double(), \
 [Type.double(), Type.double()], False), 'foo')
>>> block = f.append_basic_block('entry')
>>> builder = Builder.new(block)
>>> x2 = builder.fmul(f.args[0],f.args[0])
>>> y2 = builder.fmul(f.args[1],f.args[1])
>>> r = builder.fadd(x2,y2)
>>> builder.ret(r)
<llvm.core.Instruction object at 0x10078e990>
>>> from llvm.ee import ExecutionEngine
>>> engine = ExecutionEngine.new(mod)
>>> ptr = engine.get_pointer_to_function(f)
>>> ptr
4325863440
>>> foo = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double, ctypes.c_double)(ptr)

>>> # Call the resulting function
>>> foo(2,3)
13.0
>>> foo(4,5)
41.0
>>> foo(1,2)
5.0
>>>

It goes without saying that doing anything wrong at this level will probably cause the
Python interpreter to die a horrible death. Keep in mind that you’re directly working
with machine-level memory addresses and native machine code—not Python
functions.

15.13. Passing NULL-Terminated Strings to C Libraries
Problem
You are writing an extension module that needs to pass a NULL-terminated string to a
C library. However, you’re not entirely sure how to do it with Python’s Unicode string
implementation.

Solution
Many C libraries include functions that operate on NULL-terminated strings declared
as type char *. Consider the following C function that we will use for the purposes of
illustration and testing:

void print_chars(char *s) {
 while (*s) {
 printf("%2x ", (unsigned char) *s);

644 | Chapter 15: C Extensions

 s++;
 }
 printf("\n");
}

This function simply prints out the hex representation of individual characters so that
the passed strings can be easily debugged. For example:

print_chars("Hello"); // Outputs: 48 65 6c 6c 6f

For calling such a C function from Python, you have a few choices. First, you could
restrict it to only operate on bytes using "y" conversion code to PyArg_ParseTuple()
like this:

static PyObject *py_print_chars(PyObject *self, PyObject *args) {
 char *s;

 if (!PyArg_ParseTuple(args, "y", &s)) {
 return NULL;
 }
 print_chars(s);
 Py_RETURN_NONE;
}

The resulting function operates as follows. Carefully observe how bytes with embedded
NULL bytes and Unicode strings are rejected:

>>> print_chars(b'Hello World')
48 65 6c 6c 6f 20 57 6f 72 6c 64
>>> print_chars(b'Hello\x00World')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: must be bytes without null bytes, not bytes
>>> print_chars('Hello World')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' does not support the buffer interface
>>>

If you want to pass Unicode strings instead, use the "s" format code to PyArg_Parse
Tuple() such as this:

static PyObject *py_print_chars(PyObject *self, PyObject *args) {
 char *s;

 if (!PyArg_ParseTuple(args, "s", &s)) {
 return NULL;
 }
 print_chars(s);
 Py_RETURN_NONE;
}

15.13. Passing NULL-Terminated Strings to C Libraries | 645

When used, this will automatically convert all strings to a NULL-terminated UTF-8
encoding. For example:

>>> print_chars('Hello World')
48 65 6c 6c 6f 20 57 6f 72 6c 64
>>> print_chars('Spicy Jalape\u00f1o') # Note: UTF-8 encoding
53 70 69 63 79 20 4a 61 6c 61 70 65 c3 b1 6f
>>> print_chars('Hello\x00World')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: must be str without null characters, not str
>>> print_chars(b'Hello World')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: must be str, not bytes
>>>

If for some reason, you are working directly with a PyObject * and can’t use PyArg_Par
seTuple(), the following code samples show how you can check and extract a suitable
char * reference, from both a bytes and string object:

/* Some Python Object (obtained somehow) */
PyObject *obj;

/* Conversion from bytes */
{
 char *s;
 s = PyBytes_AsString(o);
 if (!s) {
 return NULL; /* TypeError already raised */
 }
 print_chars(s);
}

/* Conversion to UTF-8 bytes from a string */
{
 PyObject *bytes;
 char *s;
 if (!PyUnicode_Check(obj)) {
 PyErr_SetString(PyExc_TypeError, "Expected string");
 return NULL;
 }
 bytes = PyUnicode_AsUTF8String(obj);
 s = PyBytes_AsString(bytes);
 print_chars(s);
 Py_DECREF(bytes);
}

Both of the preceding conversions guarantee NULL-terminated data, but they do not
check for embedded NULL bytes elsewhere inside the string. Thus, that’s something
that you would need to check yourself if it’s important.

646 | Chapter 15: C Extensions

Discussion
If it all possible, you should try to avoid writing code that relies on NULL-terminated
strings since Python has no such requirement. It is almost always better to handle strings
using the combination of a pointer and a size if possible. Nevertheless, sometimes you
have to work with legacy C code that presents no other option.

Although it is easy to use, there is a hidden memory overhead associated with using the
"s" format code to PyArg_ParseTuple() that is easy to overlook. When you write code
that uses this conversion, a UTF-8 string is created and permanently attached to the
original string object. If the original string contains non-ASCII characters, this makes
the size of the string increase until it is garbage collected. For example:

>>> import sys
>>> s = 'Spicy Jalape\u00f1o'
>>> sys.getsizeof(s)
87
>>> print_chars(s) # Passing string
53 70 69 63 79 20 4a 61 6c 61 70 65 c3 b1 6f
>>> sys.getsizeof(s) # Notice increased size
103
>>>

If this growth in memory use is a concern, you should rewrite your C extension code
to use the PyUnicode_AsUTF8String() function like this:

static PyObject *py_print_chars(PyObject *self, PyObject *args) {
 PyObject *o, *bytes;
 char *s;

 if (!PyArg_ParseTuple(args, "U", &o)) {
 return NULL;
 }
 bytes = PyUnicode_AsUTF8String(o);
 s = PyBytes_AsString(bytes);
 print_chars(s);
 Py_DECREF(bytes);
 Py_RETURN_NONE;
}

With this modification, a UTF-8 encoded string is created if needed, but then discarded
after use. Here is the modified behavior:

>>> import sys
>>> s = 'Spicy Jalape\u00f1o'
>>> sys.getsizeof(s)
87
>>> print_chars(s)
53 70 69 63 79 20 4a 61 6c 61 70 65 c3 b1 6f
>>> sys.getsizeof(s)
87
>>>

15.13. Passing NULL-Terminated Strings to C Libraries | 647

If you are trying to pass NULL-terminated strings to functions wrapped via ctypes, be
aware that ctypes only allows bytes to be passed and that it does not check for embedded
NULL bytes. For example:

>>> import ctypes
>>> lib = ctypes.cdll.LoadLibrary("./libsample.so")
>>> print_chars = lib.print_chars
>>> print_chars.argtypes = (ctypes.c_char_p,)
>>> print_chars(b'Hello World')
48 65 6c 6c 6f 20 57 6f 72 6c 64
>>> print_chars(b'Hello\x00World')
48 65 6c 6c 6f
>>> print_chars('Hello World')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ctypes.ArgumentError: argument 1: <class 'TypeError'>: wrong type
>>>

If you want to pass a string instead of bytes, you need to perform a manual UTF-8
encoding first. For example:

>>> print_chars('Hello World'.encode('utf-8'))
48 65 6c 6c 6f 20 57 6f 72 6c 64
>>>

For other extension tools (e.g., Swig, Cython), careful study is probably in order should
you decide to use them to pass strings to C code.

15.14. Passing Unicode Strings to C Libraries
Problem
You are writing an extension module that needs to pass a Python string to a C library
function that may or may not know how to properly handle Unicode.

Solution
There are many issues to be concerned with here, but the main one is that existing C
libraries won’t understand Python’s native representation of Unicode. Therefore, your
challenge is to convert the Python string into a form that can be more easily understood
by C libraries.

For the purposes of illustration, here are two C functions that operate on string data
and output it for the purposes of debugging and experimentation. One uses bytes pro‐
vided in the form char *, int, whereas the other uses wide characters in the form
wchar_t *, int:

void print_chars(char *s, int len) {
 int n = 0;

648 | Chapter 15: C Extensions

 while (n < len) {
 printf("%2x ", (unsigned char) s[n]);
 n++;
 }
 printf("\n");
}

void print_wchars(wchar_t *s, int len) {
 int n = 0;
 while (n < len) {
 printf("%x ", s[n]);
 n++;
 }
 printf("\n");
}

For the byte-oriented function print_chars(), you need to convert Python strings into
a suitable byte encoding such as UTF-8. Here is a sample extension function that does
this:

static PyObject *py_print_chars(PyObject *self, PyObject *args) {
 char *s;
 Py_ssize_t len;

 if (!PyArg_ParseTuple(args, "s#", &s, &len)) {
 return NULL;
 }
 print_chars(s, len);
 Py_RETURN_NONE;
}

For library functions that work with the machine native wchar_t type, you can write
extension code such as this:

static PyObject *py_print_wchars(PyObject *self, PyObject *args) {
 wchar_t *s;
 Py_ssize_t len;

 if (!PyArg_ParseTuple(args, "u#", &s, &len)) {
 return NULL;
 }
 print_wchars(s,len);
 Py_RETURN_NONE;
}

Here is an interactive session that illustrates how these functions work:

>>> s = 'Spicy Jalape\u00f1o'
>>> print_chars(s)
53 70 69 63 79 20 4a 61 6c 61 70 65 c3 b1 6f
>>> print_wchars(s)
53 70 69 63 79 20 4a 61 6c 61 70 65 f1 6f
>>>

15.14. Passing Unicode Strings to C Libraries | 649

Carefully observe how the byte-oriented function print_chars() is receiving UTF-8
encoded data, whereas print_wchars() is receiving the Unicode code point values.

Discussion
Before considering this recipe, you should first study the nature of the C library that
you’re accessing. For many C libraries, it might make more sense to pass bytes instead
of a string. To do that, use this conversion code instead:

static PyObject *py_print_chars(PyObject *self, PyObject *args) {
 char *s;
 Py_ssize_t len;

 /* accepts bytes, bytearray, or other byte-like object */
 if (!PyArg_ParseTuple(args, "y#", &s, &len)) {
 return NULL;
 }
 print_chars(s, len);
 Py_RETURN_NONE;
}

If you decide that you still want to pass strings, you need to know that Python 3 uses an
adaptable string representation that is not entirely straightforward to map directly to C
libraries using the standard types char * or wchar_t * See PEP 393 for details. Thus,
to present string data to C, some kind of conversion is almost always necessary. The s#
and u# format codes to PyArg_ParseTuple() safely perform such conversions.

One potential downside is that such conversions cause the size of the original string
object to permanently increase. Whenever a conversion is made, a copy of the converted
data is kept and attached to the original string object so that it can be reused later. You
can observe this effect:

>>> import sys
>>> s = 'Spicy Jalape\u00f1o'
>>> sys.getsizeof(s)
87
>>> print_chars(s)
53 70 69 63 79 20 4a 61 6c 61 70 65 c3 b1 6f
>>> sys.getsizeof(s)
103
>>> print_wchars(s)
53 70 69 63 79 20 4a 61 6c 61 70 65 f1 6f
>>> sys.getsizeof(s)
163
>>>

For small amounts of string data, this might not matter, but if you’re doing large amounts
of text processing in extensions, you may want to avoid the overhead. Here is an
alternative implementation of the first extension function that avoids these memory
inefficiencies:

650 | Chapter 15: C Extensions

http://www.python.org/dev/peps/pep-0393

static PyObject *py_print_chars(PyObject *self, PyObject *args) {
 PyObject *obj, *bytes;
 char *s;
 Py_ssize_t len;

 if (!PyArg_ParseTuple(args, "U", &obj)) {
 return NULL;
 }
 bytes = PyUnicode_AsUTF8String(obj);
 PyBytes_AsStringAndSize(bytes, &s, &len);
 print_chars(s, len);
 Py_DECREF(bytes);
 Py_RETURN_NONE;
}

Avoiding memory overhead for wchar_t handling is much more tricky. Internally,
Python stores strings using the most efficient representation possible. For example,
strings containing nothing but ASCII are stored as arrays of bytes, whereas strings con‐
taining characters in the range U+0000 to U+FFFF use a two-byte representation. Since
there isn’t a single representation of the data, you can’t just cast the internal array to
wchar_t * and hope that it works. Instead, a wchar_t array has to be created and text
copied into it. The "u#" format code to PyArg_ParseTuple() does this for you at the
cost of efficiency (it attaches the resulting copy to the string object).

If you want to avoid this long-term memory overhead, your only real choice is to copy
the Unicode data into a temporary array, pass it to the C library function, and then
deallocate the array. Here is one possible implementation:

static PyObject *py_print_wchars(PyObject *self, PyObject *args) {
 PyObject *obj;
 wchar_t *s;
 Py_ssize_t len;

 if (!PyArg_ParseTuple(args, "U", &obj)) {
 return NULL;
 }
 if ((s = PyUnicode_AsWideCharString(obj, &len)) == NULL) {
 return NULL;
 }
 print_wchars(s, len);
 PyMem_Free(s);
 Py_RETURN_NONE;
}

In this implementation, PyUnicode_AsWideCharString() creates a temporary buffer of
wchar_t characters and copies data into it. That buffer is passed to C and then released
afterward. As of this writing, there seems to be a possible bug related to this behavior,
as described at the Python issues page.

15.14. Passing Unicode Strings to C Libraries | 651

http://bugs.python.org/issue16254

If, for some reason you know that the C library takes the data in a different byte encoding
than UTF-8, you can force Python to perform an appropriate conversion using exten‐
sion code such as the following:

static PyObject *py_print_chars(PyObject *self, PyObject *args) {
 char *s = 0;
 int len;
 if (!PyArg_ParseTuple(args, "es#", "encoding-name", &s, &len)) {
 return NULL;
 }
 print_chars(s, len);
 PyMem_Free(s);
 Py_RETURN_NONE;
}

Last, but not least, if you want to work directly with the characters in a Unicode string,
here is an example that illustrates low-level access:

static PyObject *py_print_wchars(PyObject *self, PyObject *args) {
 PyObject *obj;
 int n, len;
 int kind;
 void *data;

 if (!PyArg_ParseTuple(args, "U", &obj)) {
 return NULL;
 }
 if (PyUnicode_READY(obj) < 0) {
 return NULL;
 }

 len = PyUnicode_GET_LENGTH(obj);
 kind = PyUnicode_KIND(obj);
 data = PyUnicode_DATA(obj);

 for (n = 0; n < len; n++) {
 Py_UCS4 ch = PyUnicode_READ(kind, data, n);
 printf("%x ", ch);
 }
 printf("\n");
 Py_RETURN_NONE;
}

In this code, the PyUnicode_KIND() and PyUnicode_DATA() macros are related to the
variable-width storage of Unicode, as described in PEP 393. The kind variable encodes
information about the underlying storage (8-bit, 16-bit, or 32-bit) and data points the
buffer. In reality, you don’t need to do anything with these values as long as you pass
them to the PyUnicode_READ() macro when extracting characters.

A few final words: when passing Unicode strings from Python to C, you should probably
try to make it as simple as possible. If given the choice between an encoding such as

652 | Chapter 15: C Extensions

http://www.python.org/dev/peps/pep-0393

UTF-8 or wide characters, choose UTF-8. Support for UTF-8 seems to be much more
common, less trouble-prone, and better supported by the interpreter. Finally, make sure
your review the documentation on Unicode handling.

15.15. Converting C Strings to Python
Problem
You want to convert strings from C to Python bytes or a string object.

Solution
For C strings represented as a pair char *, int, you must decide whether or not you
want the string presented as a raw byte string or as a Unicode string. Byte objects can
be built using Py_BuildValue() as follows:

char *s; /* Pointer to C string data */
int len; /* Length of data */

/* Make a bytes object */
PyObject *obj = Py_BuildValue("y#", s, len);

If you want to create a Unicode string and you know that s points to data encoded as
UTF-8, you can use the following:

PyObject *obj = Py_BuildValue("s#", s, len);

If s is encoded in some other known encoding, you can make a string using PyUni
code_Decode() as follows:

PyObject *obj = PyUnicode_Decode(s, len, "encoding", "errors");

/* Examples /*
obj = PyUnicode_Decode(s, len, "latin-1", "strict");
obj = PyUnicode_Decode(s, len, "ascii", "ignore");

If you happen to have a wide string represented as a wchar_t *, len pair, there are a
few options. First, you could use Py_BuildValue() as follows:

wchar_t *w; /* Wide character string */
int len; /* Length */

PyObject *obj = Py_BuildValue("u#", w, len);

Alternatively, you can use PyUnicode_FromWideChar():

PyObject *obj = PyUnicode_FromWideChar(w, len);

For wide character strings, no interpretation is made of the character data—it is assumed
to be raw Unicode code points which are directly converted to Python.

15.15. Converting C Strings to Python | 653

http://docs.python.org/3/c-api/unicode.html

Discussion
Conversion of strings from C to Python follow the same principles as I/O. Namely, the
data from C must be explicitly decoded into a string according to some codec. Common
encodings include ASCII, Latin-1, and UTF-8. If you’re not entirely sure of the encoding
or the data is binary, you’re probably best off encoding the string as bytes instead.

When making an object, Python always copies the string data you provide. If necessary,
it’s up to you to release the C string afterward (if required). Also, for better reliability,
you should try to create strings using both a pointer and a size rather than relying on
NULL-terminated data.

15.16. Working with C Strings of Dubious Encoding
Problem
You are converting strings back and forth between C and Python, but the C encoding
is of a dubious or unknown nature. For example, perhaps the C data is supposed to be
UTF-8, but it’s not being strictly enforced. You would like to write code that can handle
malformed data in a graceful way that doesn’t crash Python or destroy the string data
in the process.

Solution
Here is some C data and a function that illustrates the nature of this problem:

/* Some dubious string data (malformed UTF-8) */
const char *sdata = "Spicy Jalape\xc3\xb1o\xae";
int slen = 16;

/* Output character data */
void print_chars(char *s, int len) {
 int n = 0;
 while (n < len) {
 printf("%2x ", (unsigned char) s[n]);
 n++;
 }
 printf("\n");
}

In this code, the string sdata contains a mix of UTF-8 and malformed data. Neverthe‐
less, if a user calls print_chars(sdata, slen) in C, it works fine.

Now suppose you want to convert the contents of sdata into a Python string. Further
suppose you want to later pass that string to the print_chars() function through an
extension. Here’s how to do it in a way that exactly preserves the original data even
though there are encoding problems:

654 | Chapter 15: C Extensions

/* Return the C string back to Python */
static PyObject *py_retstr(PyObject *self, PyObject *args) {
 if (!PyArg_ParseTuple(args, "")) {
 return NULL;
 }
 return PyUnicode_Decode(sdata, slen, "utf-8", "surrogateescape");
}

/* Wrapper for the print_chars() function */
static PyObject *py_print_chars(PyObject *self, PyObject *args) {
 PyObject *obj, *bytes;
 char *s = 0;
 Py_ssize_t len;

 if (!PyArg_ParseTuple(args, "U", &obj)) {
 return NULL;
 }

 if ((bytes = PyUnicode_AsEncodedString(obj,"utf-8","surrogateescape"))
 == NULL) {
 return NULL;
 }
 PyBytes_AsStringAndSize(bytes, &s, &len);
 print_chars(s, len);
 Py_DECREF(bytes);
 Py_RETURN_NONE;
}

If you try these functions from Python, here’s what happens:

>>> s = retstr()
>>> s
'Spicy Jalapeño\udcae'
>>> print_chars(s)
53 70 69 63 79 20 4a 61 6c 61 70 65 c3 b1 6f ae
>>>

Careful observation will reveal that the malformed string got encoded into a Python
string without errors, and that when passed back into C, it turned back into a byte string
that exactly encoded the same bytes as the original C string.

Discussion
This recipe addresses a subtle, but potentially annoying problem with string handling
in extension modules. Namely, the fact that C strings in extensions might not follow the
strict Unicode encoding/decoding rules that Python normally expects. Thus, it’s possible
that some malformed C data would pass to Python. A good example might be C strings
associated with low-level system calls such as filenames. For instance, what happens if
a system call returns a broken string back to the interpreter that can’t be properly
decoded.

15.16. Working with C Strings of Dubious Encoding | 655

Normally, Unicode errors are often handled by specifying some sort of error policy, such
as strict, ignore, replace, or something similar. However, a downside of these policies
is that they irreparably destroy the original string content. For example, if the malformed
data in the example was decoded using one of these polices, you would get results such
as this:

>>> raw = b'Spicy Jalape\xc3\xb1o\xae'
>>> raw.decode('utf-8','ignore')
'Spicy Jalapeño'
>>> raw.decode('utf-8','replace')
'Spicy Jalapeño?'
>>>

The surrogateescape error handling policies takes all nondecodable bytes and turns
them into the low-half of a surrogate pair (\udcXX where XX is the raw byte value). For
example:

>>> raw.decode('utf-8','surrogateescape')
'Spicy Jalapeño\udcae'
>>>

Isolated low surrogate characters such as \udcae never appear in valid Unicode. Thus,
this string is technically an illegal representation. In fact, if you ever try to pass it to
functions that perform output, you’ll get encoding errors:

>>> s = raw.decode('utf-8', 'surrogateescape')
>>> print(s)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'utf-8' codec can't encode character '\udcae'
in position 14: surrogates not allowed
>>>

However, the main point of allowing the surrogate escapes is to allow malformed strings
to pass from C to Python and back into C without any data loss. When the string is
encoded using surrogateescape again, the surrogate characters are turned back into
their original bytes. For example:

>>> s
'Spicy Jalapeño\udcae'
>>> s.encode('utf-8','surrogateescape')
b'Spicy Jalape\xc3\xb1o\xae'
>>>

As a general rule, it’s probably best to avoid surrogate encoding whenever possible—
your code will be much more reliable if it uses proper encodings. However, sometimes
there are situations where you simply don’t have control over the data encoding and
you aren’t free to ignore or replace the bad data because other functions may need to
use it. This recipe shows how to do it.

656 | Chapter 15: C Extensions

As a final note, many of Python’s system-oriented functions, especially those related to
filenames, environment variables, and command-line options, use surrogate encoding.
For example, if you use a function such as os.listdir() on a directory containing a
undecodable filename, it will be returned as a string with surrogate escapes. See
Recipe 5.15 for a related recipe.

PEP 383 has more information about the problem addressed by this recipe and surro
gateescape error handling.

15.17. Passing Filenames to C Extensions
Problem
You need to pass filenames to C library functions, but need to make sure the filename
has been encoded according to the system’s expected filename encoding.

Solution
To write an extension function that receives a filename, use code such as this:

static PyObject *py_get_filename(PyObject *self, PyObject *args) {
 PyObject *bytes;
 char *filename;
 Py_ssize_t len;
 if (!PyArg_ParseTuple(args,"O&", PyUnicode_FSConverter, &bytes)) {
 return NULL;
 }
 PyBytes_AsStringAndSize(bytes, &filename, &len);
 /* Use filename */
 ...

 /* Cleanup and return */
 Py_DECREF(bytes)
 Py_RETURN_NONE;
}

If you already have a PyObject * that you want to convert as a filename, use code such
as the following:

PyObject *obj; /* Object with the filename */
PyObject *bytes;
char *filename;
Py_ssize_t len;

bytes = PyUnicode_EncodeFSDefault(obj);
PyBytes_AsStringAndSize(bytes, &filename, &len);
/* Use filename */
...

15.17. Passing Filenames to C Extensions | 657

http://www.python.org/dev/peps/pep-0383

/* Cleanup */
Py_DECREF(bytes);

If you need to return a filename back to Python, use the following code:

/* Turn a filename into a Python object */

char *filename; /* Already set */
int filename_len; /* Already set */

PyObject *obj = PyUnicode_DecodeFSDefaultAndSize(filename, filename_len);

Discussion
Dealing with filenames in a portable way is a tricky problem that is best left to Python.
If you use this recipe in your extension code, filenames will be handled in a manner that
is consistent with filename handling in the rest of Python. This includes encoding/
decoding of bytes, dealing with bad characters, surrogate escapes, and other complica‐
tions.

15.18. Passing Open Files to C Extensions
Problem
You have an open file object in Python, but need to pass it to C extension code that will
use the file.

Solution
To convert a file to an integer file descriptor, use PyFile_FromFd(), as shown:

PyObject *fobj; /* File object (already obtained somehow) */
int fd = PyObject_AsFileDescriptor(fobj);
if (fd < 0) {
 return NULL;
}

The resulting file descriptor is obtained by calling the fileno() method on fobj. Thus,
any object that exposes a descriptor in this manner should work (e.g., file, socket, etc.).

Once you have the descriptor, it can be passed to various low-level C functions that
expect to work with files.

If you need to convert an integer file descriptor back into a Python object, use
PyFile_FromFd() as follows:

int fd; /* Existing file descriptor (already open) */
PyObject *fobj = PyFile_FromFd(fd, "filename","r",-1,NULL,NULL,NULL,1);

658 | Chapter 15: C Extensions

The arguments to PyFile_FromFd() mirror those of the built-in open() function. NULL
values simply indicate that the default settings for the encoding, errors, and newline
arguments are being used.

Discussion
If you are passing file objects from Python to C, there are a few tricky issues to be
concerned about. First, Python performs its own I/O buffering through the io module.
Prior to passing any kind of file descriptor to C, you should first flush the I/O buffers
on the associated file objects. Otherwise, you could get data appearing out of order on
the file stream.

Second, you need to pay careful attention to file ownership and the responsibility of
closing the file in particular. If a file descriptor is passed to C, but still used in Python,
you need to make sure C doesn’t accidentally close the file. Likewise, if a file descriptor
is being turned into a Python file object, you need to be clear about who is responsible
for closing it. The last argument to PyFile_FromFd() is set to 1 to indicate that Python
should close the file.

If you need to make a different kind of file object such as a FILE * object from the C
standard I/O library using a function such as fdopen(), you’ll need to be especially
careful. Doing so would introduce two completely different I/O buffering layers into
the I/O stack (one from Python’s io module and one from C stdio). Operations such
as fclose() in C could also inadvertently close the file for further use in Python. If given
a choice, you should probably make extension code work with the low-level integer file
descriptors as opposed to using a higher-level abstraction such as that provided by
<stdio.h>.

15.19. Reading File-Like Objects from C
Problem
You want to write C extension code that consumes data from any Python file-like object
(e.g., normal files, StringIO objects, etc.).

Solution
To consume data on a file-like object, you need to repeatedly invoke its read() method
and take steps to properly decode the resulting data.

Here is a sample C extension function that merely consumes all of the data on a file-like
object and dumps it to standard output so you can see it:

#define CHUNK_SIZE 8192

15.19. Reading File-Like Objects from C | 659

/* Consume a "file-like" object and write bytes to stdout */
static PyObject *py_consume_file(PyObject *self, PyObject *args) {
 PyObject *obj;
 PyObject *read_meth;
 PyObject *result = NULL;
 PyObject *read_args;

 if (!PyArg_ParseTuple(args,"O", &obj)) {
 return NULL;
 }

 /* Get the read method of the passed object */
 if ((read_meth = PyObject_GetAttrString(obj, "read")) == NULL) {
 return NULL;
 }

 /* Build the argument list to read() */
 read_args = Py_BuildValue("(i)", CHUNK_SIZE);
 while (1) {
 PyObject *data;
 PyObject *enc_data;
 char *buf;
 Py_ssize_t len;

 /* Call read() */
 if ((data = PyObject_Call(read_meth, read_args, NULL)) == NULL) {
 goto final;
 }

 /* Check for EOF */
 if (PySequence_Length(data) == 0) {
 Py_DECREF(data);
 break;
 }

 /* Encode Unicode as Bytes for C */
 if ((enc_data=PyUnicode_AsEncodedString(data,"utf-8","strict"))==NULL) {
 Py_DECREF(data);
 goto final;
 }

 /* Extract underlying buffer data */
 PyBytes_AsStringAndSize(enc_data, &buf, &len);

 /* Write to stdout (replace with something more useful) */
 write(1, buf, len);

 /* Cleanup */
 Py_DECREF(enc_data);
 Py_DECREF(data);
 }
 result = Py_BuildValue("");

660 | Chapter 15: C Extensions

 final:
 /* Cleanup */
 Py_DECREF(read_meth);
 Py_DECREF(read_args);
 return result;
}

To test the code, try making a file-like object such as a StringIO instance and pass it in:

>>> import io
>>> f = io.StringIO('Hello\nWorld\n')
>>> import sample
>>> sample.consume_file(f)
Hello
World
>>>

Discussion
Unlike a normal system file, a file-like object is not necessarily built around a low-level
file descriptor. Thus, you can’t use normal C library functions to access it. Instead, you
need to use Python’s C API to manipulate the file-like object much like you would in
Python.

In the solution, the read() method is extracted from the passed object. An argument
list is built and then repeatedly passed to PyObject_Call() to invoke the method. To
detect end-of-file (EOF), PySequence_Length() is used to see if the returned result has
zero length.

For all I/O operations, you’ll need to concern yourself with the underlying encoding
and distinction between bytes and Unicode. This recipe shows how to read a file in text
mode and decode the resulting text into a bytes encoding that can be used by C. If you
want to read the file in binary mode, only minor changes will be made. For example:

...
 /* Call read() */
 if ((data = PyObject_Call(read_meth, read_args, NULL)) == NULL) {
 goto final;
 }

 /* Check for EOF */
 if (PySequence_Length(data) == 0) {
 Py_DECREF(data);
 break;
 }
 if (!PyBytes_Check(data)) {
 Py_DECREF(data);
 PyErr_SetString(PyExc_IOError, "File must be in binary mode");
 goto final;
 }

15.19. Reading File-Like Objects from C | 661

 /* Extract underlying buffer data */
 PyBytes_AsStringAndSize(data, &buf, &len);
 ...

The trickiest part of this recipe concerns proper memory management. When working
with PyObject * variables, careful attention needs to be given to managing reference
counts and cleaning up values when no longer needed. The various Py_DECREF() calls
are doing this.

The recipe is written in a general-purpose manner so that it can be adapted to other file
operations, such as writing. For example, to write data, merely obtain the write()
method of the file-like object, convert data into an appropriate Python object (bytes or
Unicode), and invoke the method to have it written to the file.

Finally, although file-like objects often provide other methods (e.g., readline(),
read_into()), it is probably best to just stick with the basic read() and write() meth‐
ods for maximal portability. Keeping things as simple as possible is often a good policy
for C extensions.

15.20. Consuming an Iterable from C
Problem
You want to write C extension code that consumes items from any iterable object such
as a list, tuple, file, or generator.

Solution
Here is a sample C extension function that shows how to consume the items on an
iterable:

static PyObject *py_consume_iterable(PyObject *self, PyObject *args) {
 PyObject *obj;
 PyObject *iter;
 PyObject *item;

 if (!PyArg_ParseTuple(args, "O", &obj)) {
 return NULL;
 }
 if ((iter = PyObject_GetIter(obj)) == NULL) {
 return NULL;
 }
 while ((item = PyIter_Next(iter)) != NULL) {
 /* Use item */
 ...
 Py_DECREF(item);
 }

662 | Chapter 15: C Extensions

 Py_DECREF(iter);
 return Py_BuildValue("");
}

Discussion
The code in this recipe mirrors similar code in Python. The PyObject_GetIter() call
is the same as calling iter() to get an iterator. The PyIter_Next() function invokes
the next method on the iterator returning the next item or NULL if there are no more
items. Make sure you’re careful with memory management—Py_DECREF() needs to be
called on both the produced items and the iterator object itself to avoid leaking memory.

15.21. Diagnosing Segmentation Faults
Problem
The interpreter violently crashes with a segmentation fault, bus error, access violation,
or other fatal error. You would like to get a Python traceback that shows you where your
program was running at the point of failure.

Solution
The faulthandler module can be used to help you solve this problem. Include the
following code in your program:

import faulthandler
faulthandler.enable()

Alternatively, run Python with the -Xfaulthandler option such as this:

bash % python3 -Xfaulthandler program.py

Last, but not least, you can set the PYTHONFAULTHANDLER environment variable.

With faulthandler enabled, fatal errors in C extensions will result in a Python trace‐
back being printed on failures. For example:

 Fatal Python error: Segmentation fault

 Current thread 0x00007fff71106cc0:
 File "example.py", line 6 in foo
 File "example.py", line 10 in bar
 File "example.py", line 14 in spam
 File "example.py", line 19 in <module>
 Segmentation fault

Although this won’t tell you where in the C code things went awry, at least it can tell you
how it got there from Python.

15.21. Diagnosing Segmentation Faults | 663

Discussion
The faulthandler will show you the stack traceback of the Python code executing at
the time of failure. At the very least, this will show you the top-level extension function
that was invoked. With the aid of pdb or other Python debugger, you can investigate the
flow of the Python code leading to the error.

faulthandler will not tell you anything about the failure from C. For that, you will
need to use a traditional C debugger, such as gdb. However, the information from the
faulthandler traceback may give you a better idea of where to direct your attention.

It should be noted that certain kinds of errors in C may not be easily recoverable. For
example, if a C extension trashes the stack or program heap, it may render faulthan
dler inoperable and you’ll simply get no output at all (other than a crash). Obviously,
your mileage may vary.

664 | Chapter 15: C Extensions

APPENDIX A

Further Reading

There are a large number of books and online resources available for learning and
programming Python. However, if like this book, your focus is on the use of Python 3,
finding reliable information is made a bit more difficult simply due to the sheer volume
of existing material written for earlier Python versions.

In this appendix, we provide a few selected links to material that may be particularly
useful in the context of Python 3 programming and the recipes contained in this book.
This is by no means an exhaustive list of resources, so you should definitely check to
see if new titles or more up-to-date editions of these books have been published.

Online Resources
http://docs.python.org

It goes without saying that Python’s own online documentation is an excellent re‐
source if you need to delve into the finer details of the language and modules. Just
make sure you’re looking at the documentation for Python 3 and not earlier ver‐
sions.

http://www.python.org/dev/peps
Python Enhancement Proposals (PEPs) are invaluable if you want to understand
the motivation for adding new features to the Python language as well as subtle
implementation details. This is especially true for some of the more advanced lan‐
guage features. In writing this book, the PEPs were often more useful than the
official documentation.

http://pyvideo.org
This is a large collection of video presentations and tutorials from past PyCon con‐
ferences, user group meetings, and more. It can be an invaluable resource for learn‐
ing about modern Python development. Many of the videos feature Python core
developers talking about the new features being added in Python 3.

665

http://docs.python.org
http://www.python.org/dev/peps
http://pyvideo.org

http://code.activestate.com/recipes/langs/python
The ActiveState Python recipes site has long been a resource for finding the solution
to thousands of specific programming problems. As of this writing, it contains
approximately 300 recipes specific to Python 3. You’ll find that many of its recipes
either expand upon topics covered in this book or focus on more narrowly defined
tasks. As such, it’s a good companion.

http://stackoverflow.com/questions/tagged/python
Stack Overflow currently has more than 175,000 questions tagged as Python-related
(and almost 5000 questions specific to Python 3). Although the quality of the ques‐
tions and answers varies, there is a lot of good material to be found.

Books for Learning Python
The following books provide an introduction to Python with a focus on Python 3:

• Learning Python, 4th Edition, by Mark Lutz, O’Reilly & Associates (2009).
• The Quick Python Book, 2nd Edition, by Vernon Ceder, Manning (2010).
• Python Programming for the Absolute Beginner, 3rd Edition, by Michael Dawson,

Course Technology PTR (2010).
• Beginning Python: From Novice to Professional, 2nd Edition, by Magnus Lie Het‐

land, Apress (2008).
• Programming in Python 3, 2nd Edition, by Mark Summerfield, Addison-Wesley

(2010).

Advanced Books
The following books provide more advanced coverage and include Python 3 topics:

• Programming Python, 4th Edition, by Mark Lutz, O’Reilly & Associates (2010).
• Python Essential Reference, 4th Edition, by David Beazley, Addison-Wesley (2009).
• Core Python Applications Programming, 3rd Edition, by Wesley Chun, Prentice Hall

(2012).
• The Python Standard Library by Example, by Doug Hellmann, Addison-Wesley

(2011).
• Python 3 Object Oriented Programming, by Dusty Phillips, Packt Publishing (2010).
• Porting to Python 3, by Lennart Regebro, CreateSpace (2011), http://python3port

ing.com.

666 | Appendix A: Further Reading

http://code.activestate.com/recipes/langs/python
http://stackoverflow.com/questions/tagged/python
http://shop.oreilly.com/product/9780596158071.do
http://shop.oreilly.com/product/9780596158118.do
http://python3porting.com
http://python3porting.com

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
!r formatting code, 244
% (percent) operator, 58, 556

format() function vs., 88
* (star) operator

EBNFs and, 70
**kwargs, 218

decorators and, 331
enforcing signature on, 364–367
help function and, 219
wrapped functions and, 353

*args, 217
decorators and, 331
enforcing signature on, 364–367
wrapped functions and, 353

+ (plus) operator, 48, 59
-O option (interpreter), 343
-OO option (interpreter), 343
-W (warnings), 584

all option, 583
error option, 584
ignore option, 584

. (dot) operator, 49, 591
< (less than) operator, date comparisons with,

108
== operator, 462
? (question mark) modifier in regular expres‐

sions, 48
\$ (end-marker) in regular expressions, 44

_ (single underscore)
avoiding clashes with reserved words, 251
naming convention and, 250

__ (double underscore), naming conventions
and, 250

A
abc module, 274
abspath() (os.path module), 551
abstract base classes, 274–276

collections module and, 283–286
predefined, 276

abstract syntax tree, 388–392
abstraction, gratuitous, 593
@abstractmethod decorator (abc module), 275
accepting script via input files, 539
accessor functions, 238–241

adjusting decorators with, 336–339
ACCESS_COPY (mmap module), 155
ACLs, 548
actor model, 516–520
addHandler() operation (logging module), 559
add_argument() method (ArgumentParser

module), 543, 544
Advanced Programming in the Unix Environ‐

ment, 2e (Stevens, Rago), 538
algorithms, 1–35

filtering sequence elements, 26–28

667

finding most frequent item (sequences), 20–
21

limited history, keeping, 5–7
sorting for largest/smallest N items, 7–8
unpacking, 1–5

anonymous functions
defining, 224–225
variables, capturing, 225–227

Apache web server, 451
append() method (ElementTree module), 193
%apply directive (Swig), 631
archives

creating, 549
formats of, 550
unpacking, 549

argparse module, 541, 543, 544
.args attribute (Exceptions), 579
ArgumentParser instance, 543
arguments

annotations, 220
cleaning up in C extensions, 623
multiple-dispatch, implementing with, 376–

382
arrays

calculating with large numerical, 97–100
high-performance with Cython, 638–642
in C extensions, 603
large, sending/receiving, 481–483
NumPy and, 97–100
operating on, with extension functions, 609–

612
readinto() method and, 152
writing to files from, 147

assertRaises() method (unittest module), 570,
571

assertRaisesRegex() method (unittest module),
571

ast module, 78, 311, 388–392
asynchronous processing, 232–235
attrgetter() function (operator module), 24
authentication

encryption vs., 463
hmac module, 461–463
passwords, prompting at runtime, 544
requests package and, 439
simple, 461–463
testing with httpbin.org, 441

B
b16decode() function (base64 module), 199

binascii functions vs., 198
b16encode() function (base64 module), 199

binascii functions vs., 198
base64 module, 199

binascii module vs., 198
BaseException class, 577–579

except statements and, 576
BaseRequestHandler (socketserver module),

443
basicConfig() function (logging module), 556–

557
bin() function, 89–90
binary data

arrays of structures, reading/writing, 199–
203

encoding with base64 module, 199
memory mapping, 153–156
nested records, reading, 203–213
reading into mutable buffers, 152–153
reading/writing, 145–147
unpack_from() method and, 202
variable-sized records, reading, 203–213

binary integers, 89–90
binascii module, 197–198
bind() method (Signature objects), 344, 364
bind_partial() method (Signature objects), 343
bit_length() method (int type), 92
BNF, 69
boundscheck() decorator (Cython), 641
buffer attribute (files), 165
Buffer Protocol, 147, 609
BufferedWriter object (io module), 164
built-ins

containers, 593
exception class, 578
methods, overriding, 256

byte strings
as return value of read(), 146
encoding with base64, 199
indexing of, 79
performing text operations on, 78–81
printing, 80
writing to text files, 165

bytes, interpreting as text, 546
BytesIO() class (io module), 148–149, 570
bz2 compression format, 550

668 | Index

bz2 module, 149–151
compresslevel keyword, 150

C
C APIs, 612–614
C extension programming, 566, 597

APIs, defining/exporting, 612–614
aquiring GIL in, 624
capsule objects in, 612–614
ctypes module and, 599–605
Cython, wrapping code in, 632–638
file-like objects, reading, 659–662
filenames, passing to, 657–658
function pointers, converting to callables,

643–644
GIL and, 515–516
GIL, releasing in, 625
iterables from C, consuming, 662–663
loading modules, 601
modules, building, 607
null-terminated strings, passing, 644–648
opaque pointers in, 612–614
open files, passing to, 658–659
operating on arrays with, 609–612
Python callables in, 619–624
Python/C threads, mixing, 625–626
segmentation faults and, 663–664
strings, converting to Python objects, 653–

654
Swig, wrapping with, 627–631
Unicode strings, passing, 648–653
unknown string type and, 654–657
writing, modules, 605–609

C structures, 147
calendar module, 108
__call__() method (metaclasses), 347–349, 356
callback functions

carrying extra state with, 232–235
inlining, 235–238

capsule objects, 612–614
C APIs, defining/exporting with, 612–614

Celery, 457
center() method (str type), 57
certificate authorities, 468
CFFI, 605
CFUNCTYPE instances (ctypes module), 643
chain() method (itertools module), 131–132
chained exceptions, 581, 582

ChainMap class (collections module), 33–35
update() method vs., 35

chdir() function (os module), 537
check_output() function (subprocess class), 546
Chicago, Illinois, 186, 214
choice() function (random module), 102
__class__ attribute, 302–304
class decorators, 279, 355–356

data models and, 281
mixin classes vs., 281
mixins and, 298

classes, 243–327
abstract base classes, 274–276
attribute definition order, 359–362
caching instances of, 323
closures vs., 238–241
coding conventions in, 367–370
constructors, multiple, 291–292
containers, custom, 283–286
data models, implementing, 277–283
decorators, 279
decorators, defining in, 345–347
defining decorators as, 347–349
delegating attributes, 287–291
descriptors and, 264–267
extending properties in subclasses, 260–264
extending with mixins, 294–299
implementing state for objects/machines,

299–305
inheritance, implementation of, 258
initializing members at definition time, 374–

375
initializing of data structures in, 270–274
lazy attributes and, 267
mixins, 260, 294–299
private data in, 250–251
replacing with functions, 231–232
statements, metaclass keyword in, 362–364
super() function and, 256–260
supporting comparison operations, 321–323
type system, implementing, 277–283
__init__() method, bypassing, 293–294

@classmethod decorator, 330
decorating class methods with, 350–352
__func__ attribute and, 334

client module (http package), 440
clock() function (time class), 561
close() method (generators), 531
closefd argument (open() function), 166

Index | 669

closures
accessing variables inside, 238–241
capturing state with, 233–234
classes vs., 238–241
converting classes to functions with, 231
nonlocal declarations and, 239

cmath module, 93
code readability and string templates, 453
coding conventions, 367–370
collections module

ChainMap class, 33–35
Counter class, 20–21
defaultdict class, 11
deque class, 5–7
implementing custom containers with, 283–

286
namedtuple() function, 30
OrderedDict class, 12–13

combinations() function (itertools module), 126
combinations_with_replacement() function

(itertools module), 126
combining() function (unicodedata module), 51
command-line options, parsing, 539, 541, 542
compare_digest() function (hmac module), 462
comparison operations, 321–323
compile() function (ast module), 390
compile() function (re module), 49
complex() function, 92
complex-valued math, 92–94
compress() function (itertools module), 28
compressed files, reading/writing, 149–151

specifying level of, 150
concurrency, 485–538

actor model and, 516–520
coroutines, 524–531
event-driven I/O and, 479
GIL, 513–516
parallel programming, 509–513
polling thread queues, 531–534
threads, 485–488
with generators, 524–531

Condition object (threading module), 489
conditionals and NaN values, 95
config file

Python code vs., 554
Python source file vs., 553

ConfigParser module, 552–555
configuration files, 552
connect() function (sqlite3 module), 196

connection (multiprocessing module), 456–458
constructors, defining multiple, 291–292
containers, custom, 283–286

iterating over items in separate, 131–132
__iter__() method and, 114–115

context managers
defining, 384–385
use instance as, 540

context-management protocols, 246–248
contextlib module, 238
@contextmanager decorator (contextlib mod‐

ule), 238, 385
contextmanager module, 248
cookies, 439
copy2() function (shutil module), 548
copying directories/files, 547
copytree() function (shutil class), 548–549
coroutines, 524–531

capturing state with, 233
inlining callback functions with, 235

Counter objects (collections module), 20–21
country_timezones dictionary (pytz module),

112
cProfile module, 587
CPU-bound programs, 514
CPUs, restricting use of, 561
critical() function (logging module), 556
cryptography, 103
CSV files, reading/writing, 175–179
csv module, 175–179
ctypes module, 599–605

alternatives to, 604
memory addresses, wrapping, 643–644

custom exceptions, 578
Cython, 604

array handling with, 612
high-performance arrays with, 638–642
memoryviews in, 640
releasing the GIL, 636
setup.py file, 633, 639
wrapping existing code in, 632–638

D
daemon processes (Unix), 534–538
daemonic threads, 486
data

pickle module and, 171–174
serializing, 171–174

670 | Index

transforming/reducing simultaneously, 32–
33

data analysis, 178
data encapsulation, 250–251
data encoding

CSV files, reading/writing, 175–179
for RPCs, 460
hexadecimal digits, 197–198
JSON, reading/writing, 179–183
with base64 module, 199
XML, extracting data from, 183–186

data models, 277–283
data processing

dictionaries, converting to XML, 189–191
nested binary records, reading, 203–213
parsing large XML files, 186–189
relational databases and, 195–197
statistics, 214–216
summarizing, 214–216
variable-sized binary records, reading, 203–

213
XML namespaces, 193–195
XML, parsing/modifying/rewriting, 191–193

data structures, 1–35, 593
cyclic, managing memory in, 317–320
dictionaries

grouping records by field, 24–26
sorting by common keys, 21–23

heaps, 7–11
initializations of, simplifying, 270–274
multidicts, 11–12

database API (Python), 195–197
strings and, 197

datagrams, 445
date calculations, 106–107
datetime module, 104–112

databases and, 197
date calculations with, 106–107
replace() method, 108
strptime() method, 109
time conversions, 104–105
time zones and, 110
timedelta object, 104

dateutil module, 105
deadlock avoidance, 503
deadlocks, 500–503

dining philosophers problem, 503
watchdog timers and, 503

__debug__ variable, 343

debug() function (logging module), 556
debugger, launching, 585
debugging, 584
decimal module, 84–86

databases and, 197
formatting output of, 88

decode() method (str type), 56
decorators, 329–356

adding function arguments with, 352–354
adjustable attributes for, 336–339
class methods, applying to, 350–352
defining as class, 347–349
defining in classes, 345–347
forcing type checking with, 341–345
multiple-dispatch, implementing with, 381
optional arguments for, 339–341
patching classes with, 355–356
preserving function metadata in, 331–333
static methods, applying to, 350–352
unwrapping, 333–334
with arguments, 334–336
wrappers as, 329–331
__wrapped__ attribute, 332

deepcopy() function (copy module), 594
defaultdict object (collections module), 11

groupby() function vs., 26
ordinary dictionary vs., 12

__delattr__() method (delegation), 290
delegation

inheritance vs., 289
of attributes, 287–291

__delete__() method (descriptors), 265
DeprecationWarning argument (warn() func‐

tion), 583
deque class (collections module), 5–7

appending, 6
popping, 6

descriptors
creating, 264–267
data models, implementing, 277–283
extending, 263
lazy attributes and, 267–270
type system, implementing, 277–283

deserializing data, 293–294
Design Patterns: Elements of Reusable Object-

Oriented Software (Gamma, Helm, Johnson,
and Vlissides), 305

dest argument (add_argument() method), 544
detach() method, 164

Index | 671

dict() function, 29, 594
dictionaries

comparing, 15–16
converting to XML, 189–191
Counter objects and, 21
defaultdict vs., 12
grouping records based on field, 24–26
JSON support for, 179
keeping in order, 12–13
multiple values for a single key in, 11–12
removing duplicates from, 17
sorting, 13–15
sorting list of, by common key, 21–23
subsets, extracting, 28–29

dictionary comprehension, 29
dining philosophers problem (deadlocks), 503
directories

as runnable scripts, 407–408
copying, 547
moving, 547
temporary, 167–170

directory listings, 158–159
dis module, 392–395
discarding vs. filtering iterables, 124
distributed systems and property calls, 255
domain sockets (Unix), 457, 470

connecting interpreters with, 472
DOTALL flag (re module), 49
dropwhile() function (itertools module), 123
dump() function (pickle module), 171
dumps() function (json module), 179

indent argument, 181
sort_keys argument, 182

dumps() function (pickle module), 171
dup2() function (os module), 537

E
EBNF, 69
ElementTree module (xml.etree), 66, 183–186

creating XML documents with, 189–191
iterparse() function, 188
parse() function, 185
parse_and_remove() function, 189
parsing namespaces and, 194
parsing/modifying/rewriting files with, 191–

193
empty() method (queue module), 496
encode() method (str type), 56

encoding text data, 141–144
changing in open files, 163–165
passing to C libraries, 648–653
pickling and, 174

encryption vs. authentication, 463
end argument (print() function), 144
endswith() method (str type), 38

pattern matching with, 42
__enter__() method (with statements), 246–248
enumerate() function, 127–128
environ argument (WSGI), 451
error messages, terminating program with, 540
error() function (logging module), 556
escape() function (html module), 65
escape() function (xml.sax.saxutils module), 191
Event object (threading module), 488–491
event-driven I/O, 475–481
except statement, 576, 580

chained exceptions and, 581
reraising exceptions caught by, 582

Exception class, 579
handler for, 576

exceptions
catching all, 576
creating custom, 578
handling multiple, 574
raising in response to another exception, 580
reraising, 582
SystemExit, 540
testing for, 570
with statements and, 247

exec() function, 386–388
execve() function (os module), 546
__exit__() method (with statements), 246–248
@expectedFailure decorator, 574
exponential notation, 87
%extend directive (Swig), 630
external command

executing, 545
getting output, 545

F
factory functions, 323
faulthandler module, 663–664
fdel attribute (properties), 253
fget attribute (properties), 253
FieldStorage() class (cgi module), 452
file descriptor

passing between processes, 470–475

672 | Index

wrapping in object, 166
file-like objects, reading from C, 659–662
FileInput class, 540

helper methods, 540
fileinput module (built-in), 539
FileIO class (io module), 164
FileNotFoundError exception, 575
files, 141–174

accepting scripts via, 539
binary data, reading/writing, 145–147
bypassing name encoding, 160–161
bytes, writing to text, 165
changing encoding in open, 163–165
compressed, reading/writing, 149–151
copying, 547
creating new, 147–148
defining modules in multiple, 401–404
detach() method, 164
directory listings, getting, 158–159
finding by name, 550
getfilesystemencoding() function (sys mod‐

ule), 160–161
headers, unpacking, 205
iterating over fixed-sized records in, 151
line ending, changing, 144–145
manipulating pathnames of, 156–157
memory mapping, 153–156
moving, 547
mutable buffers, reading into, 152–153
names, passing to C extensions, 657–658
newlines, 142
open() function, 141–144
open, passing to C extensions, 658–659
path module (os), 156–157
printing bad filenames for, 161–163
printing to, 144
reading, 408–409
readinto() method of, 147
saving objects to, 171–174
separator character, changing, 144–145
temporary, 167–170
testing for existence of, 157–158
text data from, 141–144
unpacking, 2
wrapping descriptors in objects, 166
x mode of open() function, 147–148

files list, 551
filesystem, byte strings and, 80
fill() function (textwrap module), 65

filter() function, 27
filtering

discarding iterables vs., 124
normalization of Unicode text and, 51
sequence elements, 26–28
token streams, 68

find Unix utility, 551
find() method (str type)

pattern matching with, 42
search/replace text and, 46

findall() method (re module), 43
finditer() method (re module), 44
find_library() function (ctypes.util module),

601
float()

decimal arithmetic and, 84–86
format() function (built-in), 87–88
j suffix for, 92

fnmatch module, 40–42
fnmatch() function (fnmatch module), 40–42
fnmatchcase() function (fnmatch module), 40–

42
for loops

consuming iterators manually vs., 113–114
generators and, 115–117

fork() function (os module), 537
ForkingTCPServer objects (socketserver mod‐

ule), 442
ForkingUDPServer objects (socketserver mod‐

ule), 446
format() function (built-in)

and non-decimal integers, 89
floats, specifying precision with, 84
formatting output with, 244

format() function (built-in), 87–88
format() method (str type), 57

customizing string, 245–246
interpolating variables, 61–64

__format__() method, 245–246
format_map() method (str type), 62
fpectl module, 95
fractions module, 96–96
frame hacking, 373
from module import * statement (modules), 398

reload() function and, 406
from module import name, 591
fromkeys() method (dict type), 55
from_bytes() method (int type), 91
fset attribute (properties), 253

Index | 673

fsum() function (math module), 86
full() method (queue module), 496
functions, 217–241

accepting arbitrary arguments for, 217–218
accessor functions as attributes of, 238–241
anonymous/inline, defining, 224–225
argument annotations, 220
calling with fewer arguments, 227–230
closures, accessing variables inside, 238–241
default arguments for, 222–224
disassembling, 392–395
inlining callbacks, 235–238
keyword arguments only, 219–220
multiple return values for, 221
partial() function and, 227–230
pointers, converting to callables, 643–644
replacing classes with, 231–232
state, carrying, 232–235
wrapper layers for, 329–331
wrapping with Cython, 632–638

futures module (concurrent module), 479, 505–
509
ProcessPoolExecutor class, 509–513

FutureWarning argument (warn() function),
583

G
garbage collection

caching instances and, 325
cyclic data structures and, 318

gauss() function (random module), 103
gdb debugger, 663–664
General Decimal Arithmetic Specification

(IBM), 86
generator expressions

concatenating/combining strings and, 60
filtering sequence elements with, 26
flattening nested sequences with, 135–136
recursive algorithms vs., 311–317
transforming/reducing data with, 32–33

Generator Tricks for Systems Programmers
(Beazley), 135

generator-expression argument, 32
GeneratorExit exception, 577
generators, 113–139

concurrency with, 524–531
creating iterator patterns with, 115–117
defining with extra states, 120
inlining callback functions with, 235

islice() function and, 122–123
iterator protocol, implementing, 117–119
pipelines, creating with, 132–135
search functions and, 6
slicing, 122–123
unpacking, 2

GET requests (HTTP), 437
get() function (webbrowser class), 563
get() method (ElementTree module), 185
get() method (queue module), 491, 495
__get__() method, 347–349

descriptors, 265–266
getattr() function, 305

visitor patterns and, 310
__getattr__() method (delegation), 287, 290
getboolean() method (ConfigParser module),

554
getdefaultencoding() function (sys module), 142
getfilesystemencoding() function (sys module),

160–161
getframe() (sys module), 63

frame hacking with, 373
__getitem__() method, 23
getLogger() function (logging module), 558
getpass module, 544
getpass() method (getpass module), 545
getrandbits() function (random module), 103
getrecursionlimit() function (sys module), 310
gettempdir() function (tempfile module), 169
getuser() (getpass module), 544
get_archive_formats() function (shutil module),

550
get_data() function (pkgutil module), 409
get_terminal_size() function (os module), 65,

545
gevent module, 531
glob module, 42
Global Interpreter Lock (GIL), 487, 513–516

C, calling Python from, 624
C/Python threads, mixing, 625–626
releasing in C extensions, 625
releasing in Cython, 636
thread pools and, 508

grammar rules, for parsers, 69–78
greenlets, 531
.group() method (re module), 46
groupby() function (itertools module), 24–26
grouping records, in dictionaries, 12
gzip compression format, 550

674 | Index

gzip module, 149–151
compresslevel keyword, 150

H
hard limit on resources, 562
hashes, 17
heappop() method (heapq module), 8

priority queues and, 9
heapq module, 7–8

merge() function, 136–137
heaps, 7–11

nlargest()/nsmallest() functions and, 8
reversing order of, 10

help function
keyword arguments and, 219
metadata for arguments and, 220

hex() function, 89–90
hexadecimal digits, encoding, 197–198
hexadecimal integers, 89–90
hmac module, 461–463
HTML entities

handling in text, 65–66
replacing, 66

html module, 65
HTTP services

clients, 437–441
headers, custom, 438
testing client code, 441

httpbin.org service, 441

I
I/O, 141–174

decoding/encoding functions for, 56
event-driven, 475–481
iter() function and, 139
objects, serializing, 171–174
operations on strings, 148–149
passing open files and, 659
serial ports, communicating with, 170–171
thread termination and, 487

IDEs for Python development, 587
__init__() method, data structures and, 273

if-elif-else blocks, 304
IGNORECASE flag (re module), 47
ignore_patterns() function (shutil module), 548
ignore_types argument (isinstance() function),

135

import hooks, 418–420
patching modules on import, 428–431
sys.path_hooks variable and, 420

import statement, 412–428
ImportError exceptions, 425
importlib module, 421
import_module() function (importlib module),

411, 430
index-value pairs, iterating over, 127–128
IndexError exception, 19
indexing in CSV files, 175–179
indices() method (slice), 19
infinite values, 94–95
info() function (logging module), 556
inheritance

class decorators and, 356
class defined decorators and, 347
delegation vs., 289
implementation of, 258

.ini file features, 555
__init__() method (classes), 579

bypassing, 293–294
coding conventions and, 367–370
data structure initialization and, 270–274
mixins and, 297
multiple constructors and, 291–292
optional arguments and, 363
super() function and, 256–260

inline functions
callbacks, 235–238
defining, 224–225

input files, 539
input() function (fileinput), 540
insert() method (ElementTree module), 193
inspect() module, 364–367
instances

cached, metaclasses and, 358
creation, controlling with metaclasses, 356–

359
descriptors and, 264–267
saving memory when creating, 248–249
serializing with JSON, 182
WSGI applications as, 452

int type, 90–92
int() function, 90
interface files (Swig), 627
interpreters, communication between, 456–458
invalidate_caches() function (importlib mod‐

ule), 427

Index | 675

io module, 148–149, 163–165
ioctl(), 545
IPv4Address objects (ipaddress module), 448
is operator, 223
isinf() function (math module), 94
isinstance() function, 135
islice() function (itertools module), 122–123,

124
isnan() function (math module), 94
issuing warning messages, 583
is_alive() method (Thread class), 486
itemgetter function (operator module), 22
items() method (dictionaries), 16
iter() function

fixed size records and, 151
while loops vs., 138–139

__iter__() method (iterators), 114–115
generators with extra states and, 121

iterables
custom containers for, 283–286
discarding parts of, 123–125
from C, consuming, 662–663
sorted/merged, iterating over, 136–137
unpacking, 1–2

iterating
all possible combinations/permutations,

125–127
chain() method (itertools module), 131–132
iter() function vs. while loops, 138–139
merge() function (heapq module), 136–137
over fixed-sized records, 151
over index-value pairs, 127–128
over separate containers, 131–132
over sorted/merged iterables, 136–137
reverse, 119
zip() function and, 129–130

iterators, 113–139
consuming manually, 113–114
creating patterns with generators, 115–117
delegating, 114–115
islice() function (itertools module), 122–123
protocol, implementing, 117–119
slicing, 122–123

iterparse() function (ElementTree module), 188
iterparse() method (ElementTree module), 194
itertools module, 123–125, 125–127

compress() function, 28
groupby() function, 24–26

iter_as() function, 211

J
join() method (str type), 58–61

changing single characters with, 145
join() method (Thread class), 486
JSON (JavaScript Object Notation)

reading/writing, 179–183
types supported by, 179

json module, 179–183
just-in-time (JIT) compiling, 590, 594

K
key argument (sorted() function), 23
KeyboardInterrupt exception, 577, 578
keys() method (dictionaries), 16
keyword arguments, 218

annotations, 220
for metaclasses, 362–364
functions that only accept, 219–220
help function and, 219

L
lambda expressions, 24, 225

variables, capturing, 225–227
launching

Python debugger, 585
web browsers, 562

lazy imports, 403
lazy unpacking, 212
leap years, datetime module and, 104
libraries, adding logging to, 558
limited history, 5–7
linalg subpackage (NumPy module), 101
linear algebra, 100–101
list comprehension, 26
listdir() function (os module), 158–159

bad filenames, printing, 161–163
lists

NumPy vs., 99
processing and star unpacking, 5
unpacking, 2

ljust() method (str type), 57
llvmpy extension module, 643
load() function (pickle module), 171

untrusted data and, 172
LoadLibrary() function (ctypes.cdll module),

601
loads() function (json module), 179

676 | Index

loads() function (pickle module), 171
loadTestsFromModule() method (TestLoader

module), 573
loadTestsFromTestCase() method (TestCase

module), 573
local() method (threading module), 504–505
locale module, 88
locals() function and exec() function, 386–388
Lock objects (threading module), 497–500
logging

adding to libraries, 558
adding to simple scripts, 555
output of, 557
test output to file, 572

logging module, 557, 559
critical(), 556
debug(), 556
error(), 556
info(), 556
warning(), 556

lower() method (str type), 54
lstrip() method (str type), 53
lxml module, 195

M
MagicMock instances, 568
makefile() method (socket module), 167
make_archive() function (shutil module), 549
MANIFEST.in file, 434
manipulating pathnames, 156–157
map() operation (ProcessPoolExecutor class),

511
Mapping class (collections module), 283
mappings

class definition order and, 362
consolidating multiple, 33–35

match() method (re module), 43
search/replace text and, 46

math() module, 94
matrix calculations, 100–101
matrix object (NumPy module), 100
max() function, 8, 15

attrgetter() function and, 24
generator expressions and, 33
itemgetter() function, 23

memory
management in cyclic data structures, 317–

320
mapping, 153–156

OrderedDict objects and, 13
parsing XML and, 186–189
restricting use of, 561
wchar_t strings and, 651
__slots__ attribute and, 248–249

memory mapping, 153–156
MemoryError exceptions, 562
memoryview() object (struct module), 153, 206,

213
Cython-typed, 640
large arrays and, 481–483

memory_map() function (mmap module), 154
merge() function (heapq module), 136–137
Mersenne Twister algorithm, 103
meta path importer, 414–418

sys.metapath object, 418
metaclass keyword (class statement), 362–364
metaclasses, 279

capturing attribute definition order, 359–362
controlling instance creation, 356–359
enforcing coding conventions, 367–370
initializing members at definition time, 374–

375
non-standardized binary files and, 207
optional arguments for, 362–364
__prepare__() method and, 361

metaprogramming, 329–395
adjustable attributes, 336–339
decorators, 329–356
decorators with arguments, 334–336
dis module, 392–395
exec() function vs., 386–388
function metadata in decorators, 331–333
function wrappers, 329–331
repetitive property methods and, 382–384
unwrapping decorators, 333–334

method overloading, 376–382
methodcaller() function (operator module), 305
Microsoft Excel, CSV encoding rules of, 177
Microsoft Visual Studio, 608
min() function, 8, 15

attrgetter() function and, 24
generator expressions and, 33
itemgetter() function, 23

__missing__() method (dict module), 62
mixin classes, 260

extending unrelated classes with, 294–299
in descriptors of data models, 280

mkdtemp() function (tempfile module), 169

Index | 677

mkstemp() function (tempfile module), 169
mmap module, 153–156
mock module (unittest module), 565, 570
module import * statement, 398–399
modules, 397–435

controlling import of, 398–399
from module import * statement, 398
hierarchical packages of, 397–398
import hooks, using, 412–428
importing with relative names, 399–401
importing, using string as name, 411
importlib module, 421
import_module() function (importlib mod‐

ule), 411
invalidate_caches() function (importlib

module), 427
meta path importer, 414–418
new_module() function (imp module), 421
objects, creating, 421
patching on import, 428–431
relative imports vs. absolute names, 400
reloading, 406–407
remote machines, loading from, 412–428
splitting into multiple files, 401–404
sys.path, adding directories to, 409–411
sys.path_importer_cache object, 424
virtual environments and, 432–433
__all__ variable in, 398–399
__init__.py file, 397
__main__.py files, 407–408

monthrange() function (calendar module), 108
months, finding date ranges of, 107–109
moving directories/files, 547
__mro__ attribute, 576
multidicts, 11–12
multiple-dispatch, 376–382
multiprocessing module, 488

GIL and, 514
passing file descriptors with, 470–475
reduction module, 470–475
RPCs and, 459

mutable buffers, reading into, 152–153
MutableMapping class (collections module),

283
MutableSequence class (collections module),

283
MutableSet class (collections module), 283

N
named pipes (Windows), 457, 470, 472
NamedTemporaryFile() function (tempfile

module), 169
namedtuple() function (collections module), 30
namedtuple() method (collections module)

new_class() function and, 372
unpacking binary data and, 203

NameError exception, 581
namespace package, checking for, 426
namespaces (XML), parsing, 193–195
namespaces, multiple directories in, 404–406
naming conventions

for private data, 250–251
__ (double underscore) and, 250

NaN (not a number) values, 94–95
in JSON, 183
isnan() function and, 95

nested sequences, flattening, 135–136
network programming, 437–483

connection (multiprocessing module), 456–
458

event-driven I/O, 475–481
hmac module, 461–463
interpreters, communication between, 456–

458
large arrays, sending/receiving, 481–483
passing file descriptors, 470–475
remote procedure calls, 454–456, 458–461
simple authentication, 461–463
socketserver module, 441–444
SSL, implementing, 464–470
TCP servers, 441–444
UDP server, implementing, 445–446
UDPServer class, 446
XML-RPC, 454–456

__new__() method (classes)
coding conventions and, 367–370
optional arguments and, 363

newlines, 142
new_class() function (types module), 370–373
new_module() function (imp module), 421
next() function (iterators), 113
nlargest() function (heapq module), 7–8
nonblocking, supporting with queues, 495
noncapture groups (regular expressions), 49
nonlocal declarations, 239

adjusting decorators with, 336–339

678 | Index

normalize() function (unicodedata module), 51,
55

normalize() method (pytz module), 111
normalizing Unicode, 50–51

supported forms in Python, 51
normpath() (os.path module), 551
nsmallest() function (heapq module), 7–8
null-terminated strings, passing to C, 644–648
NullHandler() class (logging module), 559
numerical operations, 83–112

complex-valued math, 92–94
decimal calculations, 84–86
formating for output, 87–88
infinity and, 94–95
linear algebra calculations, 100–101
matrix calculations, 100–101
NaNs and, 94–95
NumPy and, 97–100
on fractions, 96–96
packing/unpacking integers from byte

string, 90–92
random number generators, 102–103
rounding, 83–84
time, 104–112
time conversions, 104–105
with binary integers, 89–90
with hexadecimal integers, 89–90
with octal integers, 89–90

NumPy module, 97–100, 640
complex math and, 93
CPU-bound programs and, 514
linear algebra and, 100–101
matrix calculations and, 100–101
unpacking binary data with, 203

O
objects, 243–327

and context-management protocols, 246–
248

calling methods on, when named in strings,
305–306

creating large numbers of, 248–249
defining default arguments and, 224
format() function and, 245–246
formatting output of, 243–244
implementing states for, 299–305
iterator protocol, implementing, 117–119
JSON dictionary, decoding to, 181
memory management, 317–320

representing in C, 608
serializing, 171–174
visitor pattern, implementing, 306–311
visitor patterns without recursion, 311–317
with statement and, 246–248

object_hook (json.loads() function), 181
object_pairs_hook (json.loads() function), 181
oct() function, 89–90
octal integers, 89–90
Olson time zone database, 110
opaque pointers, 612–614
open() function, 141–144

binary data, reading/writing, 145–147
closefd argument, 166
file descriptors and, 166
on non-Unix systems, 167
rb/wb modes of, 145–147
rt/wt mode, 141–144
x mode of, 147–148

optimizating your programs, 590
optparse vs. argparse, 544
OrderedDict object (collections module), 12–13

decoding JSON data into, 181
os module

listdir() function, 158–159
path module in, 156–157

OSError exception, 575–576
ouput sent to stdout, 565

P
pack() function (structs), 201
packages, 397–435

datafiles, reading, 408–409
directories/zip files, running, 407–408
distributing, 433–435
hierarchical, of modules, 397–398
MANIFEST.in file, 434
namespaces, multiple directories in, 404–406
per-user directory, installing, 431–432
submodules, importing with relative names,

399–401
sys.path, adding directories to, 409–411
third-party options for, 435
virtual environments and, 432–433
__init__.py file, 397
__path__ variable and, 405

pack_into() function (struct module), 153
Pandas package, 178, 214–216
parallel programming, 509–513

Index | 679

parse tree, 73
parse() function (ElementTree module), 185
parser (html), 66
parser, recursive descent, 69–78
parse_and_remove() function (ElementTree

module), 189
parsing command-line options, 539, 541
partial() function (functools module), 227–230

defining property methods and, 383
fixed size records and, 151
optional arguments for decorators and, 341
state, carrying with, 234, 235

Paste, 453
patch() function (unittest.mock class)

testing output with, 565
unit tests with, 567

patching objects, 567
path module (os), 156–157

testing for existing files with, 157–158
pathnames, manipulating, 156–157
pattern matching, 42–45
pattern object (regular expressions), 43
pdb debugger, 663–664
per-user directory, 431–432
performance

ast manipulation and, 392
attrgetter() function and, 24
Cython and, 638–642
dictionary comprehension vs. dict() type, 29
join() method vs. + operator, 60
keeping limited history and, 6
lazy attributes and, 267–270
nlargest()/nsmallest() functions and, 7
NumPy module and, 97–100
of byte vs. text strings, 81
pattern objects and, 45
profiling/timing, 587
sanitizing strings and, 56
strptime() method and, 110

perf_counter() function (time class), 561, 589
PermissionError exception, 575
permutations() function (itertools module), 125
pexpect, 547
pickle module, 171–174

limits on, 172
multiprocessing.connection functions and,

457
RPCs and, 458–461

Pipe object (multiprocessing module), 471

pipelines, creating, 132–135
pipes

accepting script via, 539
mimicking, 132–135

PLY, 69, 76
polling thread queues, 531–534
Popen class (subprocess module), 547
POST method (HTTP), 438
pprint() function (pprint module), 180
predefined abstract base classes, 276
prefix variable, 554, 555
__prepare__() method (classes), 361

new_class() function and, 372
optional arguments and, 363

prepare_class() function (types module), 373
print() function, 243, 542, 586

end argument, 144
line ending, changing, 144–145
redirecting to files, 144
separator character, changing, 144–145

private data/methods
caching instances within, 326
naming conventions for, 250–251

probability distributions (random module), 103
process pools, GIL and, 514, 516
ProcessPoolExecutor class (futures module),

509–513
process_time() function (time class), 561, 589
program crashes, debugging, 584
program profiling, 587
property attributes (classes)

delegating, 287–291
extending in subclasses, 260–264
repetitive definitions for, 382–384

@property decorator, 330, 346
proxies, delegating attributes with, 288, 290
public-facing services, 457
put() method (queue module), 491, 495
pwd module, 544
PyArg_ParseTuple() function (C extensions),

609
converting string encoding with, 650

PyBuffer_GetBuffer() method (Py_buffer ob‐
ject), 611

PyBuffer_Release() method (Py_buffer object),
612

PyCallable_Check() function (C extensions),
622

680 | Index

PyCapsule_GetPointer() function (C exten‐
sions), 614

PyCapsule_Import() function (C extensions),
618

PyCapsule_New() function (C extensions), 613
PyCapsule_SetDestructor() function (C exten‐

sions), 614
PyErr_Occurred() function (C extensions), 623
PyFile_FromFd() function (C extensions), 658–

659
PyFloat_AsDouble() function (C extensions),

623
PyFloat_Check() function (C extensions), 623
PyGILState_Ensure() function (C extensions),

624, 626
PyGILState_Release() function (C extensions),

624, 626
PyIter_Next() function (C extensions), 662–663
PyObject data type (C extension)

filenames, passing with, 657–658
PyObject_BuildValue function (C extensions),

623
PyObject_Call() function (C extensions), 622

file-like objects and, 661
PyObject_GetIter() function (C extensions),

662–663
PyParsing, 69, 76
PyPy, 514
PySequence_Length() function (C extensions),

661
pySerial package, 170–171
Python for Data Analysis (McKinney), 216
Python Package Index, 434
Python syntax vs. JSON, 180
PYTHONPATH environment variable, 409
pytz module, 110–112
PyUnicode_FromWideChar() function (C ex‐

tensions)
C strings, converting to Python objects, 653–

654
pyvenv command, 432–433
Py_BEGIN_ALLOW_THREADS (Py objects),

625
Py_BuildValue() function (C extensions), 609

C strings, converting to Python objects, 653–
654

Py_DECREF() function (C extensions), 623
Py_END_ALLOW_THREADS (Py objects), 625
Py_XDECREF() function (C extensions), 623

Q
qsize() method (queue module), 496
queue module, 491–496
queues

bounding, 495
structures, deque() and, 6

quote() function (shlex class), 546

R
race conditions, avoiding, 497–500
raise from statement, 580, 582

None modifier, 581
raise statement, 580, 582
randint() function (random module), 102
random module, 102–103
random() function (random module), 103
re module

compile() function, 49
DOTALL flag, 49
IGNORECASE flag, 47
pattern matching and, 42–45
patterns, naming, 67
scanner() method, 67
search/replace text and, 45–46
split() method, 37–38
sub() function, 54
Unicode text and, 52–53

read() function, 139
file-like C objects and, 659–662

readability, naming slices for, 18–19
readinto() method (files), 147

reading into mutable buffers with, 152–153
recursion, 5

getrecursionlimit() function (sys module),
310

recursive descent parsers, 69–78
limitations on, 76

recvfrom() method (socket module), 445
recv_handle() function (reduction module),

470–475
recv_into() function (socket module), 153, 483
redirection, 539
regex module, 53
register() function (atexit module), 538
register_function() method (XML-RPC), 455
regular expressions

* (star) operator and, 48
? (question mark) modifier and, 48

Index | 681

greedy vs. nongreedy, 47–48
matching multiple lines, 48–49
newline support in, 48–49
on byte strings, 79
order of tokens in, 68
pattern matching and, 42–45
re.split() method and, 38
regex module for, 53
shortest match with, 47–48
stripping characters with, 54
Unicode and, 52–53

relational databases, 195–197
connecting to, 196
cursors, creating, 196

relative imports vs. absolute names (modules),
400

relativedelta() function (dateutil module), 105
reload() function (imp module), 406–407, 431
remote machines

loading modules from, 412–428
XML-RPC, 454–456

remote procedure calls (RPC), 458–461
exception handling with, 461

remove() method (ElementTree module), 193
replace() method (date module), 108
replace() method (datetime module), 108
_replace() method (namedtuple object), 31
replace() method (str type), 54, 54

performance and, 56
search/replace text and, 45

repr() function (built-in), 243
request module (urllib module), 438–441

client package vs., 440
requests package (urllib module)

return values of, 439
reraising exceptions, 582
reserved words, clashing with, 251
resource forks, 548
resource management, 248
resource module, 561
ResourceWarning argument (warn() function),

583
REST-base interface, 449–453

testing, 450
restricting CPU time, 561
result() method (ProcessPoolExecutor class),

512
reverse iteration, 119–120
reversed() function, 119–120

rjust() method (str type), 57
RLock objects (threading module), 498
round() function, 83–84
rounding numbers, 83–84
RSS feeds, parsing, 183
rstrip() method (str type), 53
RTS-CTS handshaking, 170
RuntimeWarning argument (warn() function),

583

S
sample() function (random module), 102
sanitizing text, 54–57
scanner() method (re module), 67
search

for shortest match with regular expressions,
47–48

matching multiple lines, 48–49
nlargest()/nsmallest() functions (heapq

module), 7–8
noncapture groups, 49
normalization of Unicode text and, 51
visitor pattern and, 311

search/replace text, 45–46
case insensitive, 46–47

security
import statement and, 412
pickle and, 172
RPCs and, 460
SSL certificates and, 466

seed() function (random module), 103
segmentation faults, 663–664
select() function (event driven I/O), 476
self-signed certificates (SSL), 468
Semaphore objects (threading module), 490,

498
send() function (socket module), 483
send() method (generators), 316
sendmsg() method (socket module), 473
sendto() method (socket module), 445
send_handle() function (reduction module),

470–475
Sequence class (collections module), 283
sequences

filtering elements of, 26–28
flattening nested, 135–136
iterating over multiple, simultaneously, 129–

130
mapping names to elements of, 29–32

682 | Index

most frequently occurring item in, 20–21
removing duplicates from, 17–18
unpacking, 1–2

serial ports, communicating with, 170–171
serve_forever() method (XML-RPC), 455
Set class (collections module), 283
__set__() method (descriptors), 265

in data models, 280
setattr() method, 294
__setattr__() method (delegation), 290
setrlimit() function, 562
setsid() function (os module), 537
setup.py file, 633, 639

distributing packages and, 434
set_trace() function (pdb module), 586–587
shell, 546
shell scripts, 539
shelling out, 550
shuffle() function (random module), 102
shutil module

archives and, 549
copying files/directories with, 547

sig module, 343–345
signature objects, 364–367
signature() function (inspect), 343
SIGXCPU signal, 562
simple scripts, 555
simplefilter() function (warnings class), 584
SimpleXMLRPCServer (XML-RPC), 456
site-packages directories, 410

virtual environments vs., 432–433
skip() decorator, 574
skipIf() function (unittest module), 574
skipping test failures, 573
skipUnless() function (unittest module), 574
slice() object, 19
slices, naming, 18–19
__slots__ attribute

classes with, 32
memory management and, 249

socket module, 444
ipaddress module and, 448
sending datagrams with, 445

socketpair() function (Unix), 532
sockets

large arrays, sending/receiving, 483
setting options on, 443
threads and, 532

socketserver module
implementing TCP servers with, 441–444
UDP server, implementing, 445–446

sorted() function
and objects without comparison support,

23–24
itemgetter() function, 22

sorting
dictionaries, 13–15
dictionaries by common key, 21–23
finding largest/smallest N items, 7–8
groupby() function and, 25
itemgetter function (operator module), 22
objects without comparison support, 23–24

sort_keys argument (json.dumps() function),
182

source file vs. config file, 553
special characters, escaping, 66
split() method (re object), 37–38
split() method (str type), 37–38
SQLAlchemy, 197
sqlite3 module, 195
sqrt() function (math module), 592
ssh session, 547
SSL, 464–470

certificate authorities, 468
self-signed certificates, 468

ssl module, 464–470
random module vs., 103

Stackless Python, 531
stack_size() function (threading module), 509
star expressions

discarding values from, 4
unpacking iterables and, 3

start attribute (slice), 19
start() method (Thread class), 486
startswith() method (str type), 38

pattern matching with, 42
start_response argument (WSGI), 452
state

capturing with closures, 233–234
carrying with callback functions, 232–235
implementing for objects/machines, 299–

305
of mixins, 297
thread-specific, storing, 504–505

states, generators with extra, 120–121
static methods, applying decorators to, 350–352

Index | 683

@staticmethod decorator, 330
decorating class methods with, 350–352
__func__ attribute and, 334

stdout object (sys), changing encoding on, 163
step attribute (slice), 19
stop attribute (slice), 19
StopIteration exception, 113
str type

converting to datetime objects, 109–110
decode() method, 56
encode() method, 56
endswith() method, 38
format() function, 57
join() method, 58–61
lower() method, 54
pattern matching with, 42
replace() method, 54
sanitizing text with, 54–57
split() method, 37–38
startswith() method, 38
stripping unwanted characters from, 53–54
translate() method, 55
upper() method, 54

str() function, 243
StreamRequestHandler (socketserver module),

442–444
string module, 246
string templates and code readability, 453
StringIO object (io module), 566
StringIO() object (io module), 148–149
strings, 37–81

aligning, 57–58
bad encoding in C/Python extensions, 654–

657
C, converting to Python objects, 653–654
calling object methods when named in, 305–

306
combining, 58–61
concatenating, 58–61
converting to dates/times, 109–110
database API and, 197
I/O operations, performing on, 148–149
interpolating variables in, 61–64
matching start/end text of, 38–40
null-terminated, passing to C, 644–648
splitting on delimiters, 37–38
stripping unwanted characters from, 53–54
Unicode, passing to C modules, 648–653
unpacking, 2

strip() method (str type), 53–54
strptime() method (datetime module), 109
struct module, 199–203

nested binary records, reading, 203–213
packing/unpacking integers from byte

strings and, 91
structure codes for, 201
variable-sized binary records, reading, 203–

213
structures (data type), 612–614
sub() function (re module), 54, 63

search/replace text and, 45
submit() operation (ProcessPoolExecutor class),

512
subn() method (re module), 46
subprocess module, 547
subsitution callback functions, 46
super() function, 256–260

class decorators and, 356
coding conventions and, 370
extending properties in subclasses and, 262
mixin classes and, 298

surrogate encoding, 654–657
Swig, 604, 627–631

headers and, 630
symbolic links, 548

broken, 549
SyntaxWarning argument (warn() function),

583
sys.arg value, 543
sys.argv (commaand line arguments), 544
sys.metapath object, 418, 430

extending import operations and, 422
sys.modules dictionary, 421
sys.path

adding directories to, 409–411
site-packages directories, 410

sys.path_hooks variable (importers), 420
sys.path_importer_cache object, 424
sys.stderr, 540
sys.stdout, 565–566
system-exiting exceptions, 578
SystemExit exception, 540, 577–580

T
tag attribute (ElementTree module), 185
tarfile compression format, 550
TCP servers, 441–444

event-driven I/O implementation, 477

684 | Index

tempfile module, 167–170
temporary files, 167–170
TemporaryDirectory() method (tempfile mod‐

ule), 169
TemporaryFile (tempfile module), 168
terminal, finding size of, 65, 545
test failures, 573
TestCase classes (TestLoader module), 573
testing

ouput sent to stdout, 565
output, logging to file, 572
unit tests for exceptions, 570

TestLoader class (unitest module), 573
text attribute (ElementTree module), 185
text data

encoding, 141–144
reading/writing, 141–144

text manipulation, 37–81
aligning strings, 57–58
case insensitive search/replace, 46–47
combining/concatenating, 58–61
HTML entities, handling in text, 65–66
interpolating variables, 61–64
matching start/end of strings, 38–40
of Unicode with regular expressions, 52–53
on byte strings, 78–81
parsers, implementing, 69–78
pattern matching, 42–45
reformatting into columns, 64–65
sanitizing, 54–57
search/replace, 45–46
stripping unwanted characters, 53–54
tokenizing, 66–69
wildcard matcing, 40–42
XML entities, handling in text, 65–66

TextIOWrapper object (io module), 163–165
textwrap module, 64–65
Thread class (threading module), 485–488
thread pools

GIL and, 508
queues and, 506

threading module, 488
Condition object, 489
Event object, 488–491
local() method, 504–505
Lock objects, 497–500
Semaphore objects, 490
stack_size() function, 509

ThreadingMixIn class (socketserver module),
297

ThreadingTCPServer objects (socketserver
module), 442

ThreadingUDPServer objects (socketserver
module), 446

ThreadPoolExecutor class (futures module),
505–509

threads
actor model and, 516–520
C/Python, mixing, 625–626
communication between, 491–496
creating/destroying, 485–488
daemonic, 486
deadlocks between, 500–503
generators as alternative to, 524–531
locking critical sections, 497–500
nonblocking, supporting with queues, 495
polling multiple queues, 531–534
pools of, 505–509
priority queues and, 11
queue module and, 491–496
race conditions, avoiding, 497–500
status of, finding, 488–491
storing state of, 504–505
timeouts, supporting with queues, 495

throw() method (generators), 531
time command, 587
time module, 590
time zones, 110–112

country_timezones dictionary (pytz mod‐
ule), 112

UTC time, 111
time() function (time class), 561
time, operations on, 104–112

converting strings for, 109–110
date calculations, 106–107
date ranges, finding, 107–109
pytz module, 110–112
time conversions, 104–105
time zones, manipulating, 110–112
UTC time, 111

timedelta object (datetime module), 104, 107–
109

timeit module, 589, 590
timeouts, supporting with queues, 495
Timer class, 561
tokenizing and DOTALL flag (re module), 49
tokens streams, filtering, 68

Index | 685

tostring() function (ElementTree module), 190
total_ordering decorator (functools module),

321–323
to_bytes() method (int module), 91
traceback, segmentation faults and, 663–664
traceback.print_stack() function, 586
translate() method (str type), 54, 55

numerical output and, 88
performance and, 56

transmitting data, 155
tree structures, memory management of, 317–

320
tree traversal, 311, 314
TTYs, 545, 547
tuples

and endswith()/startswith() methods, 39
as return values, 221
relational databases and, 195–197
unpacking, 2

Twisted package, 238
type checking (data)

abstract base classes and, 274–276
forcing with decorator functions, 341–345

type systems, 277–283
%typemap directive (Swig), 631
types module, 370–373

U
UDP server, 445–446

event-driven I/O implementation, 476
UDPServer class, 446
umask() function (os module), 537
unescape() function (xml.sax.saxutils module),

191
Unicode, 50–53

bad encoding in C/Python extensions, 654–
657

IGNORECASE flag and matching, 47
regular expressions and, 52–53
strings, passing to C modules, 648–653

unicodedata module, 55
uniform() function (random module), 103
unittest module, 565, 572–573
Unix, 548

commands, 548
find utility, 551

unpack() function (struct module), 201
binary data and, 205

unpacking
archives, 549
discarding values while, 2
enumerate() function and, 128
integers from byte string, 90–92
iterables into separate variables, 1–2
iterables of arbitrary length, 3–5
sequences into separate variables, 1–2
star expressions and, 3

unpack_archive() function (shutil module), 549
unpack_from() method (struct module), 202
uploading using requests module, 440
upper() method (str type), 54
urllib module, 413, 437–441
urlopen() function (urllib module), 569–570

import statements vs., 413
sending query parameters with, 438

UserWarning argument (warn() function), 583
UTC time, 111

V
validation of data, abstract base classes and,

274–276
ValueError, 570

unpacking and, 2
values() method (dictionaries), 14, 16
variables

interpolating, in strings, 61–64
understand locality of, 592

vars() method, 62
virtual environments, 432–433
visitor pattern

implementing with recursion, 306–311
implementing without recursion, 311–317

W
walk() function (os module), 550
warn() function (warning class), 583
warning messages, issuing, 583
warning module, 584
warning() function (logging module), 556
watchdog timers, 503
wchar_t * declarations (C), 648–653

converting to Python objects, 653
weak references and caching instances, 325
weakref module, 317, 320
web browsers, launching, 562

686 | Index

web programming, 437–483
HTTP service clients, 437–441
REST-base interface, 449–453
urllib module and, 437–441

webbrowser module, 563
WebOb, 453
while loops vs. iter() function, 138–139
wildcard matcing, strings, 40–42
Windows, 548

C extension modules and, 608
with nogil: statement (Cython), 636
with statement, 246–248, 561, 566

contextmanager decorator and, 385
Lock objects and, 497–500
Semaphore objects and, 499

wraparound() decorator (Cython), 641
__wrapped__ attribute, 332
@wraps decorator (functools)

function metadata and, 331–333
unwrapping, 333–334

WSGI standard, 449–453
return value for apps based on, 452

X
XML entities

handling in text, 65–66
replacing, 66

XML files
dictionaries, converting to, 189–191

extracting data from, 183–186
modifying, 191–193
parsing, 191–193

incrementally, 186–189
with namespaces, 193–195

rewriting, 191–193
tags, specifying, 185

XML-RPC, 454–456
adding SSL to, 466
data types handled by, 455

xml.etree.ElementTree module (see Element‐
Tree module)

xml.sax.saxutils module, 191
XMLNamespaces class, 194

Y
yield from statement, 135–136
yield statement, 60, 134

behavior in generators, 315
concurrency implementations and, 524–531
generators and, 116
search functions and, 6

Z
ZeroMQ, 457
zip files as runnable scripts, 407–408
zip() method (dictionaries), 13–15, 129–130
zipfile compression format, 550

Index | 687

About the Authors
David Beazley is an independent software developer and book author living in the city
of Chicago. He primarily works on programming tools, providing custom software
development, and teaching practical programming courses for software developers,
scientists, and engineers. He is best known for his work with the Python programming
language, for which he has created several open source packages (e.g., Swig and PLY)
and authored the acclaimed Python Essential Reference. He also has significant experi‐
ence with systems programming in C, C++, and assembly language.

Brian K. Jones is a system administrator in the department of computer science at
Princeton University.

Colophon
The animal on the cover of Python Cookbook, Third Edition is a springhaas (Pedetes
capensis), also known as a spring hare. Springhaas are not hares at all, but rather the
only member of the family Pedetidae in the order Rodentia. They are not marsupials,
but they are vaguely kangaroo-like, with small front legs, powerful hind legs designed
for hopping, jumping, and leaping, and long, strong, bushy (but not prehensile) tails
used for balance and as a brace when sitting. They grow to be about 14 to 18 inches
long, with tails as long as their bodies, and can weigh approximately eight pounds.
Springhaas have rich, glossy, tawny, or golden-reddish coats with long, soft fur and white
underbellies. Their heads are disproportionately large, and they have long ears (with a
flap of skin at the base they can close to prevent sand from getting inside while they are
digging) and large, dark brown eyes.

Springhaas mate throughout the year and have a gestation period of about 78 to 82 days.
Females generally give birth to only one baby (which stays with its mother until it is
approximately seven weeks old) per litter but have three or four litters each year. Babies
are born with teeth and are fully furred, with their eyes closed and ears open.

Springhaas are terrestrial and well-adapted for digging, and they tend to spend their
days in the small networks of their burrows and tunnels. They are nocturnal and pri‐
marily herbivorous, feeding on bulbs, roots, grains, and occasionally insects. While they
are foraging, they move about on all fours, but they are able to move 10 to 25 feet in a
single horizontal leap and are capable of quick getaways when frightened. Although they
are often seen foraging in groups in the wild, they do not form an organized social unit
and usually nest alone or in breeding pairs. Springhaas can live up to 15 years in captivity.
They are found in Zaire, Kenya, and South Africa, in dry, desert, or semiarid areas, and
they are a favorite and important food source in South Africa.

The cover image is from Animal Creation: Mammalia. The cover font is Adobe ITC
Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Is Not For
	Conventions Used in This Book
	Online Code Examples
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	David Beazley’s Acknowledgments
	Brian Jones’ Acknowledgments

	Chapter 1. Data Structures and Algorithms
	1.1. Unpacking a Sequence into Separate Variables
	Problem
	Solution
	Discussion

	1.2. Unpacking Elements from Iterables of Arbitrary Length
	Problem
	Solution
	Discussion

	1.3. Keeping the Last N Items
	Problem
	Solution
	Discussion

	1.4. Finding the Largest or Smallest N Items
	Problem
	Solution
	Discussion

	1.5. Implementing a Priority Queue
	Problem
	Solution
	Discussion

	1.6. Mapping Keys to Multiple Values in a Dictionary
	Problem
	Solution
	Discussion

	1.7. Keeping Dictionaries in Order
	Problem
	Solution
	Discussion

	1.8. Calculating with Dictionaries
	Problem
	Solution
	Discussion

	1.9. Finding Commonalities in Two Dictionaries
	Problem
	Solution
	Discussion

	1.10. Removing Duplicates from a Sequence while Maintaining Order
	Problem
	Solution
	Discussion

	1.11. Naming a Slice
	Problem
	Solution
	Discussion

	1.12. Determining the Most Frequently Occurring Items in a Sequence
	Problem
	Solution
	Discussion

	1.13. Sorting a List of Dictionaries by a Common Key
	Problem
	Solution
	Discussion

	1.14. Sorting Objects Without Native Comparison Support
	Problem
	Solution
	Discussion

	1.15. Grouping Records Together Based on a Field
	Problem
	Solution
	Discussion

	1.16. Filtering Sequence Elements
	Problem
	Solution
	Discussion

	1.17. Extracting a Subset of a Dictionary
	Problem
	Solution
	Discussion

	1.18. Mapping Names to Sequence Elements
	Problem
	Solution
	Discussion

	1.19. Transforming and Reducing Data at the Same Time
	Problem
	Solution
	Discussion

	1.20. Combining Multiple Mappings into a Single Mapping
	Problem
	Solution
	Discussion

	Chapter 2. Strings and Text
	2.1. Splitting Strings on Any of Multiple Delimiters
	Problem
	Solution
	Discussion

	2.2. Matching Text at the Start or End of a String
	Problem
	Solution
	Discussion

	2.3. Matching Strings Using Shell Wildcard Patterns
	Problem
	Solution
	Discussion

	2.4. Matching and Searching for Text Patterns
	Problem
	Solution
	Discussion

	2.5. Searching and Replacing Text
	Problem
	Solution
	Discussion

	2.6. Searching and Replacing Case-Insensitive Text
	Problem
	Solution
	Discussion

	2.7. Specifying a Regular Expression for the Shortest Match
	Problem
	Solution
	Discussion

	2.8. Writing a Regular Expression for Multiline Patterns
	Problem
	Solution
	Discussion

	2.9. Normalizing Unicode Text to a Standard Representation
	Problem
	Solution
	Discussion

	2.10. Working with Unicode Characters in Regular Expressions
	Problem
	Solution
	Discussion

	2.11. Stripping Unwanted Characters from Strings
	Problem
	Solution
	Discussion

	2.12. Sanitizing and Cleaning Up Text
	Problem
	Solution
	Discussion

	2.13. Aligning Text Strings
	Problem
	Solution
	Discussion

	2.14. Combining and Concatenating Strings
	Problem
	Solution
	Discussion

	2.15. Interpolating Variables in Strings
	Problem
	Solution
	Discussion

	2.16. Reformatting Text to a Fixed Number of Columns
	Problem
	Solution
	Discussion

	2.17. Handling HTML and XML Entities in Text
	Problem
	Solution
	Discussion

	2.18. Tokenizing Text
	Problem
	Solution
	Discussion

	2.19. Writing a Simple Recursive Descent Parser
	Problem
	Solution
	Discussion

	2.20. Performing Text Operations on Byte Strings
	Problem
	Solution
	Discussion

	Chapter 3. Numbers, Dates, and Times
	3.1. Rounding Numerical Values
	Problem
	Solution
	Discussion

	3.2. Performing Accurate Decimal Calculations
	Problem
	Solution
	Discussion

	3.3. Formatting Numbers for Output
	Problem
	Solution
	Discussion

	3.4. Working with Binary, Octal, and Hexadecimal Integers
	Problem
	Solution
	Discussion

	3.5. Packing and Unpacking Large Integers from Bytes
	Problem
	Solution
	Discussion

	3.6. Performing Complex-Valued Math
	Problem
	Solution
	Discussion

	3.7. Working with Infinity and NaNs
	Problem
	Solution
	Discussion

	3.8. Calculating with Fractions
	Problem
	Solution
	Discussion

	3.9. Calculating with Large Numerical Arrays
	Problem
	Solution
	Discussion

	3.10. Performing Matrix and Linear Algebra Calculations
	Problem
	Solution
	Discussion

	3.11. Picking Things at Random
	Problem
	Solution
	Discussion

	3.12. Converting Days to Seconds, and Other Basic Time Conversions
	Problem
	Solution
	Discussion

	3.13. Determining Last Friday’s Date
	Problem
	Solution
	Discussion

	3.14. Finding the Date Range for the Current Month
	Problem
	Solution
	Discussion

	3.15. Converting Strings into Datetimes
	Problem
	Solution
	Discussion

	3.16. Manipulating Dates Involving Time Zones
	Problem
	Solution
	Discussion

	Chapter 4. Iterators and Generators
	4.1. Manually Consuming an Iterator
	Problem
	Solution
	Discussion

	4.2. Delegating Iteration
	Problem
	Solution
	Discussion

	4.3. Creating New Iteration Patterns with Generators
	Problem
	Solution
	Discussion

	4.4. Implementing the Iterator Protocol
	Problem
	Solution
	Discussion

	4.5. Iterating in Reverse
	Problem
	Solution
	Discussion

	4.6. Defining Generator Functions with Extra State
	Problem
	Solution
	Discussion

	4.7. Taking a Slice of an Iterator
	Problem
	Solution
	Discussion

	4.8. Skipping the First Part of an Iterable
	Problem
	Solution
	Discussion

	4.9. Iterating Over All Possible Combinations or Permutations
	Problem
	Solution
	Discussion

	4.10. Iterating Over the Index-Value Pairs of a Sequence
	Problem
	Solution
	Discussion

	4.11. Iterating Over Multiple Sequences Simultaneously
	Problem
	Solution
	Discussion

	4.12. Iterating on Items in Separate Containers
	Problem
	Solution
	Discussion

	4.13. Creating Data Processing Pipelines
	Problem
	Solution
	Discussion

	4.14. Flattening a Nested Sequence
	Problem
	Solution
	Discussion

	4.15. Iterating in Sorted Order Over Merged Sorted Iterables
	Problem
	Solution
	Discussion

	4.16. Replacing Infinite while Loops with an Iterator
	Problem
	Solution
	Discussion

	Chapter 5. Files and I/O
	5.1. Reading and Writing Text Data
	Problem
	Solution
	Discussion

	5.2. Printing to a File
	Problem
	Solution
	Discussion

	5.3. Printing with a Different Separator or Line Ending
	Problem
	Solution
	Discussion

	5.4. Reading and Writing Binary Data
	Problem
	Solution
	Discussion

	5.5. Writing to a File That Doesn’t Already Exist
	Problem
	Solution
	Discussion

	5.6. Performing I/O Operations on a String
	Problem
	Solution
	Discussion

	5.7. Reading and Writing Compressed Datafiles
	Problem
	Solution
	Discussion

	5.8. Iterating Over Fixed-Sized Records
	Problem
	Solution
	Discussion

	5.9. Reading Binary Data into a Mutable Buffer
	Problem
	Solution
	Discussion

	5.10. Memory Mapping Binary Files
	Problem
	Solution
	Discussion

	5.11. Manipulating Pathnames
	Problem
	Solution
	Discussion

	5.12. Testing for the Existence of a File
	Problem
	Solution
	Discussion

	5.13. Getting a Directory Listing
	Problem
	Solution
	Discussion

	5.14. Bypassing Filename Encoding
	Problem
	Solution
	Discussion

	5.15. Printing Bad Filenames
	Problem
	Solution
	Discussion

	5.16. Adding or Changing the Encoding of an Already Open File
	Problem
	Solution
	Discussion

	5.17. Writing Bytes to a Text File
	Problem
	Solution
	Discussion

	5.18. Wrapping an Existing File Descriptor As a File Object
	Problem
	Solution
	Discussion

	5.19. Making Temporary Files and Directories
	Problem
	Solution
	Discussion

	5.20. Communicating with Serial Ports
	Problem
	Solution
	Discussion

	5.21. Serializing Python Objects
	Problem
	Solution
	Discussion

	Chapter 6. Data Encoding and Processing
	6.1. Reading and Writing CSV Data
	Problem
	Solution
	Discussion

	6.2. Reading and Writing JSON Data
	Problem
	Solution
	Discussion

	6.3. Parsing Simple XML Data
	Problem
	Solution
	Discussion

	6.4. Parsing Huge XML Files Incrementally
	Problem
	Solution
	Discussion

	6.5. Turning a Dictionary into XML
	Problem
	Solution
	Discussion

	6.6. Parsing, Modifying, and Rewriting XML
	Problem
	Solution
	Discussion

	6.7. Parsing XML Documents with Namespaces
	Problem
	Solution
	Discussion

	6.8. Interacting with a Relational Database
	Problem
	Solution
	Discussion

	6.9. Decoding and Encoding Hexadecimal Digits
	Problem
	Solution
	Discussion

	6.10. Decoding and Encoding Base64
	Problem
	Solution
	Discussion

	6.11. Reading and Writing Binary Arrays of Structures
	Problem
	Solution
	Discussion

	6.12. Reading Nested and Variable-Sized Binary Structures
	Problem
	Solution
	Discussion

	6.13. Summarizing Data and Performing Statistics
	Problem
	Solution
	Discussion

	Chapter 7. Functions
	7.1. Writing Functions That Accept Any Number of Arguments
	Problem
	Solution
	Discussion

	7.2. Writing Functions That Only Accept Keyword Arguments
	Problem
	Solution
	Discussion

	7.3. Attaching Informational Metadata to Function Arguments
	Problem
	Solution
	Discussion

	7.4. Returning Multiple Values from a Function
	Problem
	Solution
	Discussion

	7.5. Defining Functions with Default Arguments
	Problem
	Solution
	Discussion

	7.6. Defining Anonymous or Inline Functions
	Problem
	Solution
	Discussion

	7.7. Capturing Variables in Anonymous Functions
	Problem
	Solution
	Discussion

	7.8. Making an N-Argument Callable Work As a Callable with Fewer Arguments
	Problem
	Solution
	Discussion

	7.9. Replacing Single Method Classes with Functions
	Problem
	Solution
	Discussion

	7.10. Carrying Extra State with Callback Functions
	Problem
	Solution
	Discussion

	7.11. Inlining Callback Functions
	Problem
	Solution
	Discussion

	7.12. Accessing Variables Defined Inside a Closure
	Problem
	Solution
	Discussion

	Chapter 8. Classes and Objects
	8.1. Changing the String Representation of Instances
	Problem
	Solution
	Discussion

	8.2. Customizing String Formatting
	Problem
	Solution
	Discussion

	8.3. Making Objects Support the Context-Management Protocol
	Problem
	Solution
	Discussion

	8.4. Saving Memory When Creating a Large Number of Instances
	Problem
	Solution
	Discussion

	8.5. Encapsulating Names in a Class
	Problem
	Solution
	Discussion

	8.6. Creating Managed Attributes
	Problem
	Solution
	Discussion

	8.7. Calling a Method on a Parent Class
	Problem
	Solution
	Discussion

	8.8. Extending a Property in a Subclass
	Problem
	Solution
	Discussion

	8.9. Creating a New Kind of Class or Instance Attribute
	Problem
	Solution
	Discussion

	8.10. Using Lazily Computed Properties
	Problem
	Solution
	Discussion

	8.11. Simplifying the Initialization of Data Structures
	Problem
	Solution
	Discussion

	8.12. Defining an Interface or Abstract Base Class
	Problem
	Solution
	Discussion

	8.13. Implementing a Data Model or Type System
	Problem
	Solution
	Discussion

	8.14. Implementing Custom Containers
	Problem
	Solution
	Discussion

	8.15. Delegating Attribute Access
	Problem
	Solution
	Discussion

	8.16. Defining More Than One Constructor in a Class
	Problem
	Solution
	Discussion

	8.17. Creating an Instance Without Invoking init
	Problem
	Solution
	Discussion

	8.18. Extending Classes with Mixins
	Problem
	Solution
	Discussion

	8.19. Implementing Stateful Objects or State Machines
	Problem
	Solution
	Discussion

	8.20. Calling a Method on an Object Given the Name As a String
	Problem
	Solution
	Discussion

	8.21. Implementing the Visitor Pattern
	Problem
	Solution
	Discussion

	8.22. Implementing the Visitor Pattern Without Recursion
	Problem
	Solution
	Discussion

	8.23. Managing Memory in Cyclic Data Structures
	Problem
	Solution
	Discussion

	8.24. Making Classes Support Comparison Operations
	Problem
	Solution
	Discussion

	8.25. Creating Cached Instances
	Problem
	Solution
	Discussion

	Chapter 9. Metaprogramming
	9.1. Putting a Wrapper Around a Function
	Problem
	Solution
	Discussion

	9.2. Preserving Function Metadata When Writing Decorators
	Problem
	Solution
	Discussion

	9.3. Unwrapping a Decorator
	Problem
	Solution
	Discussion

	9.4. Defining a Decorator That Takes Arguments
	Problem
	Solution
	Discussion

	9.5. Defining a Decorator with User Adjustable Attributes
	Problem
	Solution
	Discussion

	9.6. Defining a Decorator That Takes an Optional Argument
	Problem
	Solution
	Discussion

	9.7. Enforcing Type Checking on a Function Using a Decorator
	Problem
	Solution
	Discussion

	9.8. Defining Decorators As Part of a Class
	Problem
	Solution
	Discussion

	9.9. Defining Decorators As Classes
	Problem
	Solution
	Discussion

	9.10. Applying Decorators to Class and Static Methods
	Problem
	Solution
	Discussion

	9.11. Writing Decorators That Add Arguments to Wrapped Functions
	Problem
	Solution
	Discussion

	9.12. Using Decorators to Patch Class Definitions
	Problem
	Solution
	Discussion

	9.13. Using a Metaclass to Control Instance Creation
	Problem
	Solution
	Discussion

	9.14. Capturing Class Attribute Definition Order
	Problem
	Solution
	Discussion

	9.15. Defining a Metaclass That Takes Optional Arguments
	Problem
	Solution
	Discussion

	9.16. Enforcing an Argument Signature on *args and **kwargs
	Problem
	Solution
	Discussion

	9.17. Enforcing Coding Conventions in Classes
	Problem
	Solution
	Discussion

	9.18. Defining Classes Programmatically
	Problem
	Solution
	Discussion

	9.19. Initializing Class Members at Definition Time
	Problem
	Solution
	Discussion

	9.20. Implementing Multiple Dispatch with Function Annotations
	Problem
	Solution
	Discussion

	9.21. Avoiding Repetitive Property Methods
	Problem
	Solution
	Discussion

	9.22. Defining Context Managers the Easy Way
	Problem
	Solution
	Discussion

	9.23. Executing Code with Local Side Effects
	Problem
	Solution
	Discussion

	9.24. Parsing and Analyzing Python Source
	Problem
	Solution
	Discussion

	9.25. Disassembling Python Byte Code
	Problem
	Solution
	Discussion

	Chapter 10. Modules and Packages
	10.1. Making a Hierarchical Package of Modules
	Problem
	Solution
	Discussion

	10.2. Controlling the Import of Everything
	Problem
	Solution
	Discussion

	10.3. Importing Package Submodules Using Relative Names
	Problem
	Solution
	Discussion

	10.4. Splitting a Module into Multiple Files
	Problem
	Solution
	Discussion

	10.5. Making Separate Directories of Code Import Under a Common Namespace
	Problem
	Solution
	Discussion

	10.6. Reloading Modules
	Problem
	Solution
	Discussion

	10.7. Making a Directory or Zip File Runnable As a Main Script
	Problem
	Solution
	Discussion

	10.8. Reading Datafiles Within a Package
	Problem
	Solution
	Discussion

	10.9. Adding Directories to sys.path
	Problem
	Solution
	Discussion

	10.10. Importing Modules Using a Name Given in a String
	Problem
	Solution
	Discussion

	10.11. Loading Modules from a Remote Machine Using Import Hooks
	Problem
	Solution
	Discussion

	10.12. Patching Modules on Import
	Problem
	Solution
	Discussion

	10.13. Installing Packages Just for Yourself
	Problem
	Solution
	Discussion

	10.14. Creating a New Python Environment
	Problem
	Solution
	Discussion

	10.15. Distributing Packages
	Problem
	Solution
	Discussion

	Chapter 11. Network and Web Programming
	11.1. Interacting with HTTP Services As a Client
	Problem
	Solution
	Discussion

	11.2. Creating a TCP Server
	Problem
	Solution
	Discussion

	11.3. Creating a UDP Server
	Problem
	Solution
	Discussion

	11.4. Generating a Range of IP Addresses from a CIDR Address
	Problem
	Solution
	Discussion

	11.5. Creating a Simple REST-Based Interface
	Problem
	Solution
	Discussion

	11.6. Implementing a Simple Remote Procedure Call with XML-RPC
	Problem
	Solution
	Discussion

	11.7. Communicating Simply Between Interpreters
	Problem
	Solution
	Discussion

	11.8. Implementing Remote Procedure Calls
	Problem
	Solution
	Discussion

	11.9. Authenticating Clients Simply
	Problem
	Solution
	Discussion

	11.10. Adding SSL to Network Services
	Problem
	Solution
	Discussion

	11.11. Passing a Socket File Descriptor Between Processes
	Problem
	Solution
	Discussion

	11.12. Understanding Event-Driven I/O
	Problem
	Solution
	Discussion

	11.13. Sending and Receiving Large Arrays
	Problem
	Solution
	Discussion

	Chapter 12. Concurrency
	12.1. Starting and Stopping Threads
	Problem
	Solution
	Discussion

	12.2. Determining If a Thread Has Started
	Problem
	Solution
	Discussion

	12.3. Communicating Between Threads
	Problem
	Solution
	Discussion

	12.4. Locking Critical Sections
	Problem
	Solution
	Discussion

	12.5. Locking with Deadlock Avoidance
	Problem
	Solution
	Discussion

	12.6. Storing Thread-Specific State
	Problem
	Solution
	Discussion

	12.7. Creating a Thread Pool
	Problem
	Solution
	Discussion

	12.8. Performing Simple Parallel Programming
	Problem
	Solution
	Discussion

	12.9. Dealing with the GIL (and How to Stop Worrying About It)
	Problem
	Solution
	Discussion

	12.10. Defining an Actor Task
	Problem
	Solution
	Discussion

	12.11. Implementing Publish/Subscribe Messaging
	Problem
	Solution
	Discussion

	12.12. Using Generators As an Alternative to Threads
	Problem
	Solution
	Discussion

	12.13. Polling Multiple Thread Queues
	Problem
	Solution
	Discussion

	12.14. Launching a Daemon Process on Unix
	Problem
	Solution
	Discussion

	Chapter 13. Utility Scripting and System Administration
	13.1. Accepting Script Input via Redirection, Pipes, or Input Files
	Problem
	Solution
	Discussion

	13.2. Terminating a Program with an Error Message
	Problem
	Solution
	Discussion

	13.3. Parsing Command-Line Options
	Problem
	Solution
	Discussion

	13.4. Prompting for a Password at Runtime
	Problem
	Solution
	Discussion

	13.5. Getting the Terminal Size
	Problem
	Solution
	Discussion

	13.6. Executing an External Command and Getting Its Output
	Problem
	Solution
	Discussion

	13.7. Copying or Moving Files and Directories
	Problem
	Solution
	Discussion

	13.8. Creating and Unpacking Archives
	Problem
	Solution
	Discussion

	13.9. Finding Files by Name
	Problem
	Solution
	Discussion

	13.10. Reading Configuration Files
	Problem
	Solution
	Discussion

	13.11. Adding Logging to Simple Scripts
	Problem
	Solution
	Discussion

	13.12. Adding Logging to Libraries
	Problem
	Solution
	Discussion

	13.13. Making a Stopwatch Timer
	Problem
	Solution
	Discussion

	13.14. Putting Limits on Memory and CPU Usage
	Problem
	Solution
	Discussion

	13.15. Launching a Web Browser
	Problem
	Solution
	Discussion

	Chapter 14. Testing, Debugging, and Exceptions
	14.1. Testing Output Sent to stdout
	Problem
	Solution
	Discussion

	14.2. Patching Objects in Unit Tests
	Problem
	Solution
	Discussion

	14.3. Testing for Exceptional Conditions in Unit Tests
	Problem
	Solution
	Discussion

	14.4. Logging Test Output to a File
	Problem
	Solution
	Discussion

	14.5. Skipping or Anticipating Test Failures
	Problem
	Solution
	Discussion

	14.6. Handling Multiple Exceptions
	Problem
	Solution
	Discussion

	14.7. Catching All Exceptions
	Problem
	Solution
	Discussion

	14.8. Creating Custom Exceptions
	Problem
	Solution
	Discussion

	14.9. Raising an Exception in Response to Another Exception
	Problem
	Solution
	Discussion

	14.10. Reraising the Last Exception
	Problem
	Solution
	Discussion

	14.11. Issuing Warning Messages
	Problem
	Solution
	Discussion

	14.12. Debugging Basic Program Crashes
	Problem
	Solution
	Discussion

	14.13. Profiling and Timing Your Program
	Problem
	Solution
	Discussion

	14.14. Making Your Programs Run Faster
	Problem
	Solution
	Discussion

	Chapter 15. C Extensions
	15.1. Accessing C Code Using ctypes
	Problem
	Solution
	Discussion

	15.2. Writing a Simple C Extension Module
	Problem
	Solution
	Discussion

	15.3. Writing an Extension Function That Operates on Arrays
	Problem
	Solution
	Discussion

	15.4. Managing Opaque Pointers in C Extension Modules
	Problem
	Solution
	Discussion

	15.5. Defining and Exporting C APIs from Extension Modules
	Problem
	Solution
	Discussion

	15.6. Calling Python from C
	Problem
	Solution
	Discussion

	15.7. Releasing the GIL in C Extensions
	Problem
	Solution
	Discussion

	15.8. Mixing Threads from C and Python
	Problem
	Solution
	Discussion

	15.9. Wrapping C Code with Swig
	Problem
	Solution
	Discussion

	15.10. Wrapping Existing C Code with Cython
	Problem
	Solution
	Discussion

	15.11. Using Cython to Write High-Performance Array Operations
	Problem
	Solution
	Discussion

	15.12. Turning a Function Pointer into a Callable
	Problem
	Solution
	Discussion

	15.13. Passing NULL-Terminated Strings to C Libraries
	Problem
	Solution
	Discussion

	15.14. Passing Unicode Strings to C Libraries
	Problem
	Solution
	Discussion

	15.15. Converting C Strings to Python
	Problem
	Solution
	Discussion

	15.16. Working with C Strings of Dubious Encoding
	Problem
	Solution
	Discussion

	15.17. Passing Filenames to C Extensions
	Problem
	Solution
	Discussion

	15.18. Passing Open Files to C Extensions
	Problem
	Solution
	Discussion

	15.19. Reading File-Like Objects from C
	Problem
	Solution
	Discussion

	15.20. Consuming an Iterable from C
	Problem
	Solution
	Discussion

	15.21. Diagnosing Segmentation Faults
	Problem
	Solution
	Discussion

	Appendix A. Further Reading
	Online Resources
	Books for Learning Python
	Advanced Books

	Index
	About the Authors

